
We Challenge You to Certify Your Updates

Su Chen
National Univ of Singapore
chensu@comp.nus.edu.sg

Xin Luna Dong
AT&T Labs–Research

lunadong@research.att.com

Laks V.S. Lakshmanan
Univ of British Columbia

laks@cs.ubc.ca

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

ABSTRACT
Correctness of data residing in a database is vital. While integrity constraint
enforcement can often ensure data consistency, it is inadequate to protect
against updates that involve careless, unintentional errors, e.g., whether a
specified update to an employee’s record was for the intendedemployee.
We propose a novel approach that is complementary to existing integrity
enforcement techniques, to guard against such erroneous updates.

Our approach is based on (a) updaters providing anupdate certificate
with each database update, and (b) the database system verifying the cor-
rectness of the update certificate provided before performing the update. We
formalize a certificate as a (challenge, response) pair, andcharacterize good
certificates as those that are easy for updaters to provide and, when correct,
give the system enough confidence that the update was indeed intended. We
present algorithms that efficiently enumerate good challenges, without ex-
haustively exploring the search space of all challenges. Weexperimentally
demonstrate that (i) databases have many good challenges, (ii) these chal-
lenges can be efficiently identified, (iii) certificates can be quickly verified
for correctness, (iv) under natural models of an updater’s knowledge of the
database, update certificates catch a high percentage of theerroneous up-
dates without imposing undue burden on the updaters performing correct
updates, and (v) our techniques are robust across a wide range of challenge
parameter settings.

Categories and Subject Descriptors:H.2.7 [Database Manage-
ment]: Database Administration—Security, integrity, and protec-
tion

General Terms: Algorithms, Design, Experimentation

1. INTRODUCTION
Correctness of data residing in a database is of utmost impor-

tance for applications that rely on the data to make criticaldeci-
sions. Much work has been done on analyzing and mining the data
in a database in order to detect potential duplicates, likely errors
and statistical outliers (see, e.g., [4, 3]). In this paper,we are inter-
ested in a complementary problem: starting with a correct database
state, how do we minimize, if not prevent, the possibility that errors
creep into the database as the data gets updated?

Ensuring correctness is not easy since databases are continuously
being modified by human updaters (typically using an application)
to reflect changes in reality. Consider, for example, databases sup-
porting Project Management. Here, information about projects (such
as the status of different parts of the projects, their current priorities,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11,June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

resource needs, and funding sources) and participants (such as roles
of employees in different projects, individual project timelines, re-
porting of billable hours) need to be continuously updated over
time; such updates are typically made by project administrators.
Other such examples include Human Resources databases which
contain dynamically changing information about employees(such
as their compensation, disability and sick leave, and job functions)
and organizations (such as management reporting structures), In-
ventory databases which contain continuously updated information
about organizational assets, and so on.

Erroneous updates do happen in these databases, as many of
us may have experienced, often with significant cost becauseof
the difficulty of correcting the errors in the database and rolling
back the decisions made due to these errors. For example, switch-
ing funding sources between projects in a Project Management
database, or reporting a disability leave for the wrong employee
in a Human Resources database, can create a lot of problems. In
these scenarios,it would be desirable to guard against such erro-
neous updates, even if it requires additional effort on the part of the
database system, the application developers, and the updaters.

A variety of classical techniques ranging from schema normal-
ization to integrity constraint enforcement have been proposed to
address this problem [14]. These existing techniques require the
database designer to anticipate all possible errors and specify in-
tegrity constraints that must hold on all instances of the database
schema, and which would detect (and reject) erroneous updates.
However, a large variety of errors cannot be anticipated andarise
due to carelessness on the part of updaters and by the inability of
the database system to detect those updates as erroneous. The fol-
lowing example illustrates the idea.

EXAMPLE 1 (COMPLEX, BULK UPDATE). Consider the Cor-
porate database shown in Fig. 1, which is a simplified ProjectMan-
agement and Human Resources database. The tables representde-
partments, employees, projects, and the association of employees
with projects. An updater (for example, a project administrator)
intends to make Dolores Quintana the Admin of all the projects
whose responsible department is located in NJ, starting from 1985-
02-01, but in the update, incorrectly specifieslocation as NY
instead of NJ,empId as 000030 instead of 000130, andstDate
as 1985-01-02 instead of 1985-02-01. For concreteness, we show
below the SQL update issued by the application with which the
updater interacted.

U1: update PROJ_EMP
set empId = ‘000030’, stDate = ‘1985-01-02’
where job = ‘Admin’ and projId in (

select PROJ.projId from PROJ, DEPT
where PROJ.deptId = DEPT.deptId and

DEPT.location = ‘NY’)

DEPT
deptId deptName mgrId location

A00 Services 000010 NJ
B01 Planning NULL NY
C01 Information 000030 NJ

PROJ_EMP
empId projId job stDate

000010 AD3100 Leader 1982-01-01
000010 MA2100 Leader 1982-02-01
000020 PL2100 Leader 1983-01-01
000030 IF1000 Leader 1983-06-01
000110 MA2100 Admin 1984-01-01
000130 IF1000 Admin 1984-07-01
000140 PL2100 Admin 1985-10-01
000140 IF2000 Admin 1985-03-01

EMP
empId name workDept phone sex salary

000010 Christine Haas A00 3978 F 52750
000020 Michael Thompson B01 3476 M 41250
000030 Sally Kwan C01 4738 F 38250
000110 Vincenzo Lucchessi A00 3490 M 46500
000120 Sean OConnell A00 2167 M 29250
000130 Dolores Quintana C01 4578 F 23800
000140 Heather Nicholls C01 4578 F 28420

PROJ
projId projName deptId stDate enDate

AD3100 Admin Services A00 1981-01-01 1988-02-01
IF1000 Query Services C01 1981-03-01 1987-02-01
IF2000 User Education B01 1980-01-01 1986-02-01
MA2100 Line Automation A00 1979-01-01 1986-03-01
PL2100 Line Planning B01 1979-05-15 1987-09-15

Figure 1: Schema and Sample Data of a Corporate Database

Note that since validempId, stDate andlocation values
are specified in the update, integrity constraint checks maynot be
able to detect this erroneous update. Notice, all of the natural FDs
applicable to the schema of Fig. 1 would be satisfied by this update.
As a result, unintended records in thePROJ_EMP table are (incor-
rectly) updated, while the intended records are left untouched.

The above example illustrates that catching erroneous updates to
databases remains a challenging problem. In fact, almost all known
classes of integrity constraints are unable to capture suchupdates
as erroneous. One exception is the class of conditional functional
dependencies (CFDs) proposed recently [6]. CFDs (with a slight
extension) can assert value associations of the form “if jobis Ad-
min, thenempId must start with 0001”, thus capturing update U1
as erroneous. However, this requires the database designerto an-
ticipate all possible correct future states of the database, and assert
them as CFDs, which is not a particularly practical solution.

In this paper, we propose a novel approach to guard against er-
roneous updates that are “innocent mistakes” (as opposed tomali-
cious ones). Our approach is based on (a) the updater providing,
through an application, the database update and an “update certifi-
cate” that is relevant to the database update, and (b) the database
system verifying the correctness of the update certificate provided
before performing the update. An update certificate consists of a
(challenge, response) pair, where the “challenge” intuitively asks
the updater to provide additional information that is relevant to the
specified database update, and the updater provides this informa-
tion in the “response” to demonstrate that the updater indeed in-
tended to make the specified update; in the absence of malice,this
is evidence of correctness. The system verifies, as part of the update
transaction, whether the response provided by the updater matches
the challenge; if not, the specified update is rejected as being unin-
tended. The following example illustrates the idea.

EXAMPLE 2 (CERTIFICATE CHALLENGES AND RESPONSES).
Challenges for the update U1 above could include “Q1: What is
the name of the employee withempId 000030?”, “Q2: What is
the day of the week ofstDate 1985-01-02?” and “Q3: What is
the name of an employee who works for a department located in
NY?” If the updater responds “Dolores Quintana” to challenge Q1,
or “Friday” to challenge Q2, or “Christine Haas” to challenge Q3,
all of which match theintended updatebut not thespecified update
U1, the database system could reject U1 as unintended, thereby
preventing any disastrous decision that might be made as a conse-
quence of the erroneous update.

1.1 Pragmatics of Certificates
For update certificates to be effective in guarding against er-

roneous updates, it requires additional effort on the part of the
database system, updaters, and application developers. Our pre-
ceding discussion described the additional effort that would be in-
curred by the updaters (providing the certificate) and the database
system (verifying the correctness of the update certificate).

A critical role also needs to be played by the applications that
mediate between the updaters and the database system: that of tak-
ing the updaters’ certificates and presenting them to the database
system. A developer of such an application would need to pickone
or more reasonable challenges for each type of update (such as U1)
supported by the application, and bake them into the application.
An updater using the application can choose any of the challenges
relevant to the specified update and provide responses, as evidence
that the updater indeed intended to make the specified update.

Note that updates need not be interactive for the certificatemech-
anism to be feasible. Since the challenges supported by the appli-
cation are determined offline, a non-interactive updater can pass
(i) the id of the chosen challenge, and (ii) the response to the chal-
lenge, as input to the application. This approach can also beused
in conjunction with “batch” updates, where multiple updatestate-
ments can be issued (along with their certificates) by the updater.
The update transaction generated by the application would include
the updates and their certificates for the system to verify.

It is important to emphasize that while the use of certificates
adds some overhead to the update process, both for the updater
and for the database system, and requires application developers to
incorporate certificates into their applications, these overheads are
significantly outweighed by the benefits of certificates in reducing
errors in databases as the data gets updated. Such errors incur a sig-
nificant cost for restoring the database to a correct state and rolling
back the decisions made based on the incorrect state.

We next discuss various alternatives to update certificatesand
motivate our design choice of using certificates.

1.2 Alternatives to Certificates
Our main goal is to detect and prevent updates that might lead

to innocent unintended errors. One of the simplest mechanisms for
doing this, inspired by the approach taken by Unix to confirm that a
user intended to delete a file, is asking the updater “Are you sure?”
Another option, inspired by the practice used by most onlinesecure
systems for users to confirm a modified password, is to ask the up-
dater to repeat their update specification. A third option isto show

the updater a sample of the records that are about to be updated and
let the updater visually inspect the changes before deciding if this
is the correct update.

All these approaches have the significant disadvantage thatthey
are not suitable for updaters who use non-interactive applications
to update databases. The first two approaches have the added dis-
advantage that updaters can easily answer “Yes” to the “Are you
sure?” question, or use “cut and paste” as a quick way of repeating
their update specification. Two recent studies, one on the (poor) se-
curity practices of users in dealing with online bank accounts [11],
and the other on user practices in (not) reading and understand-
ing end user license agreements [9], suggest that updaters are very
likely to do so. Thus, such simplistic methods are unlikely to be
effective to ensure correctness of updates.

What we need is a method that proves to be effective in catch-
ing erroneous updates while not imposing an undue burden on up-
daters. By the first objective, we mean that the percentage oferro-
neous updates let through should be very small. By the secondob-
jective, we mean that under natural models of an updater’s knowl-
edge of the data, the need for update certificates should not prevent
most of their correct updates from going through easily.

We next spell out desiderata for update certificates, and argue
that picking challenges in a principled manner is importantto re-
ducing errors in databases as the data gets updated.

1.3 Desiderata and Contributions
For update certificates to be useful in detecting erroneous up-

dates, the most critical issue is thedesign of certificate challenges
that are relevant to updates.

Database System Desiderata: Consider a challenge “Q4: What
is the sex of the employee withempId 000030?” While Q4 is rel-
evant to Update U1, the updater’s (correct) response of “F” would
not have helped the system detect the erroneous update, since both
Sally Kwan and Dolores Quintana are female. Intuitively, from the
database system’s viewpoint, a challenge is not desirable if there
are many unintended updates for which a correct response to the
challenge is the same as that for the intended update.

Updater Desiderata: Suppose that the updater is asked “Q5:
What is the phone number of an employee who works for a project
whose responsible department is located in NY?” Such a challenge
is too complex, so reduces understandability and increasesthe risk
of a wrong responseeven when the updater knows the correct re-
sponse to the challenge. Similarly, if theonly challenges available
were “Q6: What are the salary and the sex of the employee with
empId 000030?” and “Q7: What are the salary and the phone
number of the employee withempId 000030?”, then an updater
who does not know an employee’s salary would be unable to choose
either challenge and provide a correct responseeven when she per-
forms a correct update. Thus, from the updater’s viewpoint, it is
desirable that challenges be easy to use, without undue expectation
that she is familiar with every aspect of the data she updates.

We effectively address the desiderata important to updaters and
to the database system and make the following contributions:

• First, we formalize an update certificate as a(challenge, re-
sponse)pair. We identify properties that make for “good”
challenges: highdiscriminating power, low description com-
plexity, and highdiversity(Sec. 2). Intuitively, the first prop-
erty permits the database system to have high confidence that
the specified update was intended, the second makes sure the
challenges are easy to understand, while the third ensures
that every updater can respond to some challenge.

• Second, we formulate two optimization problems for find-
ing good challenges: (i) minimize description complexity of

the challenges that meet specified discriminating power and
diversity thresholds, and (ii) maximize diversity of the chal-
lenges that meet specified discriminating power and descrip-
tion complexity thresholds. We develop efficient algorithms
to optimally solve these problems (Sec. 3).

• Finally, we experimentally evaluate our techniques on bench-
mark databases and demonstrate that (i) databases often have
many good challenges, (ii) such challenges can be efficiently
identified, (iii) responses provided by updaters can be quickly
verified for correctness, (iv) under natural models of an up-
dater’s knowledge of the database, update certificates enjoy
good precision and recall: they catch most erroneous updates
without imposing undue burden on updaters performing cor-
rect updates, and (v) our techniques are robust across a wide
range of challenge parameter settings (Sec. 4).

2. CERTIFICATES: PROPERTIES
Databases allow insertions, deletions and modifications ofrecords,

tables and table spaces. We focus onrecord modifications, which
allow the values of specified attributes in a set of records ofa spec-
ified table to be modified to specified values. For example, Up-
date U1 is of this form. These updates present the most challenges,
and their solutions can be adapted for other updates.

2.1 Certificates
An update certificateconsists of achallengepresented to the

updater and aresponseby the updater. We propose certificates for
both the update condition (to ensure that the intended set ofrecords
are being updated) and for the updated values (to ensure thatthe
modified values are the intended ones).

DEFINITION 2.1 (UPDATE CERTIFICATE). Consider update
condition or updated valueγ of the formattr=val.1 An update
certificateCγ for γ is a (challenge, response) pair(Qγ , Rγ), where
(i) challengeQγ is a SQL query, whosewhere clause condition
Cond(Qγ) impliesγ,2 and (ii) responseRγ is the answer provided
by the updater toQγ . An update certificateCU for a record mod-
ification updateU is a set of certificatesCγ , one for each update
condition and updated valueγ in the updateU .

DEFINITION 2.2 (VALID CERTIFICATE). Given a database in-
stanceD, a certificateCγ = (Qγ , Rγ) is said to bevalid if Rγ is
in the answer set ofQγ on D. A certificateCU is said to bevalid
if eachCγ ∈ CU is valid.

Ex. 2 presented challenges (Q1–Q3) associated with the certifi-
cates for update U1. Example certificates for U1 might be the pairs
(Q1, Dolores Quintana), (Q2, Friday) and (Q3, Christine Haas), re-
spectively, none of which is valid. However, certificates (Q1, Sally
Kwan), (Q2, Tuesday), and (Q3, Michael Thompson) are valid.

We next present three properties that we consider importantfor
guarding against erroneous updates:discriminating power, descrip-
tion complexityanddiversity. These properties formalize the desider-
ata for certificates by the database system and by the updater.

2.2 Discriminating Power
Should all specified updates with valid certificates (e.g., (Q4, F))

be considered as intended by the updater, and accepted by thesys-
tem? The notion ofdiscriminating power, discussed below, quanti-
fies the confidence provided by a valid certificate that the specified
update was indeed intended.
1For the purpose of certificates, an updated valueattr=val can be treated
exactly like an update conditionattr=val.
2This property ensures that the challenge isrelevantto the update.

We first need the notions of achallenge templateand aCR-
table. Consider a challengeQγ . The challenge templateQT

γ is
the parameterized query obtained fromQγ by replacingγ in its
where clause byγT , obtained by replacingval in γ by a param-
eter$val. For example, the challenge template Q1T would be
“select name from EMP where empId = $val”.3

A challenge templateQT
γ is associated with aCR-tableTQT

γ
(V, R),

which contains answersR to challengesV that can be obtained
from QT

γ . If materialized, the CR-table can be used to quickly
validate an updater’s response to any challenge. For example,
the projection of tableEMP on attributes(empId, name)would
be the CR-table for challenge template Q1T , and the projection of
the joinDEPT1deptId=workDept EMP on attributes(location,
name) would be the CR-table for challenge template Q3T .

We are finally ready to define the notion of discriminating power.
Consider an update condition or updated valueγ, and a valid cer-
tificateCγ = (Qγ , Rγ) for γ. This certificate could be considered
as a “lucky guess” if the updater had intended to specify a differ-
ent update condition/valueγj 6= γ, but responseRγ is also a valid
response forQγj

. Intuitively, the discriminating power of a valid
certificate is the probability that the provided certificateis not a
lucky guess. More formally, we have the following definition.

DEFINITION 2.3 (DISCRIMINATING POWER). Consider a
database instanceD, an update condition or updated valueγ :
attr = val, a valid certificateCγ = (Qγ , Rγ) for γ, and the
CR-tableTQT

γ
(V, R) for the challenge templateQT

γ .
Thediscriminating power(DP) ofCγ is defined as:

DP (Cγ) = 1 −
|{TQT

γ
.V | TQT

γ
.V 6= val & TQT

γ
.R = Rγ}|

|{TQT
γ

.V | TQT
γ

.V 6= val}|

We define the minimum (resp. average) discriminating power of
a challenge templateQT

γ , denoted minDP(QT
γ) (resp., avgDP(QT

γ))
as the minimum (resp., average) DP over all possiblevalid re-
sponsesin the CR-tableTQT

γ
.4

For example, the DP of certificate (Q4, F) is 3/6, and the minDP
and avgDP of Q4T are 3/6 and 7/12, respectively.

Since valid certificates with low DP are not useful as evidence
of the updater’s intention, applications should use only challenges
that yield certificates with a high discriminating power. Only then
can the system have high confidence that the specified update will
not make the database dirty.

2.3 Description Complexity
If providing certificates were to place an undue burden on up-

daters, then certificates may not be used despite their obvious ben-
efits. Hence, it should beeasyfor updaters to provide certificates.

In practice, we expect that a challenge to be presented in natural
language. To keep the natural language question simple, we require
two properties of individual challenges. First, the challenge must
be a chain join query, with the updated table at one end of the chain;
such queries can be translated to natural language much moreeas-
ily than challenges containing arbitrary joins. For example, this
property holds for challenge Q3. Second, no challenge presented
to an updater should be too verbose since that would reduce under-
standability. The two components that contribute to this verbosity

3Our techniques can be extended to handle non-equality update conditions.
For example, ifγ was “stDate > 1984-01-01”, the challenge tem-
plate could include “stDate > $val”.
4Note that, given a CR-tableTQT

γ
for challenge templateQT

γ , the discrim-

inating power depends only on the responseRγ .

DM for {Q11, Q21, Q31}
D D 1 E D 1 P

Q11 1 0 0
Q21 0.05 1 0
Q31 0.05 0 1

DM for {Q11, Q21, Q22}
D D 1 E

Q11 1 0
Q21 0.05 1
Q22 0.05 1

Figure 2: Diversity Matrices for Sets of Challenges

are the length of the chain join (i.e., the number of tables, which is
#joins+1) and the number of response values the updater is asked
to provide. This intuition is captured by the following requirement.

DEFINITION 2.4 (DESCRIPTIONCOMPLEXITY). We define
thedescription complexityof challengeQγ as follows.

DC(Qγ) = w1 ∗ (#joins+ 1) + w2 ∗ #select-clause-attrs (1)

In the absence of other information, we setw1 = w2 = 1.
Thedescription complexity, or size, of a challenge templateQT

γ

is defined to be the same as that of the challengeQγ .

For example,DC(Q1) = 2 andDC(Q3) = 3. This captures
the complexity of expressing these challenges in natural language.

2.4 Diversity
It is important to realize that an updater may not be familiarwith

every aspect of the data she updates. Hence, the applicationshould
present an updater with a set of sufficientlydiversechallenges, with
the hope that there will be at least one challenge whose response
would be correctly known to the updater.

We propose an information theoretic notion of diversity based
on the chain joins present in a set of challenges, that captures the
following key intuitions: (i) the more the number of distinct chain
joins, the higher the diversity; (ii) the smaller the similarities be-
tween the distinct chain joins, the higher the diversity; and (iii) the
more uniform the distribution of distinct chain joins, the higher the
diversity. For example, the set of challenge templates Q6T (“what
are the salary and sex of an employee withempId $e?”) and Q7T

(“what are the salary and phone number of an employee with em-
pId $e?”) is not very diverse. This is because they both involve the
same table (chain join prefix).

The above intuitions can be precisely captured using the infor-
mation theoretic concept of entropy, as follows.

DEFINITION 2.5 (DIVERSITY). Consider a set of challenges
Qγ = {Qiγ | 1 ≤ i ≤ k}. Let {Jℓ | 1 ≤ ℓ ≤ m} denote the
set of chain joins and their prefixes that are present inQγ , and let
α denote an arbitrary constant in(0, 1

km
).5 Thediversity matrixof

Qγ is ak × m matrix whose entries are defined as follows.

DM(Qiγ , Jℓ) = 1, if Jℓ is Qiγ ’s chain join,

= α, if Jℓ is a proper prefix ofQiγ ’s chain join,

= 0, otherwise

Given the diversity matrixDM , thediversityof the set of chal-
lengesQγ , denotedDV (Qγ), is defined as the entropyH(X)
(= Σm

ℓ=1p(X = ℓ) ∗ log2(1/p(X = ℓ))) of the random variable
X, where

p(X = ℓ) =
Σk

i=1DM(Qiγ , Jℓ)

Σm
j=1Σ

k
i=1DM(Qiγ , Jj)

, 1 ≤ ℓ ≤ m

The diversity of a set of challenge templates{QiTγ , 1 ≤ i ≤ k}

is defined to be the same as that ofQγ .6

5α < 1

km
is important for Lemma 3.1.

6Diversity can be naturally extended to incorporate response attributes.

EXAMPLE 3 (DIVERSITY). Consider conditionlocation =
NY of Update U1, and the following space of possible challenges,
abbreviated using (chain-join, response attributes), where each1
denotes a (primary key, foreign key) left-outer-join:

• Q11: (DEPT, (deptName))
• Q21: (DEPT 1 EMP, (name))
• Q22: (DEPT 1 EMP, (phone))
• Q31: (DEPT 1 PROJ, (projName))

The diversity matrices for two sets of challengesS1 = {Q11,
Q21, Q31} andS2 ={Q11, Q21, Q22} are shown in Fig. 2, for
α = 0.05. Based on the diversity matrix, the diversity forS1,
DV (S1) is 1.58, while forS2, DV (S2) is 0.94. Note,S1 and
S2 have the same cardinality and description complexity, butS2

has two challenges, Q21 and Q22, with the same chain join while
challenges inS1 have no chain joins in common.

3. FINDING CHALLENGE TEMPLATES
The database system needs to identify a set of good challenge

templates for every database column that may be updated or on
which an update condition may be specified and publish these tem-
plates. The application developer can consult these published tem-
plates, pick one or more reasonable challenges for each typeof up-
date supported by the application, and bake them into the applica-
tion that is used by the updater to perform updates. For identifying
good challenge templates, we formulate two optimization problems
in Sec. 3.1, and subsequently develop efficient algorithms to solve
these problems in Sec. 3.2 and Sec. 3.3.

3.1 Optimization Problems
Sec. 2 identified the properties that make for a set of good chal-

lenges: high discriminating power, low description complexity, and
high diversity, which naturally extend to challenge templates as
well. While desirable, it is unfortunately impossible to simulta-
neously optimize for all these properties. For example, it may be
possible to find a set ofk challenge templates from the updated
table and they have a low description complexity; however, their
diversity will be 0. If, instead, we find a set ofk challenges with
different and long chain joins, they are likely to have high diver-
sity but larger description complexity. We thus formulate two con-
strained optimization problems that trade off the two ease-of-use
concerns, while requiring high enough discriminating power.

Problem MinimizeDC: Given an update columnattr, threshold
valuesτminDP , τavgDP andτDV , find a set ofk update-relevant
challenge templatesQ = {QiT | 1 ≤ i ≤ k} that minimizes
max({DC(QiT) | 1 ≤ i ≤ k}), while satisfying

1. minDP (QiT) ≥ τminDP , 1 ≤ i ≤ k,
2. avgDP (QiT) ≥ τavgDP , 1 ≤ i ≤ k,
3. DV (Q) ≥ τDV , and
4. there does not exist any other challenge templateQT , such

that minDP (QT) ≥ τminDP , avgDP (QT) ≥ τavgDP ,
QT ’s join path is a prefix of that ofQT

i and its attributes
form a subset of those ofQT

i , 1 ≤ i ≤ k.

Problem MaximizeDV: Given an update columnattr, threshold
valuesτminDP , τavgDP andτDC , find a set ofk update-relevant
challenge templatesQ = {QiT | 1 ≤ i ≤ k} that maximizes
DV (Q), while satisfying

1. minDP (QiT) ≥ τminDP , 1 ≤ i ≤ k,
2. avgDP (QiT) ≥ τavgDP , 1 ≤ i ≤ k,

3. DC(QiT) ≤ τDC , 1 ≤ i ≤ k, and
4. there does not exist any other challenge templateQT , such

that minDP (QT) ≥ τminDP , avgDP (QT) ≥ τavgDP ,
QT ’s join path is a prefix of that ofQT

i and its attributes
form a subset of those ofQT

i , 1 ≤ i ≤ k.

We use bothminDP andavgDP in our problem definitions
since they provide complementary ways to characterize the dis-
criminating power of challenge templates. For example, a medium
value ofτminDP and a high value ofτavgDP ensure that challenge
templates can be identified even if some instances of the challenge
template don’t have a high DP, while guaranteeing that none of the
challenge template instances have a low DP. This is not possible
using justminDP or avgDP . The last condition in the definition
of the two problems precludes a challenge template when a less
complex one would work.

We experimentally show that our techniques are robust across a
wide range of threshold valuesτminDP , τavgDP , τDV and τDC ;
this makes choosing of threshold values quite easy.

3.2 Minimizing Description Complexity
In this section, we present an algorithm called MINIMIZE DC for

solving Problem MinimizeDC. We first give an overview (Sec. 3.2.1)
and then explain it in greater detail (Sec. 3.2.2 and 3.2.3).

3.2.1 Overview of AlgorithmM INIMIZE DC

Virtually, there is a chain-join tree where the root corresponds
to the updated table (no join), each node at level-k corresponds
to a join path withk − 1 joins, and its parent corresponds to its
immediate join path prefix (see Fig. 3). To minimize description
complexity, we shall explore the treetop-down.

Algorithm MINIMIZE DC dynamically generates the join tree in
a breadth-first fashion; for each node, it maintains aset of lists
{Ln}, n > 0, whereLn is a list of challenge templates with de-
scription complexityn (size-n) and with the join represented by
the node. For example, the nodePROJ_EMP0 represents all chal-
lenge templates sharing the joinEMP 1empId=empId PROJ_EMP.
Algorithm MINIMIZE DC starts with the root of the join tree and
then-th round proceeds in three steps:

1. Examine size-n candidate templates.For each nodeN where
Ln 6= ∅ and each templateQT in N.Ln, (1) check ifQT has
enough discriminating power; if so, remove it fromN.Ln,
and (2) check if addingQT to the result setQ violates the
diversity threshold; if not, add it toQ. Return whenQ con-
tainsk templates.

2. Generate size-(n + 1) candidate templates by adding one
more attribute, and store them inLn+1 for each node.This
step invokes APRIORIGEN, which we explain later.

3. Extend all chain-join paths one step further and generate 1-
attribute challenge templates for each new node.Note that
when we extend a path, we exclude the join condition that is
the same as the last one in the chain join (so no loop join).

Optimizing diversity constraint checking: For each candidate
template that has enough discriminating power, we need to check
if adding it toQ does not violate the diversity constraint. However,
repeated entropy computation is expensive; the following sufficient
condition allows us to “translate” the global minimum threshold on
diversity,τDV , to a “local threshold” on the maximum number of
challenges that have the same join, which is easier to check.

LEMMA 3.1. LetQ be a set ofk challenge templates, andτDV

be a threshold on diversity. If at mostkl = ⌈k/2τDV ⌉ templates in
Q share the same chain join, thenDV (Q) ≥ τDV .

EMP0

PROJ_EMP0 DEPT0 DEPT1

PROJ1 EMP1

PROJ_EMP2PROJ_EMP1

EMP4

DEPT4

EMP5

EMP2

PROJ2

DEPT5

EMP6

DEPT6

PROJ0

empId

projId

empId=mgrId
workDept=deptId

deptId deptId=workDeptmgrId=empId

projId

empId

workDept=deptId

mgrId=empId

empId

deptId

projId

workDept=deptId

mgrId=empId

DEPT2

EMP3

DEPT3

deptId

workDept=deptId

mgrId=empId

Figure 3: Chain-join tree in Ex. 4.

Proof Sketch: Recall the definition of diversity from Def 2.5.
The nature of entries in the diversity matrix guarantees that with k
challenge templates, the sum of all the entries in the diversity ma-
trix will be in the closed-open interval[k, k+1), sinceα < 1/km.
Since diversity of a set of challenge templates is computed using
entropy, ifℓ ≤ k chain joins are used by thek challenge templates
in Q, we know thatDV (Q) < log2(ℓ+1). Hence, the global min-
imum threshold on diversity,τDV , implies that at least2τDV chain
joins need to be used inQ, with no more than⌈k/2τDV ⌉ challenge
templates that share the same chain join. Thus, ensuring this local
thresholdof kl = ⌈k/2τDV ⌉ challenge templates would guarantee
thatDV (Q) ≥ τDV .

Algorithm APRIORIGEN: A key task of MINIMIZE DC is to gen-
erate candidate size-(n + 1) challenge templates for a nodeNk.
This task is non-trivial because we do not want to generate tem-
plates with a discriminatingsub-template(i.e., with a subset of its
attributes). However, checking if there exists such a sub-template
can be very expensive. Inspired by theA Priori algorithm [1],
our solution is based on two intuitions. First, we start fromnon-
discriminating size-n challenge templates (inNk.Ln) and check
if any pair can be merged into a size-(n + 1) template. Second,
for each generated template, rather than checking all of itssub-
templates (exponential number), we check only those with one less
attribute (linear number); such a template should be in somelist
Lk, k < n. For example, with 3-attribute templates{abc, abd, aef}
as input, the only pair that can be merged isabc andabd, resulting
in a template with attributesabcd, which should be discarded as its
size-3 sub-templateacd is not included in the input set.

EXAMPLE 4. Consider an extended schema of that in Fig. 1:

DEPT(deptId, deptName, mgrId, location)
EMP(empId, name, workDept, phone, job, sex,

birthdate, salary, bonus)
PROJ(projId, projName, deptId, stDate, enDate)
PROJ_EMP(empId, projId, job, stDate, enDate)

Fig. 3 shows the chain-join tree. The root is the table to be up-
dated, i.e.,EMP. Each node is named by the last table in the chain
join plus a unique number to differentiate nodes with the same ta-
ble. An edge represents a left outer join from a parent node toa
child node on the attribute (or join predicate) labeled on the edge.
For example,DEPT0 identifies the result table of the chain join
EMP left-outer-join DEPT on empId=mgrId.

The first column of Tbl. 1 lists the top-20 challenge templates
for EMP.empId returned by MINIMIZE DC (in the order they are
found) with parameterskl = 10 and τDC = 10. For example,
entry (EMP0.sex, DEPT0.deptId) represents a challenge tem-
plate with joinEMP left-outer-join DEPT, asking for “the
employee’s sex and the Id of the department she manages”.

M INIMIZE DC starts with the root nodeEMP0. The first round
inserts eight candidate templates (each corresponding to an attribute
other thanempId in EMP) to EMP0.L2, and inserts three nodes
PROJ_EMP0, DEPT0, DEPT1 to the join tree.

In the second round, the algorithm checks templates inEMP0.L2

(Step 1). Assume it finds that 4 of them, each with one attribute
name, phone, birthdate, or salary, have enough DP;
accordingly, it removes them fromEMP0.L2 and adds them into
Q as they also satisfy the diversity constraint. After this process,
there are 4 attributes left inEMP0.L2. The algorithm then invokes
APRIORIGEN and generates 6 size-3 templates from them and puts
the results intoEMP0.L3 (Step 2). Finally, it adds size-3 templates
for nodesPROJ_EMP0, DEPT0, DEPT1 and four more nodes
PROJ0, PROJ1, EMP1, EMP2 to the join tree (Step 3).

In the third round, the algorithm starts with nodeEMP0. It turns
out that all of the 6 templates inEMP0.L3 have enough DP and
adding them intoQ does not violate the diversity constraints. At
this point, 10 templates are found. Then, the algorithm continues
until 20 templates are found in the fourth round.

We next explain Algorithms MINIMIZE DC and APRIORIGEN.

3.2.2 AlgorithmM INIMIZE DC

Algorithm MINIMIZE DC is a breadth-first algorithm. In then-
th iteration, it examines candidate templates with description com-
plexity n (size-n) (lines 6-13), then generates size-(n + 1) candi-
date templates by adding one more attribute (lines 14-17) orex-
tending all chain joins one step further (lines 18-30).

M INIMIZE DC maintains the following data structures:

• List: a list of nodes, each corresponding to a node in the
chain-join tree and of the form of(parent, T, 〈attr1, attr2〉,
level, {Lk}), whereparent corresponds to the parent node
in the join tree,T is the last table in the join path,〈attr1, attr2〉
store the join attributes,7 level is the size of the join path, and
Lk is a list of size-k challenge templates;

• Queue: a queue of nodes as inList, except that{Lk} = ∅.
The nodes inList and inQueue never overlap;

• Q: the set of already generated challenge templates;
• DM : the diversity matrix for templates inQ.

The search starts withn = 1 and puts the root of the chain-
join tree intoQueue (lines 1-4). At the beginning of then-th
round,List contains all nodes that contain some size-n challenge
templates8. The algorithm checks whether those challenge tem-
plates can be added to the result setQ or not. Specifically, for each
such challenge templateQjT (lines 6-7), we first check ifQjT has
enough discriminating power (line 8). If it does, we furthercheck
if adding QjT into the result set violates the diversity threshold
(line 9). If not, QjT is added to the result set (line 10), and the
algorithm returns once there are exactlyk challenge templates in
Q (lines 11-12). OnceQjT has enough discriminating power, we
remove it from the listLn of the corresponding nodeNi (line 13);
as a result, after checking all size-n challenge templates, only the
non-discriminating ones are left in the correspondingNi.Ln; they
will be used in generating size-(n + 1) challenges.
7Extension to the multi-attribute join attribute case is straightforward.
8In the first round,List is empty because a template is at least size-2.

Algorithm 1 : M INIMIZE DC(attr,T, k, τDP , kl)
Input : update columnattr from tableT ,

k, # of challenge templates to find,
τDP , discriminating power threshold
kl, local diversity threshold

Output : a setQ of k challenge templates
Q ← ∅; DM ← ∅; Queue← ∅; List← ∅;1
n← 1;2
root← Node(null, T, null, 1,∅); // root of the join tree3
Queue.enqueue(root);4

while Queue 6= ∅ or List 6= ∅ do5
// P1. Check size-n challenge templates
foreach nodeNi ∈ List do6

foreach challenge templateQjT ∈ Ni.Ln do7
if compute-dp(QjT) ≥ τDP then8

if check-diversity(QjT , DM, τDP) then9
Q ← Q∪ {QjT };10
if |Q| = k then11

return Q;12

Ni.Ln ← Ni.Ln −QjT ;13

// P2. Generate size-(n + 1) templates from size-n templates
foreach nodeNi ∈ List do14

AprioriGen(Ni, n); // Generate size-(n + 1) templates15
if Ni.Ln+1 = ∅ then16

List← List−Ni;17

// P3. Extend join paths, generate size-(n + 1) templates
Queue.enqueue(separator);18
while true do19

N ← Queue.dequeue();20
if N = separator then21

break;22

foreach attributeAj ∈ N.T do23
QT ← gen-challenge(Aj , N);24

N.Ln+1 ← N.Ln+1 + QT ;25

if N.Ln+1 6= ∅ then26
List← List + N ;27

foreach join fromN.T.As to Ti.At do28
Nchild ← Node(N, Ti, 〈N.T.As, Ti.At〉, n, ∅);29
Queue.enqueue(Nchild);30

n← n + 1;31

After checking all size-n challenge templates, the second part of
a round generates size-(n + 1) challenge templates by adding one
more attribute using Algorithm APRIORIGEN for all nodes inList
(lines 14-17). IfLn+1 for a nodeNi is empty, meaning that there
is no size-(n + 1) challenge template of this node, we removeNi

from the node listList (lines 16-17).
Then, the third part of a round (lines 18-30) generates size-(n +

1) challenge templates by extending all chain join paths one step
further. Specifically,Queue contains all nodes with chain joins of
sizen at the beginning of then-th round; 1-attribute challenge tem-
plates of such nodes are size-(n + 1) challenge templates. There-
fore, the algorithm generates 1-attribute challenge templates of each
node inQueue and puts them into the listLn+1 of the node (lines
23-25). If there are size-(n + 1) challenge templates inLn+1, the
corresponding node is added to the node listList (lines 26-27).

As the algorithm explores the chain-join tree in a breadth-first
manner, while visiting a node at thenth level, it puts all its children
(with one more join) intoQueue (lines 28-30). The use of a
separator in Queue helps to separate nodes on different levels,
and knowing when the search is complete with all nodes on a given

Algorithm 2 : AprioriGen(Nk, n)
Input : Nk is a node in the join tree,

n is current size of challenge templates.
Output : Nk whereNk.Ln+1 is updated.

Nk.Ln+1 ← ∅; // Nk is thekth node inList1
Qex ← ∅; // challenge templates generated, but not inNk.Ln+12

// P1: generate size-(n + 1) challenge templates ofNk

for i← 1 to |Nk.Ln| − 1 do3
for j ← i to |Nk.Ln| do4

QiT ← i-th challenge template inNk.Ln;5

QjT ← j-th challenge template inNk .Ln;6

m← #attributes inQiT ;7

if QiT andQjT have(m − 1) attributes in commonthen8
QT ← merge(QiT , QjT);9

if QT ∈ Qex or QT ∈ Nk.Ln+1 then10
continue;11

foreach challenge templateQT ′

with anym attributes12

of QT , QT ′

6= QiT andQT ′

6= QjT do
N ← the join path ofQT ′;13
p← 1+#joins in the join path ofN ;14

if QT ′

/∈ N.Lm+p then15
Qex ← Qex ∪ {QT };16
break;17

if QT /∈ Qex then18
Nk.Ln+1 ← Nk.Ln+1 + QT ;19

// P2: add new basis (2-attribute challenge templates) on a cross node
basis if necessary

if Nk.level = n− 1 then20
Np ← Nk.parent;21
while Np 6= null do22

foreach QiT ∈ Nk.Ln do23
foreach QjT ∈ Np.LNp.level+1 do24

QT ← merge(QiT , QjT);25

Nk.Ln+1 ← Nk.Ln+1 + QT ;26

Np ← Np.parent;27

level. Finally, after checking all size-n challenge templates and
generating all size-(n + 1) challenge templates, the round ends up
with all nodes that have at least one size-(n+1) challenge template
in List and all nodes on the(n + 1)th-level of the join tree in the
queueQueue.

3.2.3 AlgorithmAPRIORIGEN

Algorithm APRIORIGEN maintains a listQex, storing challenge
templates that have been generated but not inserted inNk.Ln+1.

In the first part of the algorithm (line 3-19), we first check ev-
ery pair of challenges inNk.Ln, merge them for a new challenge
template only if they sharem − 1 common attributes, wherem is
the number of attributes in a template inNk.Ln (lines 3-9). Then,
it checks if the resultQT should be added toNk.Ln+1 (lines 10-
18). First, if the template has been generated before (so either in
Nk.Ln+1 or inQex), there is no need to consider it again (lines 10-
11). Second, if a sub-template ofQT has enough DP, we should
discard it. We check everym-attribute sub-templateQT ′

of QT

other thanQiT or QjT (line 12). Note that it is possible that none
of thesem attributes are from tableNk.T , so the involved join
path can be shorter; if we assume the join path has sizep, the size
of QT ′

is m + p(≤ n). Thus,QT ′

should be in listLm+p of the
corresponding node if it does not have enough DP (lines 15-17).

If Nk.Ln contains only 1-attribute challenge templates (line 20),
we go to the second part of the algorithm (line 20-27) and gener-
ate across-table 2-attribute templates. We iteratively examine each
ancestor nodeNp of Nk. For each pair of a non-discriminating at-
tribute inNp and a non-discriminating attribute inNk, we merge
them and add the result template intoNk.Ln+1 (line 21-27). Note
that sinceNp has sizeNp.level, its 1-attribute non-discriminating
templates should be stored inNp.LNp.level+1.

Based on Lemma 3.1, we can prove the following result.

THEOREM 3.2. Algorithm M INIMIZE DC solves the Problem
MinimizeDC.

3.2.4 Enhancing Diversity ofM INIMIZE DC

M INIMIZE DC proceeds breadth-first, and if⌈k/2τDV ⌉ challenge
templates that satisfy the DP thresholds are available froma node
in the chain join tree, it picks exactly that manybefore moving to
the next node. The diversity of the challenge templates produced
can be further boosted by greedily maximizing the diversityat each
step, using a round-robin strategy for choosing discriminating chal-
lenge templates. The resulting algorithm, MINIMIZE DCHIGHDV,
has the same optimality properties as MINIMIZE DC, but tries to
produce more diverse challenge templates.

A second variant of MINIMIZE DC can obtain an even higher di-
versity in the set of returned challenge templates, at the cost of hav-
ing slightly larger challenge templates. The key idea is that, instead
of checkingall size-n challenge templates in the join tree before
moving to size-(n + 1) challenge templates, one can proceed in a
more “local” fashion. Once a nodeN ’s size-n challenge templates
have all been checked, one can check the size-(n + 1) challenge
templates ofN ’s children nodes in the join tree, together with the
size-n challenges of other nodes (e.g., sibling nodes ofN). The re-
sulting algorithm, REDUCEDDCHIGHERDV, can return challenge
templates with even higher diversity than MINIMIZE DCHIGHDV,
but these may have a higher description complexity.

3.3 Maximizing Diversity
Problem MaximizeDV sets thresholds on discriminating power

and description complexity, and seeks a set ofk challenge tem-
plates that maximizes diversity. Recall from Def. 2.5 that chal-
lenges with longer chain joins yield a higher diversity; hence, we’ll
explore the join treebottom-up. As a result, MAXIMIZE DV may
return challenge templates with higher description complexity than
those returned by previous algorithms. Algorithm MAXIMIZE DV
(pseudo-code omitted for lack of space) proceeds in four steps:

1. Statically identify the chain-join tree that can yield challenge
templates of sizeτDC .

2. Iteratively choose an unmarked node whose descendants are
all marked and that maximizes the diversity, generate one
template from this node, and mark the node as considered.

3. When all nodes are marked, unmark all nodes.
4. Repeat Steps 2-3 until we generatek challenge templates.

THEOREM 3.3. Algorithm MAXIMIZE DV solves the Problem
MaximizeDV.

Proof Sketch: Let Sg andSo be any sets ofk challenge templates
found by the greedy algorithm and present in any optimal solution
respectively. LetQ be any template present inSg but not inSo. We
will show ∃P ∈ So − Sg: replacingP by Q in So cannot decrease
its diversity. By repeated application of this argument, itfollows
thatSg must be optimal.

Table 1: Top-20 challenge templates returned byM INIMIZE DC
and MAXIMIZE DV for column EMP.empId.

M INIMIZE DC MAXIMIZE DV
EMP0.name EMP0.workDept, DEPT6.deptId
EMP0.phoneno EMP0.workDept, EMP5.empId
EMP0.birthdate DEPT2.location, DEPT3.deptId
EMP0.salary EMP0.workDept, EMP6.empId
EMP0.job, EMP0.workDept EMP0.workDept, DEPT4.deptId
EMP0.sex, EMP0.workDept EMP0.job, EMP2.empId
EMP0.bonus, EMP0.workDept DEPT2.location, EMP3.empId
EMP0.job, EMP0.sex EMP0.workDept, DEPT3.deptId
EMP0.bonus, EMP0.job EMP0.workDept, EMP4.empId
EMP0.bonus, EMP0.sex DEPT2.deptId
PROJ_EMP0.projId EMP0.workDept, PROJ2.projId
PROJ_EMP0.job EMP0.job, DEPT1.deptId
PROJ_EMP0.stdate EMP0.workDept, PROJ_EMP1.empId
PROJ_EMP0.endate PROJ0.projId
EMP0.workDept, DEPT0.deptId EMP0.workDept, PROJ_EMP2.projId
EMP0.job, DEPT0.deptId EMP0.workDept, PROJ1.projId
EMP0.sex, DEPT0.deptId PROJ_EMP0.projId
EMP0.bonus, DEPT0.deptId EMP0.workDept, EMP1.empId
EMP0.workDept, DEPT0.deptname EMP0.workDept, DEPT0.deptId
EMP0.job, DEPT0.deptname EMP0.name

There are three cases to consider. SupposeSo − Sg contains a
templateP corresponding to an ancestor ofQ. Then replacingP
by Q will increase the diversity. SupposeSo−Sg contains a proper
descendant ofQ. By construction, Algorithm MAXIMIZE DV does
not consider ancestors before it considers descendants, sothis case
cannot arise. So suppose no template inSo − Sg is an ancestor or
descendant ofQ. Consider replacing any templateP in So−Sg by
Q. SinceQ does not share a prefix with any template inSo−Sg and
MAXIMIZE DV choosesQ to maximize the diversity of the solution
it builds, it can be shown that replacinganytemplate inSo −Sg by
Q cannot decrease the diversity.

EXAMPLE 5. Comparing with the challenges found by MIN-
IMIZE DC in Ex. 4, Tbl. 1 also shows the top-20 challenge tem-
plates returned by MAXIMIZE DV. We observe obvious differences
in the returned results. MINIMIZE DC first exhausts size-n tem-
plates from one node. MAXIMIZE DV, on the contrary, generates
exactly the static tree as shown in Fig. 3, and proceeds from the bot-
tom of the tree. It first picks leaf nodeDEPT6 as it has the longest
join path. Then, it picksEMP5 and thenDEPT3. At this time, the
candidate nodes to choose from includeEMP3, DEPT4, EMP6,
EMP2, each from one branch. It picksEMP6 next as choosing it
maximizes the diversity. As there are 20 nodes in the tree, the 20-
th returned template is from the root node.

4. EXPERIMENTAL EVALUATION
We implemented the four algorithms in Sec. 3, namely, MINI -

MIZEDC, MINIMIZE DCHIGHDV, M AXIMIZE DV, REDUCEDD-
CHIGHERDV. Tbl. 2 shows the input parameters and their set-
tings; unless otherwise specified, we used default values. We ex-
perimented on two sets of data: the Corporate database–a sam-
ple database provided by IBM DB2i [5] with size about 20KB
(schemas shown in Ex. 4), and the TPC-H data [13]. All algorithms
were implemented in Java. All experiments were conducted ona
PC with a 2.33GHz Core2 Duo processor, 3.25GB RAM and 200G
SATA Disk, running Windows XP Pro SP3. MySQL (v.5.0.67) was
used as the back-end database.

In Sec. 4.1, we demonstrate the effectiveness and usabilityof
the certificates mechanism via a simulation study; Sec. 4.2 presents
efficiency results for verifying certificates at run-time; finally in
Sec. 4.3, we report results that show the efficiency of challenge-
identification algorithms.

Table 2: Input parameters, their value ranges, and default val-
ues (underlined).

Parameter Value

k, desired number of challenge templates 10, 20, 50, 100, 200
τminDP , threshold on minimum DP 0, 0.2, 0.4, 0.6, 0.8
τavgDP , threshold on average DP 0, 0.2, 0.4, 0.6, 0.8

0.90, 0.92, 0.94, 0.96, 0.98
τDC , threshold on description complexity 2, 4, 5, 6, 8, 10
kl, maximum number of challenge templates
with the same chain join

2, 4, 6, 8, 10

ka, maximum number of challenge tem-
plates with the same response attribute

2, 4, 6, 8, 10

df , probability decreasing factor 0.1, 0.3, 0.5, 0.7, 0.9
τp, probability threshold 0.1, 0.3, 0.5, 0.7, 0.8, 0.9

4.1 Simulation Study
We perform a simulation study on the Corporate database to

show that, under natural models of an updater’s knowledge ofa
database, update certificates catch a high percentage of erroneous
updates without imposing an undue burden on updaters; similar re-
sults are observed using TPC-H.

Data preparation: First, we describe how we generate the up-
dates and updaters for the simulation study, and then present the
two models that characterize different types of updaters.

Generating updates: We consider simple record modifications of
the form “UPDATE T SETattr=val’WHEREattr=val”. The
updated tableT and updated attributeattr are randomly selected
from the database. Different valuesval andval’ are randomly
chosen fromVattr, the set of all values ofT.attr and other at-
tributes linked toT.attr via foreign key relationships. Also, each
update is associated with its intended value,vali ∈ Vattr. For a
correct update,val=vali; for an incorrect update,val 6=vali.

Updater models: It is natural to consider updaters who only know
information about the records they update, and joinable records
from other tables. Among such updaters, we categorize them in our
study intolocal-schema-awareandglobal-schema-aware, depend-
ing on whether the extent of an updater’s knowledge about a join-
able record depends on the length of its join path from the updated
table or not. Thelocal-schema-awaremodel characterizes updaters
whose knowledge of the database is centered around the updated ta-
ble: the longer the chain join needed to reach a joinable record, the
less likely the updater is to know about it. In contrast, theglobal-
schema-awaremodel characterizes updaters whose knowledge of
joinable records is not correlated with their distance fromthe up-
dated table. Further, different updaters may know about different
subsets of attributes in the schema.

We generate updater knowledge in a probabilistic manner. In
the two updater models, we utilize the same join tree as used by the
challenge-identification algorithms (e.g., Fig.3), to assign probabil-
ity values to nodes and attributes in the join tree, denotedP (Nij)
andP (Nij .attrk), respectively, whereNij is thejth node on level
i, and contains attributeattrk. N0 denotes the updated table (the
root of the join tree) andN0.attr is the updated attribute. For
a given parameterdf (decreasing factor), the probabilities are as-
signed as follows.

1. P (N0) = P (N0.attr) = 1.0, in both updater models.
2. ∀Nij that is a child ofN(i > 0), P (Nij) is uniformly drawn

from the range[df i, P (N)], in the local-schema-aware model.
P (Nij) = 1.0 in the global-schema-aware model.

3. ∀attrk ∈ Nij , P (Nij .attrk) is uniformly drawn from the
range[df i+1, P (Nij)], in the local-schema-aware model.
P (Nij .attrk) is uniformly drawn from the range[df, P (Nij)]
in the global-schema-aware model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(a) τp

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(b) df

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(c) k

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(d) τavgDP

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(e) τDC

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(f) kl

Figure 4: Local-schema aware: effect of various parameters

In both models,an updater is able to answer a challenge only if
she knows every attribute in the select clause of the challenge with
a probability higher than a specific threshold parameterτp.

Metrics: We use precision and recall of update verification as the
performance metrics in the simulation study.Precisionis defined
as the fraction of the verified updates that are correct; thiscaptures
the effectiveness of update certificates in preventing unintended up-
dates.Recall is defined as the fraction of correct updates that are
verified; this captures the issue of ease of use of update certificates,
as a correct update is not verified only if an updater’s knowledge is
insufficient to answer any presented challenge.

In our simulation study, we use average precision and recallfor
1,000 updates consisting of half correct and half incorrectupdates.
Tbl. 2 lists the parameter values used in the simulation study. We
show the results of MINIMIZE DC and MAXIMIZE DV – the other
results are sandwiched between these two.

Results with Local-Schema-Aware Model: Fig. 4 shows the re-
sults of our simulation study on the Corporate data with the local-
schema-aware model. The dotted lines show the precision (0.5)
without using any update certificates. By applying the update cer-
tificates, the precision stays above 0.9 for both MINIMIZE DC and
MAXIMIZE DV, across the entire range of parameters. This demon-
strates that the certificate mechanism is very effective in reducing
unintended updates. Hence, we focus the rest of the discussion on
recall, which is a measure of ease of use of the certificates.

We observe in Fig. 4 that MAXIMIZE DV generally results in
lower recall than MINIMIZE DC, especially whenτDC is large. Re-
call from Sec. 3.3 that MAXIMIZE DV favors challenge templates
with longer chain joins and results in challenge templates with
higher description complexity. In the local-schema-awaremodel,
updaters have lower ability to respond to challenges with long joins.
However, with suitable parameter values, MAXIMIZE DV can get
similar recall to that of MINIMIZE DC.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(a) probability thresholdτp

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9

PrecisionMINIMIZEDC
RecallMINIMIZEDC

PrecisionMAXIMIZE DV
RecallMAXIMIZE DV

(b) decreasing factordf

Figure 5: Global-schema-aware: effect of various parameters

Probability thresholdτp: Fig. 4(a) shows the results when we vary
τp. Given a fixed probability of knowing an attribute, an updater’s
ability to answer challenges involving the attribute, and hence the
recall, decreases with a higherτp. It is notable that even with a high
thresholdτp = 0.7, about 95% of correct updates are verified.

Decreasing factordf : Fig. 4(b) shows the results as we varydf .
With a smallerdf , the probability of knowing a node in the join tree
decreases faster with the depth of the node. Therefore, the recall
increases significantly with largerdf . Whendf = 0.7, the recalls
are higher than 0.95. Whendf = 0.5 (the default value used), the
recalls are about 0.8 and 0.7 for MINIMIZE DC and MAXIMIZE DV
respectively; this models an updater with very limited knowledge,
since the probability of knowing an attribute after one and two joins
can be as low as 0.25 and 0.125, respectively; it is chosen to stress-
test the ease of use issue.

Number of challengesk: Fig. 4(c) shows the results as we vary
k. Whenk = 1, the recall of MINIMIZE DC is about 0.4, which
is the probability of knowing an attribute in the updated table (for
df = 0.5 andτp = 0.8). For MAXIMIZE DV, the recall is close to
0 since the only challenge involves a chain join which is too long
(for τDC = 5) to be known by the updater. With largerk, the recall
increases quickly as many challenges are provided to the updater.

Average DPτavgDP : Fig. 4(d) shows the results as we varyτavgDP .
When τavgDP < 0.9, it does not affect the recall much; when
τavgDP ≥ 0.9, the challenges become more complex, reducing the
recall. Our simulation study also shows thatτminDP has a similar
effect asτavgDP ∈ [0.9, 1.0] (figure omitted).

Description complexityτDC : Fig. 4(e) shows the results when we
vary τDC . WhenτDC = 2, the choices of challenge templates
are quite limited and almost the same for both algorithms. There-
fore, both MINIMIZE DC and MAXIMIZE DV have low recall and
high precision. WhenτDC ≥ 6, the recall of MAXIMIZE DV de-
creases significantly, since largerτDC allows complex challenges
with longer joins in MAXIMIZE DV.

Join-level diversitykl: Fig. 4(f) shows the results when we vary
kl. With the smallestkl, there are at most 2 challenges available
from the same node, so the average complexity of the challenges
is high and the recall is low. With a higherkl, more challenges
are available from each node, so the diversity is lower, but we get
a higher recall because the challenges contain fewer joins and the
average complexity of the challenges is lower. The attribute-level
diversityka has a similar effect askl; hence we omit the figure.

Results with Global-Schema-Aware Model: To highlight a key
difference between the updater models, Fig. 5 shows resultsfor
join-challenges under the global-schema-aware model, when only
a few challenges (k = 5) are provided. With the global-schema-
aware model, the precision and recall show similar trends asa func-
tion of the various parameters,except thatMAXIMIZE DV consis-
tently outperformsM INIMIZE DC. For reasons of space, we only
show results forτp anddf .

 0.1

 1

 10

100KB 1MB 10MB 100MB

ve
rif

ic
at

io
n

tim
e

(m
s)

database size

online verification
full materialization

(a) verification time

 0.01

 0.1

 1

 10

 100

 1000

100KB 1MB 10MB 100MB

si
ze

 o
f m

at
er

ia
liz

ed
 ta

bl
es

 (
M

B
)

database size

full materialization

(b) size of materialized tables

Figure 6: Verification overhead w. no and full materialization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

full mater-
ialization

2 4 6 8 10 online ver-
ification

ve
rif

ic
at

io
n

tim
e

(m
s)

τpm

(a) verification time

 0

 2

 4

 6

 8

 10

full mater-
ialization

2 4 6 8 10 online ver-
ification

si
ze

 o
f m

at
er

ia
liz

ed
 ta

bl
es

 (
M

B
)

τpm

(b) size of materialized tables

Figure 7: Verification overhead w. partial materialization.

With a more global knowledge of the schema, MAXIMIZE DV
shows the added advantage of diversity, providing challenges in-
volving different attributes and tables, giving more choice to the
updaters. An updater who does not know a particular table will
not be prevented from submitting her update with challengesfrom
other tables. Note that the lower recalls in Fig. 5 compared to Fig. 4
are due to the smaller value ofk used for the results of Fig. 5.

4.2 Certificate Verification
Certificate verification is an added computational cost incurred

by the database system when supporting update certificates.For
this reason, the efficiency and overhead of verifying certificates is
an important consideration, which we investigate next.

We consider three methods:online verification, executing the
challenge query on original tables;full materialization, material-
izing the CR-tables (see Sec. 2.2) and verifying using the materi-
alized tables; andpartial materialization, materializing only “crit-
ical” (which we define shortly) CR-tables, verifying on the mate-
rialized tables when such tables exist and on original tables other-
wise. We take the union of the challenge templates returned by the
four algorithms for each attribute in TPC-H and report (1) the av-
erage space for storing the materialized tables for all templates for
an attribute, and (2) the average time for verifying on each possi-
ble update value using each template. In our implementation, we
build indexes only for key and foreign-key columns; we storeeach
materialized CR-table as a “covering index”, which takes about the
same space as the normal table but accelerates access to data.

Full vs no materialization: Fig. 6 shows the time and space for on-
line verification and with full materialization on TPC-H data of dif-
ferent sizes. We see that without materialization, verification time
increases linearly with the database size; on a 100MB database,
it took 4.75ms on average. The maximum verification time (not
shown) takes 2-8 times as much as the average time.

On the other hand, when we materialize all CR-tables, the aver-
age verification time is less than 0.2ms for all databases with var-
ious sizes, and the maximum verification time is less than 3 times
the average, which is much faster than online verification. How-
ever, the space required for storing all materialized CR-tables for
one update column grows with the size of the database, and can
take as much space as the original database.

Partial materialization : As a trade-off between time and space,

 0

 50

 100

 150

 200

 250

 1 4 16 64 256

se
ar

ch
in

g
tim

e
(m

s)

k

MINIMIZEDC
MINIMIZEDCHIGHDV

MAXIMIZE DV
REDUCEDDCHIGHERDV

(a) execution time

 0

 10

 20

 30

 40

 50

 1 4 16 64 256

of

 c
ha

lle
ng

es
 fo

un
d

k

MINIMIZEDC
MINIMIZEDCHIGHDV

MAXIMIZE DV
REDUCEDDCHIGHERDV

(b) number of returned templates

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 4 16 64 256

di
ve

rs
ity

k

MINIMIZEDC
MINIMIZEDCHIGHDV

MAXIMIZE DV
REDUCEDDCHIGHERDV

(c) diversityDV (Q)

 0

 1

 2

 3

 4

 5

 1 4 16 64 256

av
er

ag
e

si
ze

k

MINIMIZEDC
MINIMIZEDCHIGHDV

MAXIMIZE DV
REDUCEDDCHIGHERDV

(d) average sizeavgDC(Q)

Figure 8: Results of various algorithms on Corporate.

we can materialize only some of the CR-tables. Selecting views for
materialization to accelerate query answering has been well studied
in the literature [10]. Here we explore a simple strategy, where we
materialize a CR-tableT if verification time on original tables

verification time on materializedT ≥ τpm, where
τpm is a given threshold.

Fig. 7 shows the time and space cost on a 10MB TPC-H database
as we variedτpm (we skip the results for 100MB TPC-H database
as it shows similar trends). Whenτpm = 0, we materialize all CR-
tables; whenτpm = 12, we materialize no table as there does not
exist any CR-table that can improve the efficiency by 12 times. As
expected, the larger isτpm, the higher is the time cost for certificate
verification and the lower is the space cost for CR-table material-
ization. As an example, whenτpm = 5, we can reduce the time
by 78% compared with online verification, and reduce the space by
29% compared with full materialization.

4.3 Identifying Challenge Templates
In this section, we show that databases have many good chal-

lenges, and our algorithms can identify them efficiently.

Results on Corporate data: We first examine results of various
algorithms on the Corporate database. Fig. 8 shows the execution
time, the average number of returned challenge templates, their av-
erage size and diversity as we varyk. We have the following ob-
servations (they hold when we vary the other parameters as well).

• The algorithms run fast: even when we require top-200 tem-
plates, with the default setting, all algorithms finish in 0.25
seconds. MINIMIZE DC and MINIMIZE DCHIGHDV typi-
cally have the same running time, as they explore the same
set of nodes in the join tree. Whenk is small, REDUCEDD-
CHIGHERDV is similar to MINIMIZE DC and MINIMIZE D-
CHIGHDV. Whenk ≥ 20, REDUCEDDCHIGHERDV and
MAXIMIZE DV often have similar running times: even though
they explore the join tree in different directions, they endup
checking most of the nodes in the join tree. The former two
algorithms typically run faster than the latter two, as the lat-
ter two obtain higher diversity at the cost of exploring more
complex challenge templates.

• For diversity of the results, in decreasing order the four algo-
rithms are ranked as MAXIMIZE DV, REDUCEDDCHIGH-
ERDV, M INIMIZE DCHIGHDV, M INIMIZE DC, consistent
with our intuitions.

• For complexity of the results, in increasing order the algo-

10-1

100

101

102

103

104

105

100KB 1MB 10MB 100MB 1GB

se
ar

ch
in

g
tim

e
(s

)

database size

MINIMIZEDC
MINIMIZEDCHIGHDV

MAXIMIZE DV
REDUCEDDCHIGHERDV

Figure 9: Effect of size

 0

 4

 8

 12

 16

 0 1 2 3 4

se
ar

ch
in

g
tim

e
(s

)

skew factor z

MINIMIZEDC
MINIMIZEDCHIGHDV

MAXIMIZE DV
REDUCEDDCHIGHERDV

Figure 10: Effect of skew

rithms are ranked as MINIMIZE DC/MINIMIZE DCHIGHDV
(same size for these two algorithms), REDUCEDDCHIGH-
ERDV, M AXIMIZE DV, also consistent with our intuitions.

As k increases, typically the execution time, the number of re-
turned templates, their diversity and average size all increase. This
is because the higher thek, the more challenges returned (so of-
ten higher diversity), the larger search space to explore (so higher
execution time), and the less flexibility of discarding a template
to reduce complexity (so higher average size). The only excep-
tion is that whenk is increased from 1 to 10, the average size of
MAXIMIZE DV’s results decreases. This is because to maximize
diversity, MAXIMIZE DV starts with nodes with longer join paths;
whenk is increased from 1 to 10, MAXIMIZE DV is able to add
templates with shorter joins (see Ex. 5), but whenk is increased
further, MAXIMIZE DV has to select templates from the same nodes
to meet the requirement, so the average size goes up slightlyagain.
Finally, note that measures for different algorithms converge when
k = 200, as there are not enough results (on average 45.3 templates
are returned) so all methods explore the full search space.

Results on TPC-H data: We next experiment on TPC-H and in-
vestigate the effect of data size and skew on our algorithms.We ex-
amine each update attribute in tableCUSTOMER (which has many
attributes and can form both (key, foreign key) join and (foreign
key, key) join with other tables) and report average results.

We first generate uniform data and vary the size of the data from
100K to 1G. Fig. 9 reports the execution time. We have the follow-
ing observations. (1) The efficiency of most of our algorithms is
acceptable, since challenge identification is performed offline: on
1G data, MINIMIZE DC, MINIMIZE DCHIGHDV and REDUCED-
DCHIGHERDV on average terminated in about 60 minutes, and
MAXIMIZE DV terminated in about 150 minutes; in addition, the
execution time increases linearly with the size of the data.MAXI -
MIZEDV takes longer time because it checks DP for certificate tem-
plates with more joins. (2) Unlike on Corporate data, the execution
time of REDUCEDDCHIGHERDV is close to that of MINIMIZE DC
and MINIMIZE DCHIGHDV in most cases. This is because each
table in TPC-H has a large number of attributes and the data are
uniform, leading to more 1-attribute template results and so RE-
DUCEDDCHIGHERDV does not need to go deep in the join tree.
(3) The Corporate database has a much lower execution cost than
the smallest TPC-H data, showing that schema complexity affects
the join-tree structure and the number of templates, and hence the
execution time. We also measured the diversity and average size of
the returned results (not shown), and observed that the results are
quite stable, conforming to our intuition that, with uniformly dis-
tributed data, size should not affect result diversity and complexity.

We next generate 1M data with various skews using the tool
in [13]. We vary the skew factorz (the Zipfan distribution) of our
data from 0 (uniform) to 4 and report the results in Fig. 10. Whenz
increases from 1 to 2, there is a jump in execution time for various
methods. Intuitively, when the data is more skewed, theminDP
andavgDP of a challenge template drops; whenz = 2, they drop

to a level that cannot meet the DP thresholds, so we have to explore
more complex challenges. Note that MINIMIZE DC is not affected
much because it favors certificates with more attributes than those
with longer chain joins, which can take shorter time for DP check-
ing; however, if we increasek or τDC , the execution time of MIN-
IMIZE DC would be closer to other methods. We also measured the
diversity and average size of the returned results (not shown), and
observed that the result complexity increases slightly when z in-
creases from 1 to 2 (for the same reason as discussed above), but
the result diversity remains stable.

4.4 Summary of Experimental Evaluation
We summarize our experimental results as follows.

• The use of update certificates successfully prevents most un-
intended updates, across a range of values for the DP param-
eters. Further, for moderate values of the complexity and
diversity parameters, updaters can respond to at least one of
the provided challenges, addressing the ease of use concern.

• Verifying certificates on the database is in general quite ef-
ficient, and we can further reduce the time cost by partially
materializing the CR-tables.

• The challenge-identification algorithms have acceptable effi-
ciency considering that the algorithms are executed offline.

• We have the following algorithm recommendations. When
most updaters are local-schema-aware and complexity of the
returned challenges is important, use MINIMIZE DCHIGHDV
as it minimizes the average complexity, obtains higher diver-
sity than MINIMIZE DC, and is almost as cheap as MINI -
MIZEDC. When most updaters are global-schema-aware and
diversity of the returned challenges is important, use MAX -
IMIZE DV. To balance complexity and diversity, for a mixed
workload of users use REDUCEDDCHIGHERDV.

5. RELATED WORK
Challenge-response techniques are widely used in practicefor

user identification; e.g., when a user needs to reset her password,
she may be asked to provide her mother’s maiden name. Suchuser
identificationis complementary to our problem of database update
validation, and there has been no study of a formal notion of dis-
criminating power of the challenges presented to the user.

Our DP measure to assess discriminating power is similar to fre-
quency based measures (e.g., tf/idf) from Information Retrieval [12].
A key difference is that tf/idf is based on the occurrence frequency
of a value, while DP is based on the frequency of a response value
in the answer to all possible challenge queries. These two measures
can be very different in practice.

Integrity constraints are quite powerful and useful to capture a
class of erroneous updates [14]. For example, functional depen-
dencies (FDs) and inclusion dependencies (IDs) can be used to en-
sure database consistency. Recent work has explored conditional
variants of FDs and IDs to allow for more flexibility in havingthe
constraint hold on a portion of the database, and also make asser-
tions [6]. While these can achieve consistency under updates at a
finer granularity, it is not practical to specify out of existence, ev-
ery conceivable update error due to innocent mistakes, whether one
uses CFDs or some other constraints, as illustrated by Ex. 1.In a
similar spirit, the notion of matching dependencies (MDs) has been
recently introduced [7, 2] as a means for capturing semantics of
records in unreliable relations and in particular to help with record
matching; the motivation for MDs is orthogonal to our work.

Finally, the notion of diversity has gained prominence in many
areas such as recommender systems and query answering. [8] stud-

ies diversity from an axiomatic perspective and contains pointers to
other works on diversity. Our notion of diversity is in the context
of challenges, which are queries. To our knowledge, there has been
no prior work on diversifying SQL queryexpressions.

6. CONCLUSIONS AND FUTURE WORK
The problem of ensuring that updates do not introduce errorsinto

a database is an old and vexing problem, and existing techniques
based on integrity constraints are inadequate to detect a large vari-
ety of errors that arise due to carelessness on the part of updaters.
In this paper, we advocate the use ofupdate certificates, a novel
approach to detect erroneous updates that are unintended mistakes.
We characterize good certificates as those with highdiscriminating
power, low description complexity, and highdiversity. We present
algorithms to analyze databases and identify good challenges, and
experimentally show that databases tend to have many good update
certificates, these can be efficiently identified and verified, and are
very effective in catching erroneous updates.

Our paper establishes the foundations of a novel approach toad-
dress the problem of erroneous updates in databases, but many in-
teresting questions remain. A challenging problem is how toreduce
the effort of updaters for multiple updates in an update transaction,
without sacrificing the ability to detect erroneous updates. Another
problem is to efficiently revise challenge templates as the database
instance evolves in response to updates. Understanding howour
techniques can work with conditional integrity constraints to com-
prehensively address the critical problem of erroneous updates is
also an interesting direction of future work.

Acknowledgements
We would like to thank the anonymous reviewers for their many
suggestions, which helped improve the quality of our paper.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules in large databases. InVLDB, pages 487–499, 1994.
[2] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E.

Whang, and J. Widom. Swoosh: a generic approach to entity
resolution.VLDB J., 18(1):255–276, 2009.

[3] L. Berti-Equille and T. Dasu. New directions in data quality mining.
In KDD, 2009.

[4] T. Dasu and T. Johnson.Exploratory data mining and data cleaning.
John Wiley, 2003.

[5] Ibm db2 for i.
http://www-03.ibm.com/systems/i/software/db2/sqldata.html.

[6] W. Fan. Dependencies revisited for improving data quality. In PODS,
2008.

[7] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching
rules.PVLDB, 2009.

[8] S. Gollapudi and A. Sharma. An axiomatic approach for result
diversification. InWWW, 2009.

[9] N. Good, J. Grossklags, D. K. Mulligan, and J. A. Konstan.Noticing
notice: a large-scale experiment on the timing of software license
agreements. InCHI, 2007.

[10] H. Gupta and I. S. Mumick. Selection of views to materialize in a
data warehouse.TKDE, 17(1):24–43, 2005.

[11] M. Mannan and P. C. van Oorschot. Security and usability: The gap
in real-world online banking. InNew Security Paradigms Workshop
(NSPW), Sept.18-21 2007.

[12] G. Salton and M. J. McGill.Introduction to modern information
retrieval. McGraw-Hill, New York, 1983.

[13] Tools for controlling data skew of TPC-H data from Microsoft
Research.
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/.

[14] J. D. Ullman.Principles of Database and Knowledge-Base Systems,
Volumes I and II. Computer Science Press, 1989.

