We Challenge You to Certify Your Updates

Su Chen
National Univ of Singapore
chensu@comp.nus.edu.sg

Laks V.S. Lakshmanan
Univ of British Columbia
laks@cs.ubc.ca

ABSTRACT

Correctness of data residing in a database is vital. Whitgiity constraint
enforcement can often ensure data consistency, it is inededo protect
against updates that involve careless, unintentionargreng., whether a
specified update to an employee’s record was for the inteedegloyee.
We propose a novel approach that is complementary to egigtiregrity
enforcement techniques, to guard against such erronealzas

Our approach is based on (a) updaters providingipdate certificate
with each database update, and (b) the database systegingettie cor-
rectness of the update certificate provided before perfogrttie update. We
formalize a certificate as a (challenge, response) pairchathcterize good
certificates as those that are easy for updaters to providiendren correct,
give the system enough confidence that the update was indeedéed. We
present algorithms that efficiently enumerate good chgéesnwithout ex-
haustively exploring the search space of all challengeseXgerimentally
demonstrate that (i) databases have many good challeniyekege chal-
lenges can be efficiently identified, (iii) certificates canduickly verified
for correctness, (iv) under natural models of an updateraKedge of the
database, update certificates catch a high percentage efriheeous up-
dates without imposing undue burden on the updaters peirfigricorrect
updates, and (v) our techniques are robust across a wide cfrapallenge
parameter settings.

Categories and Subject DescriptorsH.2.7 [Database Manage-
ment]: Database Administration-Security, integrity, and protec-
tion

General Terms: Algorithms, Design, Experimentation

1. INTRODUCTION

Correctness of data residing in a database is of utmost impor

tance for applications that rely on the data to make critoedi-

sions. Much work has been done on analyzing and mining tfee dat

in a database in order to detect potential duplicates,\liketors
and statistical outliers (see, e.g., [4, 3]). In this paper,are inter-
ested in a complementary problem: starting with a corretaluse
state, how do we minimize, if not prevent, the possibilitgttarrors
creep into the database as the data gets updated?

Ensuring correctness is not easy since databases arewmrglp
being modified by human updaters (typically using an apptioa
to reflect changes in reality. Consider, for example, degebaup-
porting Project Management. Here, information about mtsjésuch
as the status of different parts of the projects, their eunpeiorities,

Permission to make digital or hard copies of all or part os thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

SIGMOD’11,June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Xin Luna Dong
AT&T Labs—Research
lunadong@research.att.com

Divesh Srivastava
AT&T Labs—Research
divesh@research.att.com

resource needs, and funding sources) and participants ésuoles
of employees in different projects, individual project &hmes, re-
porting of billable hours) need to be continuously updatedro
time; such updates are typically made by project admirtistsa
Other such examples include Human Resources databasels whic
contain dynamically changing information about employégh
as their compensation, disability and sick leave, and jolstions)
and organizations (such as management reporting strggture
ventory databases which contain continuously updatedrirdton
about organizational assets, and so on.

Erroneous updates do happen in these databases, as many of

us may have experienced, often with significant cost becatise
the difficulty of correcting the errors in the database anting
back the decisions made due to these errors. For examplehswi
ing funding sources between projects in a Project Managemen
database, or reporting a disability leave for the wrong ey
in a Human Resources database, can create a lot of problems. |
these scenario$ would be desirable to guard against such erro-
neous updates, even if it requires additional effort on the pf the
database system, the application developers, and the efgdat

A variety of classical techniques ranging from schema nérma
ization to integrity constraint enforcement have been pseg to
address this problem [14]. These existing techniques redbe
database designer to anticipate all possible errors andfgpe-
tegrity constraints that must hold on all instances of thialkzse
schema, and which would detect (and reject) erroneous epdat
However, a large variety of errors cannot be anticipated sk
due to carelessness on the part of updaters and by the tpaddili
the database system to detect those updates as erroneeufal-Th
lowing example illustrates the idea.

ExamMPLE 1 (COMPLEX, BULK UPDATE). Consider the Cor-
porate database shown in Fig. 1, which is a simplified Prdj&ot-
agement and Human Resources database. The tables replesent
partments, employees, projects, and the association ofogegs
with projects. An updater (for example, a project admiaitsr)
intends to make Dolores Quintana the Admin of all the prgject
whose responsible department is located in NJ, starting fr®85-
02-01, but in the update, incorrectly speciflescat i on as NY
instead of NJenpl d as 000030 instead of 000130, asidDat e
as 1985-01-02 instead of 1985-02-01. For concretenesshove s
below the SQL update issued by the application with which the
updater interacted.

Ul: update PRQJ_EMP
set enpld = *000030', stDate = ‘1985-01-02’
where job = “Admin’ and projld in (
sel ect PRQJ.projld from PRQJ, DEPT
where PRQJ. deptld = DEPT. deptld and
DEPT. | ocation = ‘NY')

OEPT EVP
deptld | deptName | mgrid | Tocation ggg(;fo | r(];m? = | x))rokDept | gg?ge | 'iex | Z:|75a(;y
- ristine Haas

ggcl) ggr‘]"nclﬁs ﬁ%olf’l_lo N 000020 | Michael Thompson| BO1 3476 | M | 41250

col o | 000030 | N 000030 | Sally Kwan co1 4738 | F 38250
000110 Vincenzo Lucchess|f A00 3490 M 46500
000120 | Sean OConnell AOO 2167 | M | 29250

PRQJ_EMP _ 000130 | Dolores Quintana | CO1 4578 | F 23800

enpld [projld [job [stDate 000140 | Heather Nicholls | CO1 4578 | F 28420

000010 | AD3100 Ceader | 1982-01-01

000010 | MA2100 | Leader | 1982-02-01 PROD

000020 PL2100 Leader 1983-01-01 pr oj 1 d | pr Oj Name | dept 1d | st Dat e | enDat e

000030 | 11000 | Leader | 19830601 | ["AD3100 | Admin Sewvices | AQD 1981.01.01 | 1988.02-01

000130 IE1000 Admin | 1984-07-01 IF1000 Query Services Cco1 1981-03-01 1987-02-01

000140 | PL2100 At | Jo8510.01 IF2000 | User Education BO1 1980-01-01 | 1986-02-01

000140 IE2000 Admin | 1985-03-01 MA2100 | Line Automation A00 1979-01-01 1986-03-01
PL2100 | Line Planning BO1 1979-05-15 1987-09-15

Figure 1: Schema and Sample Data of a Corporate Database

Note that since valigenpl d, st Dat e andl ocat i on values
are specified in the update, integrity constraint checks nmiybe
able to detect this erroneous update. Notice, all of therabRDs
applicable to the schema of Fig. 1 would be satisfied by thisiten
As aresult, unintended records in tRRQJ_EMP table are (incor-
rectly) updated, while the intended records are left urttedc [

The above example illustrates that catching erroneoustepda
databases remains a challenging problem. In fact, almidsi@ivn
classes of integrity constraints are unable to capture spdates
as erroneous. One exception is the class of conditionatifura
dependencies (CFDs) proposed recently [6]. CFDs (withghsli
extension) can assert value associations of the form “ifigoldd-
min, thenenpl d must start with 0001”, thus capturing update Ul
as erroneous. However, this requires the database desmaer
ticipate all possible correct future states of the databaise assert
them as CFDs, which is not a particularly practical solution

In this paper, we propose a novel approach to guard against er
roneous updates that are “innocent mistakes” (as opposealio
cious ones). Our approach is based on (a) the updater pngyidi
through an application, the database update and an “updeti-c
cate” that is relevant to the database update, and (b) tlabats
system verifying the correctness of the update certificatgiged
before performing the update. An update certificate consisia
(challenge, response) pair, where the “challenge” intelyi asks
the updater to provide additional information that is relevto the
specified database update, and the updater provides tbisniaf
tion in the “response” to demonstrate that the updater iddee
tended to make the specified update; in the absence of miise,
is evidence of correctness. The system verifies, as paréaffilate
transaction, whether the response provided by the updattrtmes
the challenge; if not, the specified update is rejected aghaiin-
tended. The following example illustrates the idea.

EXAMPLE 2 (CERTIFICATE CHALLENGES AND RESPONSES
Challenges for the update U1l above could include “Q1: What is
the name of the employee wigmnpl d 000030?”, “Q2: What is
the day of the week ot Dat e 1985-01-02?" and “Q3: What is
the name of an employee who works for a department located in
NY?” If the updater responds “Dolores Quintana” to challel,
or “Friday” to challenge Q2, or “Christine Haas” to challen®3,
all of which match thentended updatéut not thespecified update
U1, the database system could reject Ul as unintended,bthere
preventing any disastrous decision that might be made aaseeco
quence of the erroneous update.]

1.1 Pragmatics of Certificates

For update certificates to be effective in guarding against e
roneous updates, it requires additional effort on the pérthe
database system, updaters, and application developens préu
ceding discussion described the additional effort thatld/e in-
curred by the updaters (providing the certificate) and thalse
system (verifying the correctness of the update certifjcate

A critical role also needs to be played by the applicatiorat th
mediate between the updaters and the database systent tdiat o
ing the updaters’ certificates and presenting them to thabadae
system. A developer of such an application would need to qizk
or more reasonable challenges for each type of update (sudh)a
supported by the application, and bake them into the apjgita
An updater using the application can choose any of the aigdie
relevant to the specified update and provide responsesjdenee
that the updater indeed intended to make the specified update

Note that updates need not be interactive for the certificateh-
anism to be feasibleSince the challenges supported by the appli-
cation are determined offline, a non-interactive updater gass
(i) the id of the chosen challenge, and (ii) the responsedahal-
lenge, as input to the application. This approach can alassbd
in conjunction with “batch” updates, where multiple updatate-
ments can be issued (along with their certificates) by theatgod
The update transaction generated by the application wogldde
the updates and their certificates for the system to verify.

It is important to emphasize that while the use of certifisate
adds some overhead to the update process, both for the update
and for the database system, and requires applicationajesl to
incorporate certificates into their applications, theserbgads are
significantly outweighed by the benefits of certificates idugng
errors in databases as the data gets updated. Such ertaraisig-
nificant cost for restoring the database to a correct state@lling
back the decisions made based on the incorrect state.

We next discuss various alternatives to update certificates
motivate our design choice of using certificates.

1.2 Alternatives to Certificates

Our main goal is to detect and prevent updates that might lead
to innocent unintended errors. One of the simplest mechenisr
doing this, inspired by the approach taken by Unix to confimat &
user intended to delete a file, is asking the updater “Are yova®
Another option, inspired by the practice used by most ordiemure
systems for users to confirm a modified password, is to askpghe u
dater to repeat their update specification. A third optiotoishow

the updater a sample of the records that are about to be upalade
let the updater visually inspect the changes before degiithnis
is the correct update.

All these approaches have the significant disadvantagetégat
are not suitable for updaters who use non-interactive egiins
to update databases. The first two approaches have the added d
advantage that updaters can easily answer “Yes” to the “Arte y
sure?” question, or use “cut and paste” as a quick way of teppa
their update specification. Two recent studies, one on therjse-
curity practices of users in dealing with online bank acdeufl],
and the other on user practices in (not) reading and unaetsta
ing end user license agreements [9], suggest that updatevery
likely to do so. Thus, such simplistic methods are unlikeybe
effective to ensure correctness of updates.

What we need is a method that proves to be effective in catch-

ing erroneous updates while not imposing an undue burdempen u
daters. By the first objective, we mean that the percentagerof
neous updates let through should be very small. By the seziond
jective, we mean that under natural models of an updatedsvkn
edge of the data, the need for update certificates shouldreaotmt
most of their correct updates from going through easily.

We next spell out desiderata for update certificates, andearg
that picking challenges in a principled manner is importante-
ducing errors in databases as the data gets updated.

1.3 Desiderata and Contributions

For update certificates to be useful in detecting erroneq4s u
dates, the most critical issue is ttesign of certificate challenges
that are relevant to updates.

Database System DesiderataConsider a challenge “Q4: What
is the sex of the employee wigmpl d 000030?” While Q4 is rel-
evant to Update U1, the updater’s (correct) response of “Bila
not have helped the system detect the erroneous update sttt
Sally Kwan and Dolores Quintana are female. Intuitivelgnirthe
database system’s viewpoint, a challenge is not desiréiheie
are many unintended updates for which a correct respondeeto t
challenge is the same as that for the intended update.

Updater Desiderata Suppose that the updater is asked “Q5:

What is the phone number of an employee who works for a project

whose responsible department is located in NY?” Such aegd

is too complex, so reduces understandability and increthsassk

of a wrong responseven when the updater knows the correct re-
sponse to the challeng&imilarly, if the only challenges available

were “Q6: What are the salary and the sex of the employee with

enpl d 000030?” and “Q7: What are the salary and the phone
number of the employee witanpl d 000030?”, then an updater
who does not know an employee’s salary would be unable tosghoo
either challenge and provide a correct respaagen when she per-
forms a correct update Thus, from the updater’s viewpoint, it is
desirable that challenges be easy to use, without unduetios
that she is familiar with every aspect of the data she updates

We effectively address the desiderata important to upsated
to the database system and make the following contributions

e First, we formalize an update certificate agchallenge, re-
sponse)pair. We identify properties that make for “good”
challenges: highliscriminating powerlow description com-
plexity, and highdiversity(Sec. 2). Intuitively, the first prop-

the challenges that meet specified discriminating power and
diversity thresholds, and (ii) maximize diversity of theath
lenges that meet specified discriminating power and descrip
tion complexity thresholds. We develop efficient algorithm
to optimally solve these problems (Sec. 3).

e Finally, we experimentally evaluate our techniques on henc
mark databases and demonstrate that (i) databases ofen hav
many good challenges, (ii) such challenges can be effigientl
identified, (iii) responses provided by updaters can beldyic
verified for correctness, (iv) under natural models of an up-
dater's knowledge of the database, update certificatey enjo
good precision and recall: they catch most erroneous update
without imposing undue burden on updaters performing cor-
rect updates, and (v) our techniques are robust across a wide
range of challenge parameter settings (Sec. 4).

CERTIFICATES: PROPERTIES

Databases allow insertions, deletions and modificationsoafrds,
tables and table spaces. We focusrecord modificationswhich
allow the values of specified attributes in a set of records sjfec-
ified table to be modified to specified values. For example, Up-
date U1 is of this form. These updates present the most clgaite
and their solutions can be adapted for other updates.

2.1 Certificates

An update certificateconsists of achallengepresented to the
updater and aesponsedy the updater. We propose certificates for
both the update condition (to ensure that the intended setofds
are being updated) and for the updated values (to ensurehihat
modified values are the intended ones).

2

DEFINITION 2.1 (UPDATE CERTIFICATE). Consider update
condition or updated valug of the format t r =val .! An update
certificateC', for v is a (challenge, response) pé&ip-, R), where
(i) challenge®-, is a SQL query, whoseher e clause condition
Cond(Q-) implies~,? and (i) respons&, is the answer provided
by the updater t@).,. An update certificateC; for a record mod-
ification updatel is a set of certificate€’,, one for each update
condition and updated valugin the updatd/. [

DEFINITION 2.2 (VALID CERTIFICATE). Given adatabase in-
stanceD, a certificateC’, = (Q~, R+) is said to bevalid if R, is
in the answer set af), on D. A certificateCy is said to bevalid
ifeachC, € Cyisvalid. [

Ex. 2 presented challenges (Q1-Q3) associated with thifi-cert
cates for update U1l. Example certificates for U1 might be #iesp
(Q1, Dolores Quintana), (Q2, Friday) and (Q3, Christine $)aie-
spectively, none of which is valid. However, certificated (Qally
Kwan), (Q2, Tuesday), and (Q3, Michael Thompson) are valid.

We next present three properties that we consider impoftant
guarding against erroneous updatdiscriminating powerdescrip-
tion complexityanddiversity These properties formalize the desider-
ata for certificates by the database system and by the updater

2.2 Discriminating Power

Should all specified updates with valid certificates (e@4,(F))
be considered as intended by the updater, and accepted byshe

erty permits the database system to have high confidence thattem? The notion ofliscriminating powerdiscussed below, quanti-
the specified update was intended, the second makes sure théies the confidence provided by a valid certificate that theitipel
challenges are easy to understand, while the third ensuresupdate was indeed intended.

that every updater can respond to some challenge.
e Second, we formulate two optimization problems for find-
ing good challenges: (i) minimize description complexify o

For the purpose of certificates, an updated valuer =val can be treated
exactly like an update conditicat t r =val .

2This property ensures that the challengecigvantto the update.

We first need the notions of ehallenge templatand aCR-
table Consider a challengé,. The challenge templat@;F is
the parameterized query obtained frapn, by replacingy in its
wher e clause byy”', obtained by replacingal in ~ by a param-
eter$val . For example, the challenge template’Qwould be
“sel ect name from EMP where enpld = $val .2

Achallenge templat@? is associated with GR-tabIeTQ3 (V,R),

which contains answer® to challenges/ that can be obtained
from Qf. If materialized, the CR-table can be used to quickly
validate an updater’'s response to any challenge. For exampl
the projection of tabl&MP on attributeg enpl d, nane) would
be the CR-table for challenge template™@#nd the projection of
the joinDEPT Mgept ra—work Dept EMP ON attributeg | ocat i on,
name) would be the CR-table for challenge template’Q3

We are finally ready to define the notion of discriminating pow
Consider an update condition or updated vaju@nd a valid cer-
tificate C', = (Q~, R) for ~. This certificate could be considered
as a “lucky guess” if the updater had intended to specify f@dif
ent update condition/valug; # -, but response?, is also a valid
response foQ).,. Intuitively, the discriminating power of a valid
certificate is the probability that the provided certifica&enot a
lucky guessMore formally, we have the following definition.

DEFINITION 2.3 (DISCRIMINATING POWER). Consider a
database instancP, an update condition or updated valye:
attr = val, avalid certificateC, = (Q-, R,) for v, and the
CR-tabIeTCH (V, R) for the challenge templat@”;r.

Thediscriminating powelDP) of C is defined as:
B |{TQ3.V | TQ$.V Z#val & TQ$.R = R’y}|
|{TQ3.V | TQ?{'V #val }|

DP(C)

We define the minimum (resp. average) discriminating povfer o
a challenge templat@”’, denoted minDRQ?) (resp., avgDRD?))
as the minimum (resp., average) DP over all possitdid re-
sponsesn the CR-tablel A0

For example, the DP of certificate (Q4, F) is 3/6, and the minDP
and avgDP of Q4 are 3/6 and 7/12, respectively.

Since valid certificates with low DP are not useful as evigenc
of the updater’s intention, applications should use onlglleinges
that yield certificates with a high discriminating power. I[pthen
can the system have high confidence that the specified update w
not make the database dirty.

2.3 Description Complexity

If providing certificates were to place an undue burden on up-
daters, then certificates may not be used despite their obien-
efits. Hence, it should beasyfor updaters to provide certificates.

In practice, we expect that a challenge to be presented imalat
language. To keep the natural language question simplesqueére
two properties of individual challenges. First, the chadje must
be a chain join query, with the updated table at one end ofttaig
such queries can be translated to natural language mucheasre
ily than challenges containing arbitrary joins. For exaepghis
property holds for challenge Q3. Second, no challenge ptede
to an updater should be too verbose since that would reduder-un
standability. The two components that contribute to thibesity

3Ourtechniques can be extended to handle non-equality epdatlitions.
For example, ify was ‘st Dat e > 1984-01- 01", the challenge tem-
plate could include$t Date > $val ".

“Note that, given a CR-tab[EQT for challenge templaté)f, the discrim-
ol
inating power depends only on the resporisge

DMfor{Ql1, @1, B1} DMfor{QLl, @1, 2}
D DXE | DXP D DX E

Qu1| 1 0 0 Q11| 1 0

Q21 | 0.05 1 0 Q21 | 0.05 1

Q31| 0.05 0 1 Q22 | 0.05 1

Figure 2: Diversity Matrices for Sets of Challenges

are the length of the chain join (i.e., the number of tabldsctvis
#joins+ 1) and the number of response values the updater is asked
to provide. This intuition is captured by the following réggment.

DEFINITION 2.4 (DESCRIPTIONCOMPLEXITY). We define
thedescription complexitpf challenge® as follows.

DC(Q~) = w1 = (#joins+ 1) 4+ w2 * #select-clause-attrs (1)

In the absence of other information, we sgt = w2 = 1.
Thedescription complexityor size, of a challenge templa@?
is defined to be the same as that of the challepge [

For example,DC(QL) = 2 and DC(Q3) = 3. This captures
the complexity of expressing these challenges in natungiuage.

2.4 Diversity

Itis important to realize that an updater may not be famikiah
every aspect of the data she updates. Hence, the applisaibond
present an updater with a set of sufficierdlyersechallenges, with
the hope that there will be at least one challenge whose mespo
would be correctly known to the updater.

We propose an information theoretic notion of diversity dzhs
on the chain joins present in a set of challenges, that captine
following key intuitions: (i) the more the number of distinthain
joins, the higher the diversity; (ii) the smaller the simites be-
tween the distinct chain joins, the higher the diversityd &ii) the
more uniform the distribution of distinct chain joins, thiglher the
diversity. For example, the set of challenge template$ Q@hat
are the salary and sex of an employee wttpl d $e?”) and Q7
(“what are the salary and phone number of an employee with em-
pld $e?”) is not very diverse. This is because they both we/tthe
same table (chain join prefix).

The above intuitions can be precisely captured using tha-inf
mation theoretic concept of entropy, as follows.

DEFINITION 2.5 (DIVERSITY). Consider a set of challenges
Q, ={Qiy | 1 <i <k} Let{J, | 1 < ¢ < m} denote the
set of chain joins and their prefixes that are preser@in and let
o denote an arbitrary constant (0, =-).° Thediversity matrixof
Q, is ak x m matrix whose entries are defined as follows.

DM (Qi~, Jo) 1,if Je is Qi,’s chain join,
a, if Jg is a proper prefix of)i,’s chain join,
0, otherwise

Given the diversity matrixD M, thediversityof the set of chal-
lengesQ,, denotedDV (Q,), is defined as the entropi (X)

(= 7L p(X = £) xlog,(1/p(X = £))) of the random variable
X, where

k .
() o Zi:lDM(Q'L»\“ J[) 71 S 6 S m

- XL,y DM(Qiy, Jj)
The diversity of a set of challenge templae®i’, 1 < i < k}
is defined to be the same as thai@f.® O

%o < 1 is important for Lemma 3.1.
6Diversity can be naturally extended to incorporate respaigibutes.

ExXAmMPLE 3 (DIVERSITY). Consider conditiohocati on =
NY of Update U1, and the following space of possible challenges
abbreviated using (chain-join, response attributes),revieachi
denotes a (primary key, foreign key) left-outer-join:

e Q11: DEPT, (dept Nane))

e Q21: OEPT X EMP, (nane))

e Q22: OEPT X EMP, (phone))

e Q31: DEPT X PRQJ, (pr oj Nane))

The diversity matrices for two sets of challenggs = {Q11,
Q21, Q31} andS: ={Q11, Q21, Q22} are shown in Fig. 2, for
a = 0.05. Based on the diversity matrix, the diversity 6%,
DV (S1) is 1.58, while forS2, DV (S2) is 0.94. Note,S; and
S2 have the same cardinality and description complexity, $ut
has two challenges, Q21 and Q22, with the same chain joirewhil
challenges ir; have no chain joins in common. []

3. FINDING CHALLENGE TEMPLATES

3. DC(QiT) < 1pc,1 <i <k, and

4. there does not exist any other challenge tempiate such
that minDP(Q™) > Tminpp,avgDP(QT) > Tavgpp,
Q"’s join path is a prefix of that ofp7 and its attributes
form a subset of those @7, 1 < i < k.

We use bothminDP andavgDP in our problem definitions
since they provide complementary ways to characterize the d
criminating power of challenge templates. For example, diome
value of7,,:,»pp and a high value of,.,p p €nsure that challenge
templates can be identified even if some instances of théecigal
template don’t have a high DP, while guaranteeing that némieco
challenge template instances have a low DP. This is not lpessi
using justminDP or avgDP. The last condition in the definition
of the two problems precludes a challenge template whensa les
complex one would work.

We experimentally show that our techniques are robust a@os
wide range of threshold values,.nppr, Tavgppr, TDV @Nd7TDC;
this makes choosing of threshold values quite easy.

The database system needs to identify a set of good challenge3-2 ~Minimizing Description Complexity

templates for every database column that may be updated or on

which an update condition may be specified and publish trezse t
plates. The application developer can consult these ealisem-
plates, pick one or more reasonable challenges for eachofyyge-
date supported by the application, and bake them into thicapp
tion that is used by the updater to perform updates. For iiyéamy
good challenge templates, we formulate two optimizatiabf@ms
in Sec. 3.1, and subsequently develop efficient algorittorsoive
these problems in Sec. 3.2 and Sec. 3.3.

3.1 Optimization Problems

Sec. 2 identified the properties that make for a set of gooti cha
lenges: high discriminating power, low description comxjiie and
high diversity, which naturally extend to challenge tengdaas
well. While desirable, it is unfortunately impossible tonsilta-
neously optimize for all these properties. For example, dyrbe
possible to find a set of challenge templates from the updated
table and they have a low description complexity; howevegjrt
diversity will be 0. If, instead, we find a set df challenges with
different and long chain joins, they are likely to have highed-
sity but larger description complexity. We thus formulat@tcon-
strained optimization problems that trade off the two eafsese
concerns, while requiring high enough discriminating powe
Problem MinimizeDC: Given an update columat t r , threshold
valuest.inppr, Tavgpp andrpy, find a set ofk update-relevant
challenge template® = {Qi” | 1 < i < k} that minimizes
max({DC(Qi") | 1 < i < k}), while satisfying

1. minDP(Qi") > Tminpp, 1 < i < k,

. avgDP(Qi") > Tavgpp,1 < i <k,

. DV(Q) > 7pyv, and

. there does not exist any other challenge templte such
that minDP(Q") > Tminpp,avgDP(Q") > Tavgpp,
Q"’s join path is a prefix of that ofp? and its attributes
form a subset of those @7, 1 < i < k.

A WN

Problem MaximizeDV: Given an update columat t r , threshold
valuestinppr, Tavgpp aNd7pc, find a set ofk update-relevant
challenge template® = {Qi” | 1 < i < k} that maximizes
DV (Q), while satisfying

1. minDP(Qi") > Tpminpp, 1 < i <k,
2. avgDP(Qi") > Tawgpp,1 < i <k,

In this section, we present an algorithm callec\vize DC for
solving Problem MinimizeDC. We first give an overview (Se@.3)
and then explain it in greater detail (Sec. 3.2.2 and 3.2.3).

3.2.1 Overview of Algorithmtinimize DC

Virtually, there is a chain-join tree where the root cormesgs
to the updated table (no join), each node at ldvaerresponds
to a join path withk — 1 joins, and its parent corresponds to its
immediate join path prefix (see Fig. 3). To minimize desaipt
complexity, we shall explore the treep-down

Algorithm MiNiMIzE DC dynamically generates the join tree in
a breadth-first fashion; for each node, it maintainseaof lists
{Ln}, n > 0, whereL,, is a list of challenge templates with de-
scription complexityn (size«z) and with the join represented by
the node. For example, the noBBQJ _EMPO represents all chal-
lenge templates sharing the jdiVP Meppra=empra PROI_EMP.
Algorithm MiNIMIZE DC starts with the root of the join tree and
then-th round proceeds in three steps:

1. Examine size: candidate template$:or each nodév where
L, # () and each templa®@” in N.L,, (1) check ifQT has
enough discriminating power; if so, remove it froM.L,,,
and (2) check if adding)” to the result sef violates the
diversity threshold; if not, add it t@. Return whenQ con-
tainsk templates.

2. Generate sizén + 1) candidate templates by adding one
more attribute, and store them ih,,; for each nodeThis
step invokes &RIORIGEN, which we explain later.

3. Extend all chain-join paths one step further and generate 1-
attribute challenge templates for each new notimte that
when we extend a path, we exclude the join condition that is
the same as the last one in the chain join (so no loop join).

Optimizing diversity constraint checking: For each candidate
template that has enough discriminating power, we needéokch
if adding it to Q does not violate the diversity constraint. However,
repeated entropy computation is expensive; the followiurfficgent
condition allows us to “translate” the global minimum thHrekl on
diversity, Tpv, to a “local threshold” on the maximum number of
challenges that have the same join, which is easier to check.

LEMMA 3.1. LetQ be a set ok challenge templates, anthy
be a threshold on diversity. If at mast = [k/27°V] templates in
Q share the same chain join, thénV (Q) > 7pv.

EMPO

enpl wor kDept =dept | d

enmpl dFngr | d
PRQJ _EMPO DEPTO PT1

PRGIO Pl 1 EMPL EMP2
dept I d proj|d enpld

DEPT2 PROQJ_EMP1 PROJ_EMP2
rrgrlr\fp:errpld enpl d projld

EVP3 EVP4 PROJ2
wor kPept =dept | d deptld

wor kDept =dept | d
DEPT3 DEPT4 DEPTS
ngr | d+enpl d mgr | d=enpl d
EMP5 EMP6
wor kDept =dept | d

DEPT6

Figure 3: Chain-join tree in Ex. 4.

Proof Sketch: Recall the definition of diversity from Def 2.5.
The nature of entries in the diversity matrix guarantees\thtn %
challenge templates, the sum of all the entries in the diyensa-
trix will be in the closed-open intervdk, k + 1), sincea < 1/km.
Since diversity of a set of challenge templates is computsagu
entropy, if¢ < k chain joins are used by thechallenge templates
in Q, we know thatDV (Q) < log,(¢+1). Hence, the global min-
imum threshold on diversity;pv, implies that at least™V chain
joins need to be used i@, with no more tharjk/2™V] challenge
templates that share the same chain join. Thus, ensuristptfl
thresholdof k; = [k/27PV] challenge templates would guarantee
that DV (Q) > rpv. O

Algorithm APRIORIGEN: A key task of MNIMIZE DC is to gen-
erate candidate sizg: + 1) challenge templates for a nodé,.
This task is non-trivial because we do not want to generate te
plates with a discriminatingub-templatdi.e., with a subset of its
attributes). However, checking if there exists such a subplate
can be very expensive. Inspired by tAePriori algorithm [1],
our solution is based on two intuitions. First, we start froom-
discriminating sizea challenge templates (itVx.L,) and check
if any pair can be merged into a size-+ 1) template. Second,
for each generated template, rather than checking all ofuts
templates (exponential number), we check only those withless
attribute (linear number); such a template should be in sbshe
Ly, k < n. Forexample, with 3-attribute templatgsbc, abd, ae f }
as input, the only pair that can be mergedés andabd, resulting
in a template with attributesbed, which should be discarded as its
size-3 sub-templatecd is not included in the input set.

EXAMPLE 4. Consider an extended schema of that in Fig. 1:

DEPT(dept|d, deptName, ngrld, |ocation)
EMP(enpl d, name, workDept, phone, job,
bi rt hdate, sal ary, bonus)
PRQJ(projld, projName, deptld,
PRQJ_EMP(enpld, projld, job,

sex,

st Dat e, enDate)
st Date, enbDate)

Fig. 3 shows the chain-join tree. The root is the table to be up
dated, i.e.EMP. Each node is named by the last table in the chain
join plus a unique number to differentiate nodes with the eséan
ble. An edge represents a left outer join from a parent node to
child node on the attribute (or join predicate) labeled om¢ldge.
For example,DEPTO identifies the result table of the chain join
EMP | eft-outer-join DEPT on enpld=ngrld.

The first column of Thl. 1 lists the top-20 challenge temmate
for EMP. enpl d returned by MNIMIZE DC (in the order they are
found) with parameterg; = 10 and7pc = 10. For example,
entry EMPO. sex, DEPTO. dept | d) represents a challenge tem-
plate with joinEMP | ef t - out er - j oi n DEPT, asking for “the
employee’s sex and the Id of the department she manages”.

MiNIMIZE DC starts with the root nodeMPO. The first round
inserts eight candidate templates (each correspondingdtirgdbute
other thanenpl d in EMP) to EMPO.L», and inserts three nodes
PRQJ_EMPO, DEPTO, DEPTL1 to the join tree.

In the second round, the algorithm checks templat&MrO. Lo
(Step 1). Assume it finds that 4 of them, each with one atteibut
nane, phone, birthdate, orsal ary, have enough DP;
accordingly, it removes them frolBMP0.L> and adds them into
Q as they also satisfy the diversity constraint. After thisqess,
there are 4 attributes left iBEMPO.L,. The algorithm then invokes
APRIORIGEN and generates 6 size-3 templates from them and puts
the results intdEMPO. L3 (Step 2). Finally, it adds size-3 templates
for nodesPRQJ_EMPO, DEPTO, DEPT1 and four more nodes
PRQJO, PRQJ1, EMP1, EMP2 tothe jointree (Step 3).

In the third round, the algorithm starts with noB&PO. It turns
out that all of the 6 templates iIBMP0.L3 have enough DP and
adding them intoQ does not violate the diversity constraints. At
this point, 10 templates are found. Then, the algorithmicoes
until 20 templates are found in the fourth round:]

We next explain Algorithms MNimMizE DC and APRIORIGEN.

3.2.2 AlgorithmMinimizEDC

Algorithm MiNIMIZE DC is a breadth-first algorithm. In the-
th iteration, it examines candidate templates with detioripcom-
plexity n (sizen) (lines 6-13), then generates sige-+ 1) candi-
date templates by adding one more attribute (lines 14-18xer
tending all chain joins one step further (lines 18-30).

MiNIMIZE DC maintains the following data structures:

e List: a list of nodes, each corresponding to a node in the
chain-join tree and of the form @parent, T, (attrl, atir2),
level, {Ly}), whereparent corresponds to the parent node
inthe join treeT" is the last table in the join patlgttrl, attr2)
store the join attribute§jevel is the size of the join path, and
Ly is alist of sizek challenge templates;

e Queue: a queue of nodes as inist, except thaf Ly} = .

The nodes inList and inQueue never overlap;
e O: the set of already generated challenge templates;
e DM: the diversity matrix for templates i@.

The search starts with = 1 and puts the root of the chain-
join tree intoQueue (lines 1-4). At the beginning of the-th
round, List contains all nodes that contain some sizehallenge
template$. The algorithm checks whether those challenge tem-
plates can be added to the result@atr not. Specifically, for each
such challenge templa&@;” (lines 6-7), we first check if); 7 has
enough discriminating power (line 8). If it does, we furtivlieck
if adding Q;j” into the result set violates the diversity threshold
(line 9). If not, Q47 is added to the result set (line 10), and the
algorithm returns once there are exacklichallenge templates in
Q (lines 11-12). Onc&);” has enough discriminating power, we
remove it from the list,, of the corresponding nod¥’; (line 13);
as a result, after checking all sizeehallenge templates, only the
non-discriminating ones are left in the correspond¥gL,,; they
will be used in generating siz@: + 1) challenges.

"Extension to the multi-attribute join attribute case isgthtforward.
81n the first round List is empty because a template is at least size-2.

Algorithm 1: MINIMIZE DC(attr, T, k, Tpp, ki)

Algorithm 2: AprioriGen(NVy, n)

Input : update colummtir from tableT,
k, # of challenge templates to find,
Tp p, discriminating power threshold
k;, local diversity threshold

Output : a setQ of k challenge templates

1 Q« 0; DM + 0; Queue « 0; List — 0;

2 n+—1;

3 root < Node(null, T, null, 1,0); / root of the join tree
4 Queue.enqueue(root);

while Queue # 0 or List # () do

[62]

// P1. Check sizexr challenge templates
6 foreach nodeN; € List do
7 foreach challenge templat€;” € N;.L,, do
8 if compute-dp(Qj7) > tpp then
9 if check-diversity(Qj™, DM, tpp) then
10 Q— Qu{QiTh
11 if |Q] = k then
12 | return Q;
13 N;.Lp — N;.Ln — Qj7;
// P2. Generate siz@+ + 1) templates from size- templates
14 foreach nodeN; € List do
15 AprioriGen(N;, n); / Generate sizen(+ 1) templates
16 if N;.L,+1 = 0 then
17 |_ List «— List — Nj;
// P3. Extend join paths, generate s{ze+ 1) templates
18 Queue.enqueue(separato;
19 while true do
20 N +— Queue.dequeue();
21 if N = separator then
22 | break;
23 foreach attribute A; € N.T do
24 QT — gen-challenge(A4;, N);
25 | N.Lpy1— N.Lny1 + QT
26 if N.L,4+1 # 0 then
27 |_ List «— List + N;
28 foreach join from N.T". A to T;. A; do
29 Nenitg < Node(N, T;, (N.T.As, T;. Ar), n, 0);
30 | Queue.enqueue(Nepiia);
31 | ne—n+ 1;

After checking all sizes challenge templates, the second part of
a round generates siZe-+ 1) challenge templates by adding one
more attribute using Algorithm ARIORIGEN for all nodes inList
(lines 14-17). IfL,,+, for a nodeN; is empty, meaning that there
is no sizefn + 1) challenge template of this node, we remave
from the node list.ist (lines 16-17).

Then, the third part of a round (lines 18-30) generates Gize-

1) challenge templates by extending all chain join paths oep st
further. SpecificallyQueue contains all nodes with chain joins of
sizen at the beginning of the-th round; 1-attribute challenge tem-
plates of such nodes are sige—+ 1) challenge templates. There-
fore, the algorithm generates 1-attribute challenge tateplof each
node inQueue and puts them into the lidt, 41 of the node (lines
23-25). If there are sizérn + 1) challenge templates ih,.+1, the
corresponding node is added to the nodellistt (lines 26-27).

As the algorithm explores the chain-join tree in a breadtt-fi
manner, while visiting a node at thé" level, it puts all its children
(with one more join) intoQueue (lines 28-30). The use of a
separator in Queue helps to separate nodes on different levels,
and knowing when the search is complete with all nodes onengiv

Input : N is a node in the join tree,
n is current size of challenge templates.
Output : N whereNy.L, 1 is updated.
1 Ny.Lpy1 — 0; // Ny, is thekt? node inList
2 Qcq < 0; // challenge templates generated, but naWjp. Ly, 1
// P1: generate size» + 1) challenge templates d¥),
3 for i« 1t0|Ng.Ln| —1do
4 for j <« it0|Ng.Ly| do
5 QiT «— i-th challenge template iVy,. Ly,;
6 QjT — j-th challenge template iV, . Ly,;
7 m — #attributes inQi” ;
8 if QiT and@;T have(m — 1) attributes in commothen

9 QT — merge(QiT, Qj7T);

10 if QT € Qeq OF QT € Ni.Lpt1 then

11 | continug;

12 foreach challenge templaté)T' with anym attributes
of QT, Q™" # QiT andQ’ # Q47 do

13 N « the join path ofQT";

14 p < 1+#joins in the join path ofV;

15 if QT' ¢ N.Lm+pthen

16 Qex — Qez U {QT},

17 break;

18 if QT ¢ Qe. then

19 | Ne-Lnt1— NgLnt1+QT;

// P2: add new basis (2-attribute challenge templates) ooss ciode
basis if necessary

20 if Ny.level = n — 1then

21 Nyp < Ny.parent,

22 while Np # null do

23 foreach Qi” € Ny.L, do

24 foreach Qj7 € Np.Ln, jcverr1 dO
25 QT — merge(QiT, Q4 7);

26 Ni.Lng1 < Ng.Lny1 + QT
27 Ny + Np.parent,

level. Finally, after checking all size-challenge templates and
generating all sizén + 1) challenge templates, the round ends up
with all nodes that have at least one s{ze+ 1) challenge template
in List and all nodes on then + 1)""-level of the join tree in the
queueQueue.

3.2.3 AlgorithmAprIORIGEN

Algorithm APRIORIGEN maintains a lisQ.,, storing challenge
templates that have been generated but not insertd@ if,, 1.

In the first part of the algorithm (line 3-19), we first check ev
ery pair of challenges iiV,.L,,, merge them for a new challenge
template only if they sharen — 1 common attributes, whene is
the number of attributes in a template..L,, (lines 3-9). Then,
it checks if the resul)” should be added t&;.L,, 1 (lines 10-
18). First, if the template has been generated before (kersit
Ni.L,+1 0rin Q.z), there is no need to consider it again (lines 10-
11). Second, if a sub-template @ has enough DP, we should
discard it. We check eveny-attribute sub-templat&)”’ of Q7
other thanQi” or Q7 (line 12). Note that it is possible that none
of thesem attributes are from tabléV,.T', so the involved join
path can be shorter; if we assume the join path hassittee size
of Q™" ism + p(< n). Thus,Q”” should be in listZ,, ,, of the
corresponding node if it does not have enough DP (lines 35-17

If Ni.L,, contains only 1-attribute challenge templates (line 20),
we go to the second part of the algorithm (line 20-27) and gene
ate across-table 2-attribute templates. We iterativefymére each
ancestor nodév,, of N,. For each pair of a non-discriminating at-
tribute in NV, and a non-discriminating attribute iy, we merge
them and add the result template if¥@.L.,+1 (line 21-27). Note
that sinceN,, has sizeN, .level, its 1-attribute non-discriminating
templates should be stored¥y,. Ly, .1evei+1-

Based on Lemma 3.1, we can prove the following result.

THEOREM 3.2. Algorithm MiNIMIZE DC solves the Problem
MinimizeDC. [

3.2.4 Enhancing Diversity ofiinimizeEDC

MINImMIZE DC proceeds breadth-first, and #/27>V | challenge
templates that satisfy the DP thresholds are available rorade
in the chain join tree, it picks exactly that mahgfore moving to
the next node The diversity of the challenge templates produced
can be further boosted by greedily maximizing the diverattgach
step, using a round-robin strategy for choosing discrirtiiggchal-
lenge templates. The resulting algorithmiNMize DCHIGHDV,
has the same optimality properties asNwmize DC, but tries to
produce more diverse challenge templates.

A second variant of MNimMizE DC can obtain an even higher di-
versity in the set of returned challenge templates, at teeafthav-
ing slightly larger challenge templates. The key idea i, tinatead
of checkingall size« challenge templates in the join tree before
moving to sizefn + 1) challenge templates, one can proceed in a
more “local” fashion. Once a nod¥’s sizen challenge templates
have all been checked, one can check the gize- 1) challenge
templates ofN’s children nodes in the join tree, together with the
sizen challenges of other nodes (e.g., sibling noded/df The re-
sulting algorithm, RDUCEDD CHIGHERDV, can return challenge
templates with even higher diversity thanmvize DCHIGHDV,
but these may have a higher description complexity.

3.3 Maximizing Diversity

Problem MaximizeDV sets thresholds on discriminating powe
and description complexity, and seeks a sefk afhallenge tem-
plates that maximizes diversity. Recall from Def. 2.5 thagle
lenges with longer chain joins yield a higher diversity; benwe’ll
explore the join tredottom-up As a result, MAXIMIZE DV may
return challenge templates with higher description coxiptehan
those returned by previous algorithms. Algorithmakmize DV
(pseudo-code omitted for lack of space) proceeds in foysste

1. Statically identify the chain-join tree that can yieldalenge
templates of sizepc.

Table 1: Top-20 challenge templates returned by iNnIMIZEDC
and MAximize DV for column EMP. enpl d.

MINIMIZEDC MAXIMIZE DV

EMPO. nane EMPO. wor kDept , DEPT6. dept | d
EMPO. phoneno EMPO. wor kDept , EMP5. enpl d
EMPO. bi rt hdat e DEPT2. | ocati on, DEPT3. dept | d
EMPO. sal ary EMPO. wor kDept , EMP6. enpl d
EMPO. j ob, EMPO. wor kDept EMPO. wor kDept , DEPT4. dept | d
EMPO. sex, EMPO. wor kDept EMPO. j ob, EMP2. enpl d

EMPO. bonus, EMPO. wor kDept DEPT2. | ocati on, EMP3. enpl d
EMPO. j ob, EMPO. sex EMPO. wor kDept , DEPT3. dept | d
EMPO. bonus, EMPO. j ob EMPO. wor kDept , EMP4. enpl d
EMPO. bonus, EMPO. sex DEPT2. dept I d

PRQJ_EMPO. proj I d EMPO. wor kDept ,PRQJ2. proj | d
PROQJ_EMPO. j ob EMPO. j ob, DEPT1. dept I d
PROJ_EMPO. st dat e EMPO. wor kDept , PRQJ_EMPL. enpl d
PRQJ_EMPO. endat e PRQJO. proj I d

EMPO. wor kDept , DEPTO. dept | d EMPO. wor kDept , PRQJ_EMP2. proj | d
EMPO. j ob, DEPTO. dept | d EMPO. wor kDept , PRQJ1. proj | d
EMPO. sex, DEPTO. dept | d PROJ_EMPO. proj I d

EMPO. bonus, DEPTO. dept | d EMPO. wor kDept , EMP1. enpl d
EMPO. wor kDept , DEPTO. dept name | EMPO. wor kDept , DEPTO. dept | d
EMPO. j ob, DEPTO. dept nane EMPO. name

There are three cases to consider. Supgise- S, contains a
templateP corresponding to an ancestor @ Then replacingP
by @ will increase the diversity. Suppost — S, contains a proper
descendant af). By construction, Algorithm MxIMIzE DV does
not consider ancestors before it considers descendarttisstase
cannot arise. So suppose no templat&in- S, is an ancestor or
descendant af). Consider replacing any templagin S, — S, by
Q. SinceQ does not share a prefix with any template&in- .S, and
MAXIMIZE DV chooseg) to maximize the diversity of the solution
it builds, it can be shown that replaciagytemplate inS, — .S, by
Q cannot decrease the diversityl]

EXAMPLE 5. Comparing with the challenges found byt
IMIZEDC in Ex. 4, Tbl. 1 also shows the top-20 challenge tem-
plates returned by MximMize DV. We observe obvious differences
in the returned results. Mimize DC first exhausts size-tem-
plates from one node. MxiMmizE DV, on the contrary, generates
exactly the static tree as shown in Fig. 3, and proceeds fnerbdt-
tom of the tree. It first picks leaf nodeEPT6 as it has the longest
join path. Then, it picke€EMP5 and therDEPT3. At this time, the
candidate nodes to choose from inclliEP3, DEPT4, EMP6,
EMP2, each from one branch. It pick&MP6 next as choosing it
maximizes the diversity. As there are 20 nodes in the tree2h
th returned template is from the root nodd.]

4. EXPERIMENTAL EVALUATION

We implemented the four algorithms in Sec. 3, namelynM

2. lteratively choose an unmarked node whose descendants ar y;;zeDC, MiniMizE DCHIGHDV, M AXIMIZE DV, REDUCEDD-
all marked and that maximizes the diversity, generate one CHicHERDV. Thl. 2 shows the input parameters and their set-

template from this node, and mark the node as considered.
3. When all nodes are marked, unmark all nodes.
4. Repeat Steps 2-3 until we generatehallenge templates.

THEOREM 3.3. Algorithm MAaxiMIzE DV solves the Problem
MaximizeDV.

Proof Sketch Let .S, andS, be any sets of challenge templates
found by the greedy algorithm and present in any optimaltsmiu
respectively. Let) be any template present ffy but notinS,. We
will show 3P € S, — Sy: replacingP by @ in S, cannot decrease
its diversity. By repeated application of this argumentpltows
that.S, must be optimal.

tings; unless otherwise specified, we used default values.exy/
perimented on two sets of data: the Corporate database—a sam
ple database provided by IBM DB2i [5] with size about 20KB
(schemas shown in Ex. 4), and the TPC-H data [13]. All alpani&
were implemented in Java. All experiments were conducted on
PC with a 2.33GHz Core2 Duo processor, 3.25GB RAM and 200G
SATA Disk, running Windows XP Pro SP3. MySQL (v.5.0.67) was
used as the back-end database.

In Sec. 4.1, we demonstrate the effectiveness and usabflity
the certificates mechanism via a simulation study; Sec.#2emts
efficiency results for verifying certificates at run-timendily in
Sec. 4.3, we report results that show the efficiency of chgie
identification algorithms.

Table 2: Input parameters, their value ranges, and default al-
ues (underlined).
Parameter

k, desired number of challenge templates
TminD P, threshold on minimum DP
TavgD P, threshold on average DP

[Value |
10, 2Q 50, 100, 200
0,0.2,0.40.6,0.8
,0.2,0.4,0.6,0.8

.90 0.92, 0.94, 0.96, 0.94

Tpc, threshold on description complexity | 2
k;, maximum number of challenge templat¢s2,
with the same chain join

kq, maximum number of challenge ten
plates with the same response attribute
df, probability decreasing factor

Tp, probability threshold

2,4,6, 8,10

0.1,0.3,0.50.7,0.9
0.1,0.3,0.5,0.7,0,8.9

4.1 Simulation Study

We perform a simulation study on the Corporate database to
show that, under natural models of an updater's knowledga of
database, update certificates catch a high percentageookeerrs
updates without imposing an undue burden on updaters;ssined
sults are observed using TPC-H.

Data preparation: First, we describe how we generate the up-
dates and updaters for the simulation study, and then préisen
two models that characterize different types of updaters.

Generating updatesWe consider simple record modifications of
the form “UPDATET SET at t r =val * WHERE at t r =val ”. The
updated tabld and updated attribut@t t r are randomly selected
from the database. Different valueal andval’ are randomly
chosen fromVa1r, the set of all values of. attr and other at-
tributes linked tar. at t r via foreign key relationships. Also, each
update is associated with its intended valel ; € Vai¢r. Fora
correct updateyal =val ;; for an incorrect updatejal #val ;.

Updater modelslt is natural to consider updaters who only know
information about the records they update, and joinablerdsc
from other tables. Among such updaters, we categorize theyuari
study intolocal-schema-awarandglobal-schema-awaralepend-
ing on whether the extent of an updater’'s knowledge abouina jo
able record depends on the length of its join path from theatqatl
table or not. Théocal-schema-awareodel characterizes updaters
whose knowledge of the database is centered around theagjtdat
ble: the longer the chain join needed to reach a joinablerdetioe
less likely the updater is to know about it. In contrast, diftebal-
schema-awarenodel characterizes updaters whose knowledge of
joinable records is not correlated with their distance frthra up-
dated table. Further, different updaters may know abotémift
subsets of attributes in the schema.

We generate updater knowledge in a probabilistic manner. In
the two updater models, we utilize the same join tree as ugéukb
challenge-identification algorithms (e.g., Fig.3), toigeprobabil-
ity values to nodes and attributes in the join tree, dendtédy;;)
andP(N;.attry), respectively, wherdV,; is the;*" node on level
1, and contains attributettr,. Ny denotes the updated table (the
root of the join tree) andVy.atir is the updated attribute. For
a given parametedf (decreasing factor), the probabilities are as-
signed as follows.

1. P(No) = P(Ny.attr) = 1.0, in both updater models.

2. VN;j thatis achild ofN (¢ > 0), P(N;) is uniformly drawn
from the rangédf?, P(NN)], in the local-schema-aware model.
P(N;;) = 1.0 in the global-schema-aware model.

. Yattri, € Nij, P(Nyj.attry) is uniformly drawn from the
range[df*!, P(N;)], in the local-schema-aware model.
P(N;;.attry) is uniformly drawn from the ranglelf, P(NV;;)]
in the global-schema-aware model.

-
IS

0.4 0.6 0.8 1

(d) TavgD P
z?cb@ﬂx e 3

0.4

Figure 4: Local-schema aware: effect of various parameters

In both modelsan updater is able to answer a challenge only if
she knows every attribute in the select clause of the chgalevith
a probability higher than a specific threshold parametgr

Metrics: We use precision and recall of update verification as the
performance metrics in the simulation studrecisionis defined

as the fraction of the verified updates that are correct;dajgures
the effectiveness of update certificates in preventingtenited up-
dates.Recallis defined as the fraction of correct updates that are
verified; this captures the issue of ease of use of updatidicates,

as a correct update is not verified only if an updater’s kndgteis
insufficient to answer any presented challenge.

In our simulation study, we use average precision and réaall
1,000 updates consisting of half correct and half incorogctates.
Thl. 2 lists the parameter values used in the simulationystude
show the results of MiiMizE DC and MaxiMIZE DV — the other
results are sandwiched between these two.

Results with Local-Schema-Aware Model Fig. 4 shows the re-
sults of our simulation study on the Corporate data with dual
schema-aware model. The dotted lines show the precisi@) (0.
without using any update certificates. By applying the upadetr-
tificates, the precision stays above 0.9 for botinMiize DC and
MAXIMIZE DV, across the entire range of parameters. This demon-
strates that the certificate mechanism is very effectivee@tucing
unintended updates. Hence, we focus the rest of the discusai
recall, which is a measure of ease of use of the certificates.

We observe in Fig. 4 that MxiMize DV generally results in
lower recall than MNIMIZE DC, especially wherp ¢ is large. Re-
call from Sec. 3.3 that Mximize DV favors challenge templates
with longer chain joins and results in challenge templatéh w
higher description complexity. In the local-schema-awadel,
updaters have lower ability to respond to challenges witly joins.
However, with suitable parameter valuesakiMizE DV can get
similar recall to that of MNIMIZEDC.

0.6

0.4

0.2

llypxize v —S—
0.7

0

03

(a) probability threshold,

0.1

03

05 0.9

(b) decreasing factaif
Figure 5: Global-schema-aware: effect of various paramets

Probability thresholdr,: Fig. 4(a) shows the results when we vary
7. Given a fixed probability of knowing an attribute, an update
ability to answer challenges involving the attribute, amahd¢e the
recall, decreases with a highgy. It is notable that even with a high
thresholdr, = 0.7, about 95% of correct updates are verified.

Decreasing factowf: Fig. 4(b) shows the results as we vaty.
With a smallerdf, the probability of knowing a node in the join tree
decreases faster with the depth of the node. Therefore ettalr
increases significantly with largelf. Whendf = 0.7, the recalls
are higher than 0.95. Wheif = 0.5 (the default value used), the
recalls are about 0.8 and 0.7 fonNMmize DC and Maximize DV
respectively; this models an updater with very limited kifextge,
since the probability of knowing an attribute after one amd foins
can be as low as 0.25 and 0.125, respectively; it is choseretsss
test the ease of use issue.

Number of challenges: Fig. 4(c) shows the results as we vary
k. Whenk = 1, the recall of MNIMIZEDC is about 0.4, which
is the probability of knowing an attribute in the updatedi¢affor

df = 0.5 andr, = 0.8). For MAXIMIZE DV, the recall is close to
0 since the only challenge involves a chain join which is tmagl
(for Tpc = 5) to be known by the updater. With largerthe recall
increases quickly as many challenges are provided to thatepd

Average DPrq.4pp: Fig. 4(d) shows the results as we vaty,gp -
When..gpp < 0.9, it does not affect the recall much; when
TavgpP > 0.9, the challenges become more complex, reducing the
recall. Our simulation study also shows that:,,pp has a similar
effect asraugpp € [0.9, 1.0] (figure omitted).

Description complexitypc: Fig. 4(e) shows the results when we
vary 7pc. Whentpe = 2, the choices of challenge templates
are quite limited and almost the same for both algorithmseré&h
fore, both MNImMIzE DC and Maximize DV have low recall and
high precision. Whenpc > 6, the recall of MaxiMIZE DV de-
creases significantly, since largesc allows complex challenges
with longer joins in MaXIMIZE DV.

Join-level diversityk;: Fig. 4(f) shows the results when we vary
ki. With the smallesk;, there are at most 2 challenges available
from the same node, so the average complexity of the chateng
is high and the recall is low. With a highés, more challenges
are available from each node, so the diversity is lower, beiiget

a higher recall because the challenges contain fewer joidgtee
average complexity of the challenges is lower. The attedavel
diversity k, has a similar effect ak;; hence we omit the figure.

Results with Global-Schema-Aware Model To highlight a key
difference between the updater models, Fig. 5 shows refilts
join-challenges under the global-schema-aware modelnveinéy

a few challengesk(= 5) are provided. With the global-schema-
aware model, the precision and recall show similar trendsfaac-
tion of the various parametersxcept thatM AXimIZE DV consis-
tently outperformaMiniMizE DC. For reasons of space, we only
show results for, anddf.

1000

onliné verification —+—
full materialization —X—

full materialization —+—

100

10

1

verification time (ms)
.

0.1+

size of materialized tables (MB)

I

0.1
100KB

0.01
1MB 10MB 100KB

database size

(a) verification time

100MB imB 10mMB

database size

(b) size of materialized tables

100mB

Figure 6: Verification overhead w. no and full materialization

12

1

0.8

0.6

0.4

verification time (ms)

02 |

size of materialized tables (MB)

full mater- 2 4 6 8
ialization

10 onine ver- full mater- 2 4 6 8
Tom ifcation ialzation

10 online ver-
Tom ffication

(a) verification time (b) size of materialized tables

Figure 7: Verification overhead w. partial materialization.

With a more global knowledge of the schemaa¥mize DV
shows the added advantage of diversity, providing cha#leng-
volving different attributes and tables, giving more cl®io the
updaters. An updater who does not know a particular table wil
not be prevented from submitting her update with challerigea
other tables. Note that the lower recalls in Fig. 5 compaodeld. 4
are due to the smaller value bfused for the results of Fig. 5.

4.2 Certificate Verification

Certificate verification is an added computational cost rirezl
by the database system when supporting update certific&@s.
this reason, the efficiency and overhead of verifying cestis is
an important consideration, which we investigate next.

We consider three methodsnline verification executing the
challenge query on original tablefjll materialization material-
izing the CR-tables (see Sec. 2.2) and verifying using thierma
alized tables; an@artial materialization materializing only “crit-
ical” (which we define shortly) CR-tables, verifying on thate-
rialized tables when such tables exist and on original sabther-
wise. We take the union of the challenge templates returgeted
four algorithms for each attribute in TPC-H and report (19 dv-
erage space for storing the materialized tables for all tatap for
an attribute, and (2) the average time for verifying on eacssp
ble update value using each template. In our implementatien
build indexes only for key and foreign-key columns; we steaeh
materialized CR-table as a “covering index”, which takesialtthe
same space as the normal table but accelerates access.to data

Full vs no materialization: Fig. 6 shows the time and space for on-
line verification and with full materialization on TPC-H daaf dif-
ferent sizes. We see that without materialization, veriiftcatime
increases linearly with the database size; on a 100MB ds¢aba
it took 4.75ms on average. The maximum verification time (not
shown) takes 2-8 times as much as the average time.

On the other hand, when we materialize all CR-tables, the ave
age verification time is less than 0.2ms for all databasels veit-
ious sizes, and the maximum verification time is less tham@di
the average, which is much faster than online verificatiomwH
ever, the space required for storing all materialized Ciitets for
one update column grows with the size of the database, and can
take as much space as the original database.

Partial materialization: As a trade-off between time and space,

250 50 10° 16

MINIMIZEDC —+—

MINIMIZE DCHIGHDV —X—
MAXIMIZE DV —H—
REDUCECDCHIGHERDY —&—

A
4B [

IS

S
.
<%

200

ot}
"
5}

150

w
]

1000

N
S

searching time (ms)
searching time (s)
P
g
searching time (s)
®

of challenges found

50 MiNmiZEDC —— 10 MiNmiZEDC —— MiNmiZEDC ——
INiMiZE DCHIGHDY —— INiMiZE DCHIGHDY —X— 10°C MiNMizE DCHIGHDV —X—
. ReouceDOReIEDY —B— o8 ReouceDOeEDY —B— 0] ReouceeDOHHROY —B—
1 4 16 64 256 1 4 16 64 256 100KB 1MB 1o0mMB 1oo0mB 1GB o 0 1 2 4
k k database size skew factor z
(a) execution time (b) number of returned templates
s S Figure 9: Effect of size Figure 10: Effect of skew

rithms are ranked as MiMIZE DC/MINIMIZE DCHIGHDV
(same size for these two algorithms)EBRUCEDD CHIGH-
ERDV, MAXIMIZE DV, also consistent with our intuitions.

diversity
N
@
average size

MiNmZEDC —+—
05 Minmize DCHIGHDY —X—

MinmizeDC —+—
MiNimizE DCHIGHDV —X—

) ReoveEsDCOHDY 6 . RepucerD Gy —B— As k increases, typically the execution time, the number of re-
! * 1 o 256 ! * 1 o 256 turned templates, their diversity and average size alease. This
. . : is because the higher thie the more challenges returned (so of-
(c) dversity DV(Q) (d) average sizavg DC(Q) ten higher diversity), the larger search space to explavénigher
Figure 8: Results of various algorithms on Corporate. execution time), and the less flexibility of discarding a péate
o] to reduce complexity (so higher average size). The only gxce
we can materialize only some of the CR-tables. Selectings/fer tion is that whenk is increased from 1 to 10, the average size of
materialization to accelerate query answering has beelrstuelied MAXIMIZE DV'’s results decreases. This is because to maximize
in the literature [10]. Here we explore a simple strategyeewe diversity, MAxIMIZE DV starts with nodes with longer join paths;
materialize a CR-table' if 72t B oS > Tom, Where \when is increased from 1 to 10, MiMizE DV is able to add
Tpm IS @ given threshold. templates with shorter joins (see Ex. 5), but whers increased

Fig. 7 shows the time and space cost on a 10MB TPC-H databasefyther, Maximize DV has to select templates from the same nodes
as we variedr,,, (we skip the results for 100MB TPC-H database iy meet the requirement, so the average size goes up slaguip.

as it shows similar trends). Whep.. = 0, we materialize all CR- Fina|ly, note that measures for different algorithms cogeenhen
tables; wherr;,, = 12, we materialize no table as there does not ;. _ 900, as there are not enough results (on average 45.3 templates
exist any CR-table that can improve the efficiency by 12 tirkes are returned) so all methods explore the full search space.

expected, the larger s,,,,, the higher is the time cost for certificate
verification and the lower is the space cost for CR-table riadte
ization. As an example, whern,,, = 5, we can reduce the time
by 78% compared with online verification, and reduce the sjgc
29% compared with full materialization.

Results on TPC-H data: We next experiment on TPC-H and in-
vestigate the effect of data size and skew on our algoritivkiesex-
amine each update attribute in tal@&STOMER (which has many
attributes and can form both (key, foreign key) join and €fgn
key, key) join with other tables) and report average results

4.3 Identifying Challenge Templates We first generate uniform data and vary the size of the data fro

In this section, we show that databases have many good chal-.100K 10 1G. Fig. 9 reports the execution time. We have thevo|

. . . . ing observations. (1) The efficiency of most of our algorithin
lenges, and our algorithms can identify them efficiently. acceptable, since challenge identification is performdhef on
Results on Corporate data: We first examine results of various 1G data, MNIMIZE DC, MiNIMIZE DCHIGHDV and REDUCED-
algorithms on the Corporate database. Fig. 8 shows the 8%@CU DCHIGHERDV on average terminated in about 60 minutes, and
time, the average number of returned challenge templdteis,av- MAXIMIZE DV terminated in about 150 minutes; in addition, the
erage size and diversity as we vary We have the following ob- execution time increases linearly with the size of the diaxi -
servations (they hold when we vary the other parameters B we \;;zeDV takes longer time because it checks DP for certificate tem-

) . plates with more joins. (2) Unlike on Corporate data, thecexen

e The algorithms run fast: even when we require top-200 tem- e of RepucEDD CHIGHERDV s close to that of MNIMIZE DC
plates, with the default setting, all algorithms finish i2%. and MINIMIZE DCHIGHDV in most cases. This is because each
seconds. MimizEDC and MNiMIZEDCHIGHDV typi- table in TPC-H has a large number of attributes and the data ar
cally have the same running time, as they explore the same nitorm, leading to more 1-attribute template results ancRs-
set of nodes in the join tree. Whén's small, REDUCEDD- DUCEDDCHIGHERDV does not need to go deep in the join tree.
CHIGHERDV is similar to MiNimize DC and MNIMIZE D- (3) The Corporate database has a much lower execution st th
CHIGHDV. Whenk > 20, REDUCEDDCHIGHERDV and the smallest TPC-H data, showing that schema complexiecsf
MAXximize DV often have similar running times: even though {he join-tree structure and the number of templates, andehée
they explore the join tree in different directions, they e execution time. We also measured the diversity and aveiag®b
checking most of the nodes in the join tree. The former tWo e retumed results (not shown), and observed that thédtsese
algorithms typically run faster than the latter two, as e | qjte stable, conforming to our intuition that, with unifioly dis-
ter two obtain higher diversity at the cost of exploring more i ted data, size should not affect result diversity aoahplexity.
complex challenge templates. We next generate 1M data with various skews using the tool

e Fordiversity of the results, in decreasing order the fogoal in [13]. We vary the skew factot (the Zipfan distribution) of our
rithms are ranked as MkimMIZE DV, REDUCEDDCHIGH- data from 0 (uniform) to 4 and report the results in Fig. 10.aWh
ERDV, MINIMIZE DCHIGHDV, MINIMIZEDC, consistent increases from 1 to 2, there is a jump in execution time foiouer
with our intuitions. methods. Intuitively, when the data is more skewed,thie.D P

e For complexity of the results, in increasing order the algo- andavgD P of a challenge template drops; wher= 2, they drop

to a level that cannot meet the DP thresholds, so we have torexp

more complex challenges. Note thatMmize DC is not affected
much because it favors certificates with more attributen thase
with longer chain joins, which can take shorter time for DRedk
ing; however, if we increask or 7p¢, the execution time of M-

ies diversity from an axiomatic perspective and contairniatpes to
other works on diversity. Our notion of diversity is in thentext
of challenges, which are queries. To our knowledge, thesebban
no prior work on diversifying SQL quergxpressions

iMmize DC would be closer to other methods. We also measuredthe . CONCLUSIONS AND FUTURE WORK

diversity and average size of the returned results (not ahoand
observed that the result complexity increases slightly whén-

The problem of ensuring that updates do not introduce eimtos
a database is an old and vexing problem, and existing tegbsiq

creases from 1 to 2 (for the same reason as discussed abave), b based on integrity constraints are inadequate to detectje \ari-

the result diversity remains stable.

4.4 Summary of Experimental Evaluation
We summarize our experimental results as follows.

ety of errors that arise due to carelessness on the part aitensd
In this paper, we advocate the useugfdate certificatesa novel
approach to detect erroneous updates that are unintencitakes.
We characterize good certificates as those with kiighriminating

e The use of update certificates successfully prevents mest un POWer low description complexityand highdiversity. We present
intended updates, across a range of values for the DP param-2/gorithms to analyze databases and identify good chaerand
eters. Further, for moderate values of the complexity and €xPerimentally show that databases tend to have many gatadeip
diversity parameters, updaters can respond to at leastfone o certificates, these can be efficiently identified and verjfaadl are

the provided challenges, addressing the ease of use concern Ve'Y effective in catching erroneous updates.

e \erifying certificates on the database is in general quite ef
ficient, and we can further reduce the time cost by partially

materializing the CR-tables.

Our paper establishes the foundations of a novel approaatt-to
dress the problem of erroneous updates in databases, bytiman
teresting questions remain. A challenging problem is horetiuce
the effort of updaters for multiple updates in an updatesaation,

* The challenge-identification algorithms have acceptafie e without sacrificing the ability to detect erroneous updafesother

uenEy consld]?r;lrlg Fhat tTe a.IgI;qorlthms are ex(;ecyted offhple problem is to efficiently revise challenge templates as titalthse
e We have the following algorithm recommendations. When j,qance evolves in response to updates. Understandingohiow
most updaters are local-schema-aware and complexity of the o chnigues can work with conditional integrity constraitd com-

returned challenges is important, use\WMizE DCHIGHDV prehensively address the critical problem of erroneousatgsdis
as it minimizes the average complexity, obtains higherrdive 755 an interesting direction of future work.

sity than MNIMIZEDC, and is almost as cheap asiNv-

MizEDC. When most updaters are global-schema-aware and
diversity of the returned challenges is important, usexv Acknowledgements
IMIZEDV. To balance complexity and diversity, for a mixed ~We would like to thank the anonymous reviewers for their many

workload of users use B®>UCEDD CHIGHERDV. suggestions, which helped improve the quality of our paper.
5. RELATED WORK 7[1] R&%rgvgagr%ug%%t. Fast algorithms for mining@sation
Challenge-response techniques are widely used in prafttice rules in large databases. ¥LDB, pages 487-499, 1994.
user identification; e.g., when a user needs to reset hewpess [2] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. SUES
she may be asked to provide her mother’s maiden name. ®ech Whang, and J. Widom. Swoosh: a generic approach to entity

identificationis complementary to our problem of database update
validation, and there has been no study of a formal notionisf d

resolution.VLDB J, 18(1):255-276, 2009.
[3] L. Berti-Equille and T. Dasu. New directions in data gtyamining.

criminating power of the challenges presented to the user.

Our DP measure to assess discriminating power is similaeto f

quency based measures (e.g., tf/idf) from Information ieedt [12].
A key difference is that tf/idf is based on the occurrencetiency

of a value, while DP is based on the frequency of a response val

in the answer to all possible challenge queries. These tvasures
can be very different in practice.

Integrity constraints are quite powerful and useful to capta
class of erroneous updates [14]. For example, functionpée

dencies (FDs) and inclusion dependencies (IDs) can be osad t
sure database consistency. Recent work has explored icoradit

variants of FDs and IDs to allow for more flexibility in havirtige

constraint hold on a portion of the database, and also male¥-as

tions [6]. While these can achieve consistency under update
finer granularity, it is not practical to specify out of exdste, ev-
ery conceivable update error due to innocent mistakes,hghene
uses CFDs or some other constraints, as illustrated by Eb &.
similar spirit, the notion of matching dependencies (MD&3 heen
recently introduced [7, 2] as a means for capturing semsutfc
records in unreliable relations and in particular to helphwecord
matching; the motivation for MDs is orthogonal to our work.

Finally, the notion of diversity has gained prominence imgna
areas such as recommender systems and query answeringd38] s

In KDD, 2009.

[4] T. Dasu and T. Johnso&xploratory data mining and data cleaning
John Wiley, 2003.

[5] Ibm db2 fori.
http://www-03.ibm.com/systems/i/software/db2/sqédatml.

[6] W. Fan. Dependencies revisited for improving data dqualh PODS
2008.

[7] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about recorcchiag
rules.PVLDB, 2009.

[8] S. Gollapudi and A. Sharma. An axiomatic approach foules
diversification. InWWW 2009.

[9] N. Good, J. Grossklags, D. K. Mulligan, and J. A. Konstidnticing
notice: a large-scale experiment on the timing of softweenkse
agreements. I€HI, 2007.

[10] H. Gupta and I. S. Mumick. Selection of views to matézelin a
data warehousé@ KDE, 17(1):24-43, 2005.

[11] M. Mannan and P. C. van Oorschot. Security and usabilitye gap
in real-world online banking. I?New Security Paradigms Workshop
(NSPW) Sept.18-21 2007.

[12] G. Salton and M. J. McGillintroduction to modern information
retrieval. McGraw-Hill, New York, 1983.

[13] Tools for controlling data skew of TPC-H data from Misrjt
Research.
ftp://ftp.research.microsoft.com/users/viveknar/ TFkew/.

[14] J. D. Ullman.Principles of Database and Knowledge-Base Systems,
Volumes | and Il Computer Science Press, 1989.

