
Data Integration with Dependent Sources

Anish Das Sarma
Yahoo Research

anishdas@yahoo-inc.com

Xin Luna Dong
AT&T Labs–Research

lunadong@research.att.com

Alon Halevy
Google Inc.

halevy@google.com

ABSTRACT
Data integration systems offer users a uniform interface toa set of
data sources. Previous work has typically assumed that the data
sources are independent of each other; however, in scenarios in-
volving large numbers of sources, such as the Web or large enter-
prises, there is aneco-systemof dependentsources, where some
sources copy parts of their data from others.

This paper considers the new optimization problems that arise
while answering queries over large number of dependent sources.
These are the (1)cost-minimization problem: what is the minimum
costwe must incur to get all answer tuples, (2)maximum-coverage
problem: given a bound on the cost, how can we get the maximum
possible coverage, and (3) thesource-ordering problem: for a set of
data sources, what is thebestorder to query them so as to retrieve
answer tuples as fast as possible.

We consider these optimization problems under several costmod-
els and we show that, in general, they are intractable. We describe
effective approximation algorithms that enable us to solvethese
problems in practice. We then identify the causes of the highcom-
plexity and show that for restricted classes, the optimization prob-
lems can be solved in polynomial time.

1. INTRODUCTION
Data integration has received significant research attention and

recently enjoyed commercial success [11, 12, 13]. Data integra-
tion systems offer users a uniform interface to a set of data sources.
The user formulates a query over a mediated schema, and the sys-
tem uses a set of semantic mappings to reformulate the query over
the relevant set of data sources. The data integration system then
combines the answers from the sources appropriately.

Data integration systems typically assume data sources areinde-
pendent of each other. However, in scenarios involving large num-
bers of data sources, such as the Web or large enterprises, there
is aneco-systemof dependentsources, where some sources copy
parts of their data from others [3]. The copying sources may be
aggregators or have some data sharing agreement with the original
source. A data integration system can benefit significantly from be-
ing aware of dependencies between its data sources. For instance,
the system can save resources by not querying data sources that are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

unlikely to add many new answers to the query, or order the access
to the sources to maximize the distinct answers it fetches early on.
As another example, searching for “France Capital” on Google re-
turns the answer “Paris” with a total number of data sources that
corroborate this fact (without knowing whether mentions ofthese
facts on the sources are independent); by considering dependencies
between these data sources, a more authoritative result could be re-
turned. This paper considers the new optimization problemsthat
arise when answering queries over collections of dependentdata
sources.

EXAMPLE 1.1. We extracted information about computer sci-
ence books provided by searchingAbeBooks.com, a listing-service
website that integrates information from online bookstores. The
collection includes data from 877 bookstores (sources), and by ap-
plying techniques in [6], we found copying between 465 pairsof
sources. There were 314 copiers, and among them, 202 copy from
a single source, 26 copy all tuples provided by the original sources,
30 copy over 90% of their data from other sources, and 100 copy
at least half of their data from others.

Now consider deciding the correct list of authors for each book.
As different sources can provide conflicting information, along with
each answer we would like to return the number of sources thatsup-
port the answer, and take a vote. To avoid bias, we want to count
only sources that independently support the answer and ignore the
copied data. Hence, we can issue a query that returns all indepen-
dently provided tuples.

When we answer such a query, we can ignore copiers that copy
all data from others without changing the results; we can in addi-
tion ignore sources that copy most of their data, so further improve
the efficiency without sacrificing the accuracy of the results much.
In an online query answering system where we return answers as
they are generated, we may wish to order the sources such that
copiers with little independent contributions are queriedlast. 2

1.1 The IDS System
We are building a system called IDS (Integrating Dependent Sources),

for integrating a large number of data sources, where dependencies
may exist between sources. We briefly describe the components in
the architecture of the IDS system (depicted in Fig.1) and identify
key problems we need to solve to build such a system.

Upon receiving a user query, IDS answers the query in three
steps. First, theSource Selectioncomponent picks anoptimalsub-
set of sources to visit for returning all answers with the minimal
cost, or the maximum number of answers with the given resource
limit. This is because in an IDS system, it is often not necessary
or feasible to visit all sources, as a subset of sources may have al-
ready covered all answers or we have only limited resources.Sec-
ond, theSource Ordering component orders the sources (either

Source Selection

C
o

v
e

ra
g

e

C
o

m
p

u
ta

ti
o

n

C
o

n
fi

g
u

ra
ti

o
n

Q

D
a

ta
 S

o
u

rc
e

s

C
o

st

C
o

m
p

u
ta

ti
o

n

Source Ordering

Query Answering

C
o

v
e

ra
g

e

C
o

m
p

u
ta

ti
o

n

C
o

n
fi

g
u

ra
ti

o
n

D
a

ta
 S

o
u

rc
e

s

C
o

m
p

u
ta

ti
o

n

Answer

Figure 1: Architecture for IDS (Integrating Dependent Sources).

all sources or the ones returned by source selection) in a waysuch
that the system can obtain answers most quickly. This step can be
skipped in offline query answering, but would be critical in an on-
line query answering scheme where we return answers to the user
as they arrive from the sources, suitable for many applications such
as vertical search. Third, theQuery Answering component visits
the selected sources in the specified order, takes the union of the
answers, and returns to the users.

Three components are required for the above process. First,the
Coverage Computationcomponent computes the fraction of an-
swers a set of sources cover for a particular query. Second, the
Cost Computation component computes the cost of querying a
set of sources, taking into consideration the number of sources in
the set, the size of each source, connection cost, latency, and so
on. Finally, theConfiguration component identifies dependencies
between data sources and is also responsible for traditional data
integration configuration tasks such as schema mapping.

This paper addresses the following fundamental challengesthat
are needed to build the services described above, and lays the the-
oretical foundation for building the IDS system.

1. Coverage:what is the fraction of the overall set of answers
that can be computed by a subset of sources.

2. Cost minimization:what is the minimal set of sources from
which we can retrieve all the answers to a query.

3. Maximum coverage:given a resource bound, what is the set
of sources for obtaining the maximum set of answers.

4. Source ordering:what is the best ordering of the data sources
that provides more answers quickly.

1.2 Summary of Contributions
To address the above problems, we model dependency between

sources with a directed acyclic graph whose nodes are the data
sources. An edge from sourceS1 to S2 indicates thatS1 copies
from S2 (S1 may have additional data that is not inS2). We distin-
guish two versions of the underlying copy model: the first assumes
that tuples are copied at random and applies when we have no infor-
mation about how the sources are related; the second assumesmore
information such as a selection predicate over the copied source.
We assume that dependencies are given as input. There are multiple
ways for obtaining such information; for example, [6] showshow
one can discover dependency between sources, decide the copy-
ing direction, and compute percentage of data that are copied, and
provenance annotation may contain information such as selection
predicates in copying.

The goal of query answering in this context is to find allinde-
pendentanswers. Roughly, this means we do not want to get the
same answer fromS1 andS2 if S1 copied the data fromS2.

We begin by identifying thecoverageproblem as a core building
block for the optimization problems. The coverage of a subset of

sourcesT is the expected percentage of the overall set of indepen-
dent answers that can be computed fromT . We establish the fol-
lowing results about coverage. In the case of the random-copying
scenario, we show that coverage is, in general, #P-complete1 in the
total number of input data sources. We describe a randomizedal-
gorithm that yields an arbitrarily accurate estimate of thecoverage
in polynomial time, and we identify a subclass of the problemthat
gives an exact polynomial-time solution. In the scenario where we
have more information on how tuples were copied, we show that
the complexity of the coverage problem is lower.

We consider thecost-minimizationproblem and themaximum-
coverageproblem under multiple cost models, including thelinear
cost model, which counts the sizes of the accessed sources, and the
number-of-sources cost model, which does not distinguish between
the sources’ sizes. We show that in the general case both problems
are intractable under these cost models, and show that we canfind
an approximation in polynomial time. Moreover, we show thatthe
number of data sources that a source can copy from and the ability
to copy a fraction of the data are critical to the complexity of the
above problems. In fact, if each data source can copy either all or
no tuples and from at most one other data source, both problems are
PTIME for the number-of-sources model. For thesource-ordering
problem we show that there is an efficient 2-approximation ofthe
optimal ordering.

Note that although our primary motivation for this work was data
integration, the problems and techniques we study are also rele-
vant for other applications, such as query answering over partially-
replicated data [1, 19]. Partial replication among data sources can
be captured using dependencies, and we are interested in finding
sets of sources that provide required portion of the data.

For the rest of the paper, Section 2 formally defines the prob-
lem. Section 3 studies the coverage problem. Section 4 considers
the cost-minimization and maximum-coverage problems. Section 5
discusses the source-ordering problem. Section 6 shows howour
results extend to more complex queries. Proofs for all results are
presented in Appendix A.

2. PROBLEM DEFINITION
We begin by formally defining the dependency model and the

optimization problems we consider. Consider a set of data sources
S = {S1, . . . , Sn}. We refer to the contents of sources as tu-
ples, each modeling an object (e.g., books, movies, job listings)
and providing values for a set of attributes. The names of theat-
tributes can vary from one source to another; we assume that we
have already reconciled heterogeneity with schema-matching tech-
niques [22] and query answering starts with query reformulation.

Dependency between sources:Our goal is to capture the fact that,
in addition to having original data of their own, data sources of-
ten copy data from others. In general, a copier may copy data by
performing a query over another source and adding the resultof
that query to its database; in practice, however, one may notknow
the queries used to copy data and can only estimate the fraction of
tuples that are copied. We use the followingdependency DAGto
record the copying relationships between sources.

DEFINITION 2.1 (DEPENDENCYDAG). The dependencies be-
tween the set of data sourcesS = {S1, . . . , Sn} are given by a
DAGG(S) = (V,E) where

• for every sourceSi ∈ S , there is a node inV, associated

1#P-completeness corresponds to the complexity class of hard counting
problems [23].

with a numbern(Si) specifying the number of tuples inde-
pendently added bySi

2, and
• a directed edgeSi → Sj denotes thatSi copies tuples from

Sj , and the edge is associated with an “annotation” describ-
ing tuples copied bySi fromSj . 2

There are at least three kinds of annotations for copying edges
and accordingly we have three types of dependency graphs: (1)
Fraction-copying DAG: the annotation onSi → Sj is a fraction
fi,j (calledselectivity) denoting the fraction of tuples copied bySi

from Sj ; (2) Select-copying DAG: the annotation onSi → Sj is a
select condition composed of predicates of the formA op a, where
A is an attribute inSj , a is a constant, andop is one of=, <, ≤,
>, ≥, and all tuples inSj satisfying the select condition are copied
into Si; (3) Histogram-copying DAG: the annotation onSi → Sj is
a histogram specifying the copying fraction for each range of possi-
ble attribute values. Results in this paper can be easily extended for
a hybrid case with different types of annotations in the dependency
graph, and also for the case where a copier copies by individual val-
ues rather than by tuples. Note that we leave projection in copying
for future work, as estimating the size of projection results is known
to be hard because of the duplicate-elimination problem [5].

When the graph has an edgeSi → Sj , we refer toSi as acopier.
We say thatSi is a full-copying copier if it copiesall data from
the original sources whenever it copies anything. In this case, we
call the dependency graph afull-copying DAG. We say thatSi is a
single-sourcecopier, if it is a full-copying copier and copies from
a single source. We assume no-loop copying (common in practice)
and copying direction has been given as input (from provenance in-
formation or by applying techniques in [6]), thus restrict ourselves
to a DAG.

We assume that each tuple is annotated with the source from
which it was copied, or marked as independently added. That is,
tuplesare of the form(t, S) wheret is the tuple value, andS is the
source that independently providedt. We assume sources aresets
of tuples. Hence, even if(t, S) is obtained by copying from multi-
ple sources, only one copy of the tuple is retained in the source.

The total number of tuples in a sourceSi, denoted by|Si|, can
be estimated by its dependencies and independently added tuples;
however, as we show shortly, this estimation is non-trivial.

EXAMPLE 2.2. Fig.2(a) shows an example dependency graph
for 6 sources. Among the sources,S1 andS2 each independently
provides 100 tuples.S3 andS4 each copies0.5 fraction of tuples
from S1 and also independently provides 50 tuples each. Sources
S5 andS6 copy from multiple sources (S5 fromS1 andS2, andS6

fromS2, S3, andS4) without independently providing data. 2

Query answering: For most of the paper we first present our so-
lutions for one prototypical query: find all the tuples from the
sources, denotedQ(S). This prototypical query already unveils
many challenges that arise in our context, and isolates the com-
plexity of our problems from that of answeringQ. In practice, the
majority of queries tend to ask for all tuples that satisfy certain
predicates. Section 6 describes an extension of our solutions for
queries with select, project, join predicates.

We define the semantics of a query as the union of answers from
all sources. Formally, given a sourceSi, we denote byQ(Si) the
set of answers fromSi (either independently added or copied). We
defineQ(S) as∪Si∈SQ(Si), where∪ is the set union ofQ(Si).
Recall that each tuple,(t, S), is annotated by the source that inde-
pendently provides it. Hence, if tuplet is independently provided
by S1 andS2, both(t, S1) and(t, S2) will be in the answer.
2Changed values are also considered as independently provided.

Our goal is to take advantage of the dependency between sources
to computeQ(S) efficiently. Hence, we try to answer the query (or
get a nearly complete answer) from a subset of sources. We denote
by |Q(T)| the total number of answer tuples returned by a subset
T ⊆ S of sources. WhenQ is the identity query, we use〈T 〉 and
|Q(T)| interchangeably.

Cost models:Given a setT of data sources, we consider the fol-
lowing variations on the cost model and show that they have subtle
effects on the complexity results. Our results can be easilyextended
to the case when we need to combine the models (e.g., querying
each source incurs a constant connection cost and a cost propor-
tional to the size of the data).

1. Linear Cost Model (LCM): We denote by|Si| the num-
ber of tuples inSi. The cost of queryingT is c(T) =
P

Si∈T |Si|. This model applies when data are already stored
locally and thus performing the union can be done in near-
linear time in the size of the answers returned from each data
source (and certainly in linear time in the number of I/Os) us-
ing either a hash table or an ordered index; it can also capture
the bandwidth usage in case data are stored at each source.

2. Number-of-Sources Cost Model (NSCM):We denote by
|T | the number of sources inT andc(T) = |T |. Such a
model applies when the system is being charged for every
query over any of the sources.

3. Arbitrary Source Cost Model (ASCM): Here we assume
each sourceSi is associated with an arbitrary costci incurred
in querying it. Hence,c(T) =

P

Si∈T ci. This model ap-
plies when the system is charged on different sources differ-
ently.

Coverage: Given a subset of sourcesT , we would like to define
thecoverageof T w.r.t. S as the expected value of the fraction of
answers toQ(S) that we can obtain fromT .

DEFINITION 2.3 (COVERAGE PROBLEM). Given a setS of
data sources, a dependency graphG(S), and a subsetT ⊆ S of
sources, compute the expected value of|Q(T)|

|Q(S)|
. 2

In certain cases, such as when we know only copying fractions(so
we have a fraction-copying DAG),|Q(T)|

|Q(S)|
cannot be uniquely de-

termined byG(S), and hence we are interested in obtaining the
expected value of|Q(T)|

|Q(S)|
. The coverage problem will play an im-

portant role in the other problems we consider in the paper.

Optimization problems: We now formally define our optimiza-
tion problems, given a cost modelc.

The cost-minimization problemtries to find a minimal set of
sources that still yields all the answers to the query:

DEFINITION 2.4 (COST M INIMIZATION PROBLEM (CMP)).
Given a queryQ, a setS of data sources, and a dependency graph
G(S), find a subsetT ⊆ S such that

1. Q(T) = Q(S);
2. for anyT ′ ⊆ S , if Q(T ′) = Q(S), thenc(T ′) ≥ c(T). 2

The maximum-coverage problemtries to find the best answer
(measured in number of tuples) that can be obtained with a fixed
cost limit.

DEFINITION 2.5 (MAXIMUM COVERAGE PROBLEM (MCP)).
Given a queryQ, a setS of data sources, a dependency graph
G(S), and allowed costCmax, find a subsetT ⊆ S such that

S
1

(100)

S3
(50)

S4
(50)

S5
(0)

S
6

(0)

.5
.5

1 1

11

S
2

(100)

.8

S
0

S1 S2 S3

S4 S5

S
f

e1 e2
e3

e6e5e4

e7 e8

(a) (b) (c) (d)

Figure 2: (a) An example dependency graph. Each node is marked with thesource it represents and the number of independent tuples added by
that source; each edge is marked with the fraction of data being copied. (b) An example of Limited Coverage Problem. (c) Input dependency graph in
Example 3.8: each edge is associated with a fraction of 1 and so we omit the fractions; the marked nodes are those considered in computing coverage
of {S4, S6}. (d) An example dependency graph with selection predicateson each node. The graphs on the right show two graphs constructed by
restricting to specific combinations of attribute values.

1. c(T) ≤ Cmax;
2. for anyT ′ ⊆ S, if c(T ′) ≤ Cmax, then|Q(T ′)| ≤ |Q(T)|. 2

The source-ordering problemtries to find the optimal order of
sources in which to execute the query, so we return query answers
as quickly as possible. Intuitively, if we plot the curve of the num-
ber of tuples returned as we query more sources, we want to max-
imize the area under the curve. Formally, letΠ be a permutation
of the l data sources, whereΠ(j) denotes thejth source in the
permutationΠ. We define the area below a curve that represents
answering the query with respect to permutationΠ as

AQ(Π) =

l
X

i=1

c({SΠ(i)}) · |Q(∪i
j=1{SΠ(j)})|.

The source ordering problem can be defined as follows.

DEFINITION 2.6 (SOURCEORDERING PROBLEM (SOP)).
Given a queryQ, a set of sourcesS = {S1, . . . , Sl}, a dependency
graph G(S), find a permutationΠopt of {1, . . . , l} such that for
any other permutationΠ, we haveAQ(Πopt) ≥ AQ(Π). 2

EXAMPLE 2.7. Consider the dependency graph in Fig.2(a). For
the cost minimization problem, an optimal solution is{S3, S4, S5}
w.r.t. the linear cost model (with cost 100 + 100 + 200=400). But
this solution is not optimal w.r.t. the number-of-sources cost model,
where the optimal solution is{S5, S6} instead.

Now assume we can query at most one source (the number-
of-sources model) for the maximum coverage problem. Querying
{S6} is the optimal solution, returning 255 tuples in expectation.
Finally, w.r.t. the number-of-sources model the optimal permuta-
tion of sources isS6 → S5 and then the rest of the sources (which
do not add new tuples). 2

3. THE COVERAGE PROBLEM
We begin by considering the coverage problem, which is fun-

damental to all of the other three problems. In Section 3.1, we
consider the case when all we know is the fraction of tuples being
copied between sources. In Section 3.2 we study the case whenwe
know more about the specific set of tuples being copied, specified
by a selection query or a histogram. Table 1 summarizes the results
we establish in this section.

3.1 Copying a fraction of tuples
In practice we often do not have a-priori knowledge of which

tuples are more likely to be copied by which sources. In such cases
we cannot compute a precise coverage, since two copiersS1 and

S2 may copy a fraction of the data of a sourceS3, and we do not
know the overlap between the data they copied. Hence, weestimate
the coverage assuming each tuple is equally likely to be copied.

We establish three main results. First, we show that in gen-
eral, the coverage problem is #P-complete in the number of sources
(Section 3.1.1). Second, we show that a PTIME randomized algo-
rithm yields arbitrarily good approximations of the coverage (Sec-
tion 3.1.2). Finally, we show that the hardness of the problem
comes from allowing a copier to copy only a fraction of the data
from the original source (Section 3.1.3).

3.1.1 The limited coverage problem
Our results rely on identifying a limited version of the coverage

problem and relating it to the computation of the probability of a
boolean formula. In the limited-coverage problem we have a single
original sourcethat independently provides data, a set of sources
that copy from the original source directly or transitively, and a sin-
gle sinksource that is not copied by any other source (see Fig.2(b)
for an example).

DEFINITION 3.1 (LIMITED COVERAGE PROBLEM). The lim-
ited coverage problem considers a set of data sourcesS with depen-
dency graphG(S) = (V, E) that satisfies the following properties:

• there exists just one sourceS0 ∈ S whose nodev0 ∈ V has
no outgoing edges,

• there exists just one sourceSf ∈ S whose nodevf ∈ V has
no incoming edges, and

• onlyS0 independently adds tuples.

The limited coverage problem is to compute
|Sf |

|S0|
assuming equal

probability of a tuple being copied, where|S| is the number of tu-
ples inS. 2

We reduce the limited coverage problem to the problem of find-
ing the probability of a boolean formulaF in DNF form constructed
as follows:

• There is a boolean variable inF for every edge inG. Each
variable is independent of the others. For the variable corre-
sponding toeij = (vi, vj) ∈ E, its probability of beingtrue
is fi,j , wherefi,j is the fraction associated with the edge.

• For each distinct path fromSf to S0 in G (there must exist
such a path) consisting a sequence of edges{e1, . . . , ek}, we
add a conjunct(e1 ∧ . . . ∧ ek) toF .

For Fig. 2(b), the coverage problem can be reduced to computing
probability of the following DNF

(e1 ∧ e4 ∧ e7) ∨ (e2 ∧ e5 ∧ e7) ∨ (e3 ∧ e6 ∧ e8)

Table 1: Summary of results for the coverage problem for various copymodels. LetN be the number of nodes in the input dependency graph,E be
the number of edges,k be the number of attributes on which selection predicates orhistograms are present,b be the maximum number of constants
in predicates for each attribute on each edge when selectionpredicates are present and the maximum number of buckets foreach attribute on each

edge when histograms are present, andL =
log 1

δ

ǫ2
. For some copying models we consider two cases: attributes are independent or correlated.

Fraction-copying Full-copying Select-copying Histogram-copying
Exact Solution #P-complete O(N + E) Attr. Dep: O((2bE)k(N + E)) #P-complete

Attr. Indep: O(bkE(N + E))

(ǫ, δ)-approx O(LNE) N/A N/A Attr. Dep: O((bE)kLNE)
Attr. Indep: O(bkLNE2)

The probability of a boolean formula is defined as the sum of
the probabilities of all its satisfying assignments. The following
lemma provides the key result that we will use next by relating the
coverage problem and the probability ofF .

LEMMA 3.2. The probability ofF constructed as described is

equal to
|Sf |

|S0|
. 2

The lemma below shows that even the limited-coverage problem
is #P-hard. It is proved by a reduction from the #P-complete prob-
lem of counting the number of satisfying assignments in a bipartite
monotone 2-DNF formula [21].

LEMMA 3.3. The limited coverage problem is #P-hard. 2

Finally, we establish the #P-completeness of the general version
of the coverage problem.

THEOREM 3.4. Given a setS of data sources, a dependency
graphG(S), and a subsetT ⊆ S , the associated coverage problem
is #P-complete in the number of sources inS . 2

3.1.2 Approximating coverage
We now show that we can approximate the coverage problem

with a monte-carlo based algorithm. We will establish this claim in
two steps. First, we show that we can give an arbitrarily accurate
estimate for the limited coverage problem. We then show thatwe
can solve the general coverage problem by solving a linear number
of limited coverage problems.

To show the first part, we note that although the formulaF con-
structed in Section 3.1.1 could be of size exponential in|S|, we can
apply the following randomized algorithm to compute the proba-
bility of F in time polynomial in|S|.

0: Input : Dependency graphG for the limited coverage problem.

Output : Estimation of
|Sf |

|S0|
.

1: Topologically sort the nodes inG: S0 first andSf last;
2: SetCL = 0. RepeatL times:
3: For each edgeei,j , include it with probabilityfi,j

(and omit it with probability(1 − fi,j));
4: Decide in the topological order for each source if it is

connected toS0;
5: if (Sf is connected toS0) CL++.

6: return CL

L
.

Algorithm 1: L IMITED COVERAGERandomized algorithm to solve the
limited coverage problem.

Algorithm LIMITED COVERAGE (Algorithm 1) proceeds as fol-
lows. In every iteration, we adjust edges of the dependency graph.
For each original edge with fractionfi,j , we include the edge with
probabilityfi,j and remove it otherwise. We count 1 if there exists
a path fromSf to S0, which can be decided in polynomial time.

This procedure is repeatedL times and the following theorem
shows that we can get an estimation that is arbitrarily closeto the
correct coverage in polynomial number of iterations. Specifically,
for a given allowed errorǫ > 0, we can ensure that the probability
of the error exceedingǫ is at mostδ, when the number of iterations

is more than
log(1

δ
)

ǫ2
. In other words, we can arbitrarily reduce the

probability of exceeding a given error bound in polynomial number
of iterations. Since each iteration is polynomial in the number of

edgesE = |E| of the graph, the total complexity isO(
E log(1

δ
)

ǫ2
).

THEOREM 3.5. If L >
log(1

δ
)

ǫ2
and the randomized algorithm

satisfiesF in CL of theL iterations, thenPr(|Pr(F) − CL

L
| ≥

ǫ) ≤ δ, wherePr(F) is the true probability ofF . 2

Next, we show how to solve the general coverage problem us-
ing the limited coverage problem. Consider the setS of sources
and a subsetT ⊆ S , and our goal is to estimate〈T 〉

〈S〉
. Algorithm

COVERAGE first computes the coverage ofT on tuples indepen-
dently added by each source. Since the contribution of tuples toT
by every source inS is independent of other sources inS , these
contributions are added to obtain the total coverage.

0: Input : S,T ⊆ S, and dependency graphG(S).

Output : Estimation of〈T 〉
〈S〉

.

1: SetD =
P

Si∈S n(Si) andC = 0;
2: foreach (sourceSi ∈ S wheren(Si) > 0 andSi has at least one

descendant inT)
3: Construct the subgraphIGi

of G induced by vertexes
Si andT as follows: withSi as the root, traverse
child node to reach all possible descendants ofSi

in T . Add a special nodeSf in IGi
with edges to each

descendant ofSi in T . Set the fractions associated with
all these added edges to1;

4: Compute the coverageci of {Sf} in IGi
by invoking

Algorithm LIMITED COVERAGE;
5: C = C + ci ∗ n(Si);
6: return C

D
.

Algorithm 2: COVERAGE Randomized algorithm to solve the coverage
problem.

THEOREM 3.6. LetN be the number of sources inS , E be the
number of edges in the input fraction-copying DAGG(S), andL =
log(1

δ
)

ǫ2
. AlgorithmCOVERAGE(Algorithm 2) can give an arbitrar-

ily accurate estimate for the coverage problem in timeO(LNE).
2

3.1.3 A PTIME subclass
Finally, we show that the high complexity of the coverage prob-

lem is due to the fact that each copier can copy only a fractionof
data from an original source. Algorithm FULL COPYINGCOVER-
AGE (illustrated in Ex. 3.8, and described in Algorithm 3) computes

the exact coverage of a set of sources when they are all full-copiers:
if they copy any data from a source, then they copy all of it.

0: Input : S,T ⊆ S, and dependency graphG(S).

Output : 〈T 〉
〈S〉

.

1: ns = 0; nt = 0;
2: for each (S ∈ S) ns+=n(S); //n(S) is #(independent tuples) inS.
3: for each (T ∈ T)
4: Q = {T}; // the queue to traverse
5: while (Q 6= ∅)
6: N = pop(Q);
7: if (N is not visited yet)
8: nt+=n(N);
9: Mark N as visited;

10: PushN ’s parents intoQ;
11: return nt/ns;

Algorithm 3: Algorithm FULL COPYINGCOVERAGE.

THEOREM 3.7. Let N be the number of sources inS , E be
the number of edges in the input full-copying DAGG(S). Algo-
rithm FULL COPYINGCOVERAGE solves the coverage problem in
timeO(N + E). 2

EXAMPLE 3.8. Consider the dependency graph shown in Fig.2(c).
To compute the coverage of{S4, S6}, AlgorithmFULL COPYING-
COVERAGE traverses them and their ancestors in the order ofS4,
S2, S1, S6, S3. The number of independently added tuples by these
nodes is 27. The total number of independent tuples of all sources
is 36. So the coverage is27/36 = .75. 2

3.2 Select copying
In this section we consider cases in which we have more infor-

mation. We start with the case where we know the exact selection
predicates applied in copying. We then extend our results for a
hybrid case, where we have histograms describing the fraction of
tuples copied for each bucket.

3.2.1 Conjunctive predicates
When we know the predicates used for copying, we have a select-

copying DAG as the input. To solve the coverage problem, we
transform the select-copying DAG to a set offull-copying DAGs,
apply the PTIME algorithm FULL COPYINGCOVERAGE on each
result DAG and then aggregate the results. In the transformation,
for each attribute we define a set of disjoint value ranges andeach
result DAG corresponds to a combination of value ranges for dif-
ferent attributes. We specify the SELECTCOPYINGCOVERAGEal-
gorithm rigorously as follows.

1. Suppose we have predicates onk attributesA1, . . . , Ak. For
each attributeAi, i ∈ [1, k], do the following. (1) Collect
and order all constants that appear in the predicatesAi op a
on some edge; the results is{a1, . . . , ali}, whereli is the
number of distinct constants forAi and∀j ∈ [1, li), aj <
aj+1. (2) Consider all2li + 1 possible value ranges:Ai <
a1, Ai = a1, a1 < Ai < a2, Ai = a2, . . ., Ai > ali .

2. CreateP =
Qk

i=1(2li +1) full-copying dependency graphs,
G1, . . . , GP , each corresponding to a combination of value
ranges for thek attributes, denoted byR(Gi), i ∈ [1, P]. Do
the following for eachGi. (1) For each edgee, if R(Gi)
satisfies the predicate fore in G, associate a fraction of1;
otherwise, removee. (2) For each sourceS, updaten(Si)
as the number of independently added tuples inR(Gi) (we
assume suchn(Si)’s are given as input).

3. Solve the coverage problem for eachGi, i ∈ [1, P], using
Algorithm FULL COPYINGCOVERAGE. Sum up the results
as the coverage forG.

EXAMPLE 3.9. Fig.2(d) shows an example dependency graph
with selection predicates on two attributesA and B. AttributeA
has two end points,2 and 4, so has 5 possible ranges,A < 2,
A = 2, 2 < A < 4, A = 4, andA > 4. Similarly, there are
5 possible ranges forB: B < 2, B = 2, 2 < B < 5, B = 5,
andB > 5. Hence, there are a total of 25 combinations, giving 25
full-copying DAGs. Fig.2(d) shows two of them; in the full-copying
DAGs, we have combined multiple ranges (such asB < 2 and
B = 2 into B ≤ 2). 2

The next theorem establishes complexity for the coverage prob-
lem over SELECTCOPYdependency graphs.

THEOREM 3.10. LetN be the number of sources inS , E be the
number of edges in the select-copying DAGG(S), k be the number
of distinct attributes on which predicates are specified inG(S),
andb be the maximum number of constants in predicates for each
attribute on each edge. AlgorithmSELECTCOPYINGCOVERAGE

solves the coverage problem in timeO((2bE)k(N + E)). 2

If we know that the attributes are independent of each other,then
the complexity is significantly reduced, and we can show the fol-
lowing result.

COROLLARY 3.11. Let N be the number of sources inS , E
be the number of edges in the select-copying DAGG(S), and k
be the number of distinct attributes on which predicates arespeci-
fied inG(S). When for each source the attributes are independent
in value distribution, the coverage problem can be solved intime
O(bkE(N + E)). 2

3.2.2 Histograms
In a histogram-copying DAG, each edge is annotated with a his-

togram that specifies the copy fraction for ranges of possible at-
tribute values, and we assume uniform copying within each bucket.
Note that when the attributes are correlated, we needk-dimensional
histograms. We can proceed as in Algorithm SELECTCOPYING-
COVERAGE, except that each dependency graph we construct is a
fraction-copying DAG and computing its coverage is #P-hard.

THEOREM 3.12. Let N be the number of sources inS , E be
the number of edges in the histogram-copying DAGG(S), k be the
number of distinct attributes on which histograms are specified in
G(S), andb be the maximum number of buckets for each attribute
on each edge.

• The coverage problem is #P-complete.
• We can get anǫ-approximation with confidence(1−δ) (in the

sense of Theorem 3.5) in the coverage in timeO((bE)kLNE)
in general, and inO(bkLNE2) when the attributes are in-

dependent, whereL =
log(1

δ
)

ǫ2
. 2

4. MCP AND CMP
We now consider the closely-related maximum-coverage and cost-

minimization problems. We begin by showing that in general both
problems are intractable w.r.t. each of the cost models we defined
previously (Section 4.1). In Section 4.2 we show that we can ap-
proximately solve both problems using a greedy algorithm. Finally,
in Section 4.3 we identify copy patterns that are common in prac-
tice, under which we can exactly solve the problems with respect

Table 2: Summary of complexity of (1) cost-minimization problem, (2) maximum-coverage problem, and (3) source-ordering problem. The results
apply to all cost models, unless otherwise specified. The approximation takes polynomial time.

Cost Minimization Maximum Coverage Source Ordering
Non-full-copying NP-complete, MaxSNP-hard PP-hard PP-hard

Full-copying NP-complete, MaxSNP-hard NP-complete in NP
Single-Source Copying PTIME PTIMEa, NP-completeb PTIME

Approximation log α-approxc (1 − 1
e
)-approxc 2-approxc

a For NSCM cost model
b For LCM or ASCM cost model
c With PTIME coverage algorithm

to certain cost models in polynomial time. The results of this sec-
tion are summarized in Table 23. Note that the results apply to
all copying models (fraction-copying, select-copying, histograms-
copying).

4.1 Complexity
As we show in Section 3, computing the coverage of a subset

of sources is #P-complete. Interestingly, although the maximum
coverage problem, which requires computing coverage of a set of
sources, is PP-hard4, the cost minimization problem has a lower
complexity bound and is NP-complete.

We first consider the restricted case where all copiers are full-
copying copiers. Section 3 shows that for this case finding the cov-
erage of a set of sources takes only polynomial time. However, we
next show that even for this case, both the cost minimizationprob-
lem and the maximum coverage problem are already NP-complete.

THEOREM 4.1. The following hold:
• The maximum-coverage problem is NP-complete w.r.t. the

LCM, NSCM and ASCM cost models when all copiers are
full-copying copiers.

• The cost-minimization problem is NP-complete w.r.t. the LCM,
NSCM and ASCM cost models when all copiers are full-
copying copiers. 2

For the complexity of the maximum-coverage problem, the proof
uses a reduction from the Knapsack problem for the LCM and
ASCM cost models, and a reduction from the Set Cover problem
for NSCM. For the cost-minimization problem, we use a different
reduction from the Set Cover Problem (the reduction for LCM is
slightly different from that for the other two cost models).

For the unrestricted versions of the problems we have the fol-
lowing results. Note that we have different complexity results for
the two problems in the general case: cost minimization requires
all answers to be returned, so we can ignore edges with a fraction
less than 1, but the maximum-coverage problem does not have the
same property and requires estimating source coverage.

THEOREM 4.2. The following hold:
• The cost-minimization problem is NP-complete w.r.t. the LCM,

NSCM and ASCM cost models.
• The maximum-coverage problem is PP-hard w.r.t. the LCM,

NSCM and ASCM cost models. 2

4.2 Approximation
We now show that we can approximate the maximum-coverage

and cost-minimization problems using a greedy algorithm that runs
in polynomial time. In the following sections we shall see that un-
der certain restricted conditions, our greedy algorithm can actually
obtain optimal answers.
3Precisely, all the hardness results in this section refer tothe decision ver-
sions of the optimization problems; i.e., deciding if thereexists a solution
achieving a given value of the objective function.
4PP-hardness [10] is the analog of #P-hardness for decision problems: for
a #P problem “computef(x)”, the corresponding PP decision problem is
“Does there exist a solution tof(x) ≥ v, for a specifiedv?”.

0: Input: SourcesS, dependency graphG(S), cost functionc.
Output: SetS̄ ⊆ S as the result.

1: S̄ = ∅, Ā = ∅; //Ā is the set of answers.
2: while (∃S ∈ S − S̄ such thatT (S) 6⊆ Ā) //T (S) is the set of tuples

in S.
3: Let S0 ∈ S − S̄ be the source with maximum|S0−Ā|

c(S0)
;

4: S̄ = S̄ ∪ {S0}; Ā = Ā ∪ T (S0);
5: return S̄;

Algorithm 4: GREEDYAPPROX: Greedy approximate algorithm for the
cost-minimization problem. For the maximum-coverage problem, we only
need to replace the while condition with (∃S ∈ S − S̄ such thatc(S̄) +
c(S) ≤ Cmax), whereCmax is the maximum allowed cost.

We start with the cost-minimization problem. Recall from Sec-
tion 3.1.2 that we can approximate the coverage in polynomial
time; thus, we can efficiently estimate the number of additional tu-
ples we obtain by querying a new source. Algorithm GREEDYAP-
PROX (Algorithm 4) proceeds by including sources in a greedy
fashion: it iteratively picks the source that adds the maximum num-
ber of new tuples per unit cost, until no more source can add new
answer tuples. The following result gives an approximationguar-
antee for GREEDYAPPROX.

THEOREM 4.3. Let α be the number of tuples in the largest
source in the input to the cost minimization problem.GREEDY

APPROXobtains alog α-factor approximation to the optimal solu-
tion; i.e., if the optimal cost isc, GREEDYAPPROXobtains a cost
of at mostc · log α. 2

Note that GREEDYAPPROXcannot obtain a constant-factor ap-
proximation. Indeed, we can prove that the problem is MaxSNP-
hard5. This is because in our NP-completeness proofs for the cost-
minimization problem, the reduction from the Set Cover Problem
preserves the approximation ratio and thus yields L-reductions [20],
so the MaxSNP-hardness of the Set Cover Problem carries over.

COROLLARY 4.4. The cost minimization problem is MaxSNP-
hard w.r.t. the LCM, NSCM, and ASCM cost models. 2

Finally, we can easily revise GREEDYAPPROXfor the maximum
coverage problem by iterating till reaching the cost limit,yielding
the following result.

THEOREM 4.5. We can obtain a(1− 1
e
)-factor approximation

to the optimal solution for the maximum-coverage problem.2

4.3 Single-Source Copying
We consider dependency graphs that satisfy the single-source

copying property, i.e., each source copies from at most a single
source, and copies all of its data. First, the following result estab-
lishes a PTIME complexity for cost minimization for all costmod-
els, and then we show a result for the maximum coverage problem.

5MaxSNP-hardness corresponds to a class of problems that cannot be ap-
proximated within a factor of(1 + ǫ) for anyǫ > 0 (unlessP = NP) [20].

S1
(10)

S2
(5)

S3
(2)

S
4

(8)
S

5
(5)

S
6

(3)
S

7
(4)

10

15 12

23 20 15 16

0

0 2

0 5 5 6

(a) (b) (c)

Figure 3: Example 4.8: (a) input dependency graph; (b)-(c) new an-
swer tuples a source can introduce after selecting each node.

THEOREM 4.6. The cost minimization problem can be solved
optimally in PTIME w.r.t. the NSCM, LCM, and ASCM cost models
when all copiers are single-source copiers. 2

THEOREM 4.7. Let N be the number of sources inS and l be
the maximum number of sources that are allowed to be queried.
When all copiers are single-source copiers, we can find the optimal
solution to the maximum coverage problem w.r.t. the number-of-
sources cost model in timeO(lN). 2

The full proof by induction is based on a greedy algorithm (Al-
gorithm 5) presented in the appendix. In our proof, we consider
Tk, the optimal set ofk sources, andS, the best source that can be
added toTk. We arrive at a contradiction supposing the optimal set
of k + 1 sources is obtained by adding some sourceS′ to a setT ′

of k sources, whereT ′ 6= Tk.
Next we illustrate the greedy algorithm using an example. The

example also shows that the same algorithm is not guaranteedto
obtain the optimal solution with respect to other cost models.

EXAMPLE 4.8. Consider a set of data sources with the depen-
dency graph in Fig.3(a) and assume we can query at most two
sources. Fig.3(b) shows the number of answer tuples each source
can introduce initially and so we selectS4. Fig.3(c) shows the an-
swer tuples each source can introduce after selectingS4; accord-
ingly, we selectS7 and obtain the answer set{S4, S7}.

Note that if we consider the linear cost model and a maximum
allowed cost 35, the optimal answer is{S5, S6}, but the greedy
algorithm incorrectly chooses{S4}. 2

In fact, the maximum coverage problem remains NP-complete
for the LCM and ASCM cost models. The NP-hardness proof fol-
lows from the fact that the reduction from 0-1 Knapsack used for
Theorem 4.1 only involves single-source copiers. Further,since
single-source copying is a special case of full-copying, the prob-
lem remains in NP.

COROLLARY 4.9. The maximum coverage problem is NP-complete
w.r.t. the LCM and ASCM cost models when all copiers are single-
source copiers. 2

5. THE SOURCE ORDERING PROBLEM
Ordering the sources optimally is the key challenge for an online

query answering system over dependent sources. Our goal is to or-
der the sources in a way that returns answers as quickly as possible.
Recall from Section 2 that we are trying to maximize the area under
the curve that plots the cumulative number of answers returned with
time, and that given a permutation of the sourcesΠ, we denote the
area under the curve byA(Π). The following theorem establishes
some basic complexity results for the coverage problem.

THEOREM 5.1. The following hold: (1) The decision version of
the source-ordering problem is PP-hard in the number of sources.
(2) Assuming finding the coverage takes polynomial time, then the
decision version of the source-ordering problem is in NP. (3) The
source ordering problem can be solved optimally in PTIME when
all copiers are single-source copiers. 2

The PP-hardness of the source ordering problem follows from
the hardness of the coverage problem (Theorem 3.4). When cov-
erage takes polynomial time, e.g., with full-copying, the source or-
dering problem is easily seen to be in NP: given a solution, we
simply evaluate the total coverage in sequence and compute the
area under the curve. However, the exact complexity class under
full-copying remains an open problem.

The main result of this section is afactor-2 approximationalgo-
rithm for the source ordering problem. That is, if we denote the
optimal permutation byΠopt and the permutation computed by our
algorithm byΠ, thenA(Π) ≥ A(Πopt)/2. In the rest of the section,
we first show that an optimal permutation must have amonotonicity
property. We then show that although monotonicity does not guar-
antee an optimal solution, it ensures a 2-approximation. Finally,
we give a greedy algorithm that returns a monotonic permutation;
in case we can compute coverage of a set of sources in polyno-
mial time, our greedy algorithm can generate a 2-approximation in
polynomial time. Note that results in this section apply to all cost
models. We next start with the formal definition of the monotonic-
ity property, which uses notionIncr: for a setS = {S1, . . . , Sl} of
data sources and a permutationΠ over{1, . . . , l},

Incr(1) = 〈{SΠ(1)}〉;

Incr(i) = 〈∪i
j=1{SΠ(j)}〉 − 〈∪i−1

j=1{SΠ(j)}〉.

DEFINITION 5.2 (MONOTONIC PERMUTATION). Let S =
{S1, . . . , Sl} be a set of data sources andG(S) be its dependency
graph. A permutationΠ over{1, . . . , l} is said to bemonotonicif
for eachi ∈ [1, l], we have Incr(i)

c(SΠ(i))
≥ Incr(i+1)

c(SΠ(i+1))
. 2

Intuitively, the monotonicity property says that the rate of in-
crease of answer tuples as we query more sources decreases mono-
tonically. Not surprisingly, we can show that the optimal permuta-
tion for source ordering must be monotonic.

LEMMA 5.3. Given a set of sourcesS = {S1, . . . , Sl} and a
dependency graphG(S). If Πopt is an optimal permutation to the
source-ordering problem,Πopt is monotonic. 2

Whereas monotonicity is a necessary condition for optimality,
the following lemma shows that it is not sufficient.

LEMMA 5.4. There exists a set of data sourcesS = {S1, . . . , Sl},
a dependency graphG(S), and a monotonic permutationΠ of
{1, . . . , l}, such thatΠ is not an optimal permutation to the source-
ordering problem. 2

Next we prove the main result of this section: any monotonic
permutation is at most a factor of two off from any other (and in
particular, the optimal) permutation.

THEOREM 5.5. LetS = {S1, . . . , Sl} be a set of data sources
and G(S) be a dependency graph ofS . Let Πopt be the optimal
permutation to the source ordering problem andΠ be a monotonic
permutation of{1, . . . , l}. Then,A(Π) ≥

A(Πopt)

2
. 2

According to Theorem 5.5, we can design a 2-approximation al-
gorithm to the source ordering problem by greedily picking the next
source whose ratio of incremental return versus cost is maximal.
Note that this algorithm does not necessarily generate the optimal
solution (Lemma 5.4). In cases where we can solve the coverage
problem in polynomial time, we can find the 2-approximation so-
lution in polynomial time.

THEOREM 5.6. LetN be the number of sources inS andE be
the number of edges in the input full-copying DAGG(S). We can
find a 2-approximation solution to the source ordering problem in
timeO(EN2). 2

6. MORE COMPLEX QUERIES
Until now we considered answering the identity query over our

data sources. We now show how our results are used for queries
with selection, which are the most common in practice. We also
comment on projection and join queries.

Selection queries:A typical query over a large collection of sources
is specified by a selection predicate (typically by selecting values
in forms). We now show how to extend our results to queries that
involve equality and comparison predicates. We denote the set of
predicates byP .

We assume that for each data sourceSi, we can estimate the
selectivitysPi of P for Si, i.e., the fraction ofn(Si) tuples inde-
pendently provided bySi that satisfyP . We can use traditional es-
timation techniques for this purpose. When we assume equal prob-
ability of a source tuple being copied, the fraction of data copied
from sourceSi should have the same selectivity asSi w.r.t. P .
When we know the exact selection condition for copying, we only
consider the copied data that satisfy predicatesP .

Given any inputI including a selection query with predicateP ,
we can transform the problem to an inputI′ including an identity
query, such that solving any of the four problems we considergives
the same solution onI andI′. In particular, given a selection query
Q with predicateP , a set of sourcesS , and a dependency graph
G(S) = (V, E), we constructGp(S) as follows: (1)(V P , EP) =
(V, E), (2)nP (Si) = sPi ∗n(Si), (3) if annotationRij is a fraction,
RP

i,j = Ri,j ; if Rij is a selection condition,RP
i,j = Ri,j ∧ P . We

then have the following result.

THEOREM 6.1. Any of the coverage problem, cost minimiza-
tion problem, maximum coverage problem, and the source order-
ing problem gives the same solution for (a)G(S) w.r.t. Q, and (b)
GP (S) w.r.t. the identity query. 2

Projection queries: The main challenge introduced by projections
is duplicate elimination. When we project onto a subset of at-
tributes, the number or fraction of tuples that merge to the same
tuple value may be different for different sources. In the general
case, estimating the size of projection results requires accessing
most of the data in each source [5]. If we assume that data provided
independently by different sources have the same fraction for any
projection, and assume random copying (so in expectation the frac-
tion of copied tuples remaining after a projection is the same for all
data sources), we can directly apply the results from this paper.

Join queries: It is easy to extend our dependency model for cases
in which sources contain multiple tables, each with different copy-
ing sources and patterns. Under the random-copying assumption,
our results extend to join queries in a rather straightforward fash-
ion. However, when we use selection queries to model the copying
pattern, we need to consider how to estimate the join selectivities.
We leave that to future work.

7. CONCLUSIONS AND RELATED WORK
We considered the problem of answering queries over large col-

lection of possibly overlapping data sources. Although we showed
that many problems are intractable in general, we proposed greedy
or randomized approximation algorithms that ran in polynomial
time and have provable quality guarantees. In addition, we identi-
fied practical restricted classes of dependencies that yield polynomial-
time optimal solutions. Together, these results provide a foundation
on which to build such an integration system. One interesting direc-
tion for future work is the case in which the data itself is uncertain,
and therefore seeing the data from multiple independent sources
can affect our belief in the answer.

Previous work [7, 8, 18, 25] developed algorithms for detecting
when a data source can be ignored in answering a query. Yet other
work [9] studied the use of probabilities to model source coverage
and overlap for data integration. These works are all based on cov-
erage of sources and did not consider dependence between sources.

Several authors have discussed mechanisms that result in depen-
dencies between sources on the Web. Leskovec et al. [17] study
influences in web-data, such as how blog linkage structures evolve,
and [2] provides a formalism for creating web documents by copy-
ing portions of data from other documents. Our work is a first step
to integrating web data with such dependencies. Of course, alarge
body of recent work (see [4] for a tutorial) studies the orthogonal
issue of tracking data provenance.

8. REFERENCES
[1] R. Alonso, D. Barbara, H. G-Molina, and S. Abad. Quasicopies:

Efficient data sharing for information retrieval systems. In EDBT,
1988.

[2] P. Atzeni and G. Mecca. Cut & paste. InProc. of ACM PODS, 1997.
[3] L. Berti-Equille, A. Das Sarma, X. Dong, A. Marian, and

D. Srivastava. Sailing the information ocean with awareness of
currents: Discovery and application of source dependence.In Proc.
of CIDR, 2009.

[4] P. Buneman and W. Tan. Provenance in databases. InProc. of ACM
SIGMOD, 2007.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for
histogram construction: how much is enough? InProc. of ACM
SIGMOD, 1998.

[6] X. L. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava. Global
detection of complex copying relationships between sources. In
PVLDB, 2010.

[7] O. Duschka. Query optimization using local completeness. InProc.
of AAAI, 1997.

[8] O. Etzioni, K. Golden, and D. Weld. Tractable closed world
reasoning with updates. InProc. of the Conference on Principles of
Knowledge Representation and Reasoning, 1994.

[9] D. Florescu, D. Koller, and A. Y. Levy. Using probabilistic
information in data integration. InProc. of VLDB, 1997.

[10] J. Gill. Computational complexity of probabilistic turing machines.
SIAM Journal on Computing, 6(4), 1977.

[11] L. Haas. The theory and practice of information integration. In Proc.
of ICDT, 2007.

[12] A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper,
J. Pollock, A. Rosenthal, and V. Sikka. Enterprise information
integration: successes, challenges and controversies. InProc. of ACM
SIGMOD, 2005.

[13] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data integration: The
teenage years. InProc. of VLDB, 2006.

[14] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in
problems of maximumk-coverage.Manuscript, 1994.

[15] W. Hoeffding. Probability inequalities for sums of bounded random
variables. InJ. of the American Statistical Association, 1963.

[16] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage
problem.Inf. Process. Lett., 70(1), 1999.

[17] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst.
Cascading behavior in large blog graphs. InSDM, 2007.

[18] A. Y. Levy. Obtaining complete answers from incompletedatabases.
In Proc. of VLDB, 1996.

[19] C. Olston and J. Widom. Offering a precision-performance tradeoff
for aggregation queries over replicated data. InProc. of VLDB, 2000.

[20] C. Papadimitriou and M. Yannakakis. Optimization, approximation,
and complexity classes.JCSS, 43, 1991.

[21] J. S. Provan and M. O. Ball. The complexity of counting cuts and of
computing the probability that a graph is connected.SIAM J. of
Computing, 12, 1983.

[22] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching.VLDB Journal, 10(4):334–350, 2001.

[23] L. G. Valiant. The complexity of computing the permanent. TCS,
8(2), 1979.

[24] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[25] Z., S. Kambhampati, and U. Nambiar. Effectively miningand using
coverage and overlap statistics for data integration.TKDE, 17, 2005.

APPENDIX

A. PROOFS
Proof of Lemma 3.2: The probability that a random tuplet ∈ S0

appears inSf is given byPr(t ∈ Sf |t ∈ S0) =
|Sf |

|S0|
. Now

consider tuplet in S0. The tuplet can appear inSf through one of
the paths fromS0 to Sf . The combined probability of these paths
is given by the probability ofF . 2

Proof of Lemma 3.3: We prove the theorem with a reduction from
the following #P-complete problem of counting the number ofsat-
isfying assignments in a bipartite monotone 2-DNF formula [21]:

Given setsX = {x1, . . . , xn1} andY = {y1, . . . , yn2}
of boolean variables, and conjunctsC1, . . . , Cm where
eachCi is of the form(xj ∧ yk), count the number of
satisfying assignments forF = (C1 ∨C2 ∨ . . .∨Cm).

Given the input to the above problem, we construct an in-
put to the coverage problem whose solution gives an answer
to the above problem. Let the set of sources beS =
{S0, S1

1 , . . . , S1
n1

, S2
1 , . . . , S2

n2
, S3}. Let the only source that adds

new tuples beS0, and the dependencies between the sources be as
follows. EachS1

j copies fromS0, andS3 copies from eachS2
k, and

all these edges have fractionf = 0.5. Additionally, for each clause
Ci = (xj ∧ yk), add an edge fromS2

k to S1
j , i.e.,S2

k copies from
S1

j , with corresponding fractionf = 1.0. We are now interested in
computing coverage of the set containing the single source{S3}.

Intuitively, eachS1
j corresponds to variablexj , S2

k corresponds
to variableyk, and the sourceS3 may obtain tuples ofS0 only
through one of the “paths” corresponding to the clauses. Therefore,
using Lemma 3.2, the coverage of the set{S3} is given by the
probabilityPr of F in the input problem, where all variables inX
andY are independent of one another and have a probability of0.5
each. Since each variable has a probability of0.5, the number of
satisfying assignmentsN and the probabilityPr of F are related
by N = Pr ∗ 2n1+n2 . 2

Proof of Theorem 3.4:Since the limited-coverage problem is #P-
hard, the general version of the coverage problem is also #P-hard.
The general version of the coverage problem can be solved us-
ing a polynomial number of limited coverage problems (see Al-
gorithm 2). If any of the limited-coverage problems gives a non-
zero coverage, the general coverage problem has non-zero cover-
age. Therefore, we establish the #P-completeness from the fact
that the limited-coverage problem is in #P: the computationof the
probability ofF is in #P. 2

Proof of Theorem 3.5: Let Xi ∈ {0, 1} be the random variable
that is0 if the ith iteration falsifiesF and1 if it satisfiesF . We
have that expected valueE(Xi) = Pr(F). Hence, using Hoeffd-
ing’s inequality [15], which is a special case of Chernoff’sbound,
we have

Pr(|Pr(F) −
CL

L
| ≥ ǫ) ≤ e−2Lǫ2

Our result follows by bounding the right-side byδ. 2

Proof of Theorem 3.6:Clearly,|∪Si∈SSi| =
P

Si∈S n(Si) = D.
Furthermore, the number of tuples from any sourceSi present in
∪Si∈T Si is given byNi, whereNi = 0 if n(Si) = 0 or if Si

does not have any descendant inT . Therefore, we have〈T 〉 =

| ∪Si∈T Si| =
P

i Ni, and hence coverage given by
P

i Ni

D
.

Algorithm COVERAGE invokes LIMITED COVERAGE at most
once for each data source, and thus also takes polynomial time in
the number of sources. 2

Proof of Corollary 3.10: We create at most(2bE + 1)k full-
copying DAGs: each attribute has at mostbE end points and so
at most2bE + 1 value ranges, and we consider all combinations of
ranges for thek attributes. For each full-copying DAG the coverage
problem can be solved in timeO(N + E) (Theorem 3.7). 2

Proof of Corollary 3.11: If we know that distinct attributes are
independent of each other, then the complexity is significantly
reduced, and we can show the following result. In particular,
if all attributes are independent of one another, the dependence
on k also becomes polynomial: Instead of consideringP =
Qk

i=1(2li + 1) dependency graphs, we now only need to con-
siderS =

Pk

i=1(2li + 1) dependency graphs, corresponding to
the ranges of values for each attribute independently, as described
below.

1. Suppose we have predicates onk attributesA1, . . . , Ak.
2. For every attributeAi appearing in any selection query, col-

lect and order all the constants{ai1 , . . . , aili
} that appear in

the predicatesA op a, at any edge. Suppose (without loss of
generality)∀q, aiq < aiq+1

3. Definesq
i to be the selectivity of theqth range forA on a

particular sourceS0.
4. CreateS =

Pk

i=1(2li +1) dependency graphs,G1, . . . , GS ,
with all edge fractions being0 or 1 as follows. Consider a
graph for one range, sayaiq−1 ≤ A < aiq . For every edge
disregard all predicates on attributes other thanA. Associate a
fraction of0 if a predicate onA falsifies the condition above,
otherwise associate a fraction of1.

5. Determine the coveragecq
i of the graph based on the selectiv-

ities sq
i ’s for each source in the graph: Source is assumed to

havesq
i tuples, and similarly all other sources are assumed to

have number of tuples given by their selectivities. Determine
cq
i for the full-copying graph based on Section 3.1.3.

6. The combined coverage is given by the following expression

C =
X

q1=1..(l1+1),...,qk=1..(lk+1)

Y

i=1..k

cqi
i

Intuitively, we separately compute the coverage for each possible
range of values for each attribute. The coverage for each combina-
tion of values is then given by their product because attributes are
independent of each other. 2

EXAMPLE A.1. In Figure 2(d), assumeA ≤ 2 had selectivity
of 0.3, andB ≤ 2 had selectivity of0.4, then selectivity ofA ≤
2 ∧ B ≤ 2 is 0.3 · 0.4 = 0.12. Hence if the coverage of the
dependency graph corresponding toA ≤ 2 andB ≤ 2 is 1, then
the total fraction of tuples withA ≤ 2 ∧ B ≤ 2 in the final source
is also be1, and its contribution to the coverage would be0.12. 2

Proof of Theorem 3.12: The #P-completeness directly follows
from Theorem 3.4: the #P-hardness reduction carries over, and
once again coverage computation is in #P since we only need to
solve multiple fraction-copying coverage problems as in Algorithm
SELECTCOPYINGCOVERAGE: If at least one of the subproblems
has coverage> 0, the overall problem has coverage> 0. For
the (ǫ, δ) approximation, the time complexity follows from The-
orem 3.5, Theorem 3.10, and Corollary 3.11: The algorithm cor-
responding to Theorem 3.5 is either applied onO((bE)k) graphs
(similar to the proof for Theorem 3.10) in general andO(bkE)

graphs (similar to Corollary 3.11) when attributes are independent
of each other. 2

Proof of Theorem 4.1:
First bullet: We first prove hardness of the problem. NP-

hardness w.r.t. the LCM model can be proved by a reduction from
the NP-hard 0-1 Knapsack problem. Given a maximum weight
W , a set ofn items each with value{v1, . . . , vn} and weight
{w1, . . . , wn}, the 0-1 knapsack problem looks for a subset of
items whose total weight does not exceedW and maximizes the
total value. Given a 0-1 Knapsack problem wherewi = vi for
eachi ∈ [0, n], we can construct an equivalent MCP as follows.
For each itemi, create a sourceSi with vi independent tuples (and
hence costvi). There is no dependency between the sources. Set
Cmax in the MCP toW . We can easily prove the correspondence
of the optimal solution of the 0-1 Knapsack problem and the solu-
tion of the maximum coverage problem.

NP-hardness w.r.t. the ASCM model can be proved by a similar
reduction.

We next prove NP-hardness w.r.t. the NSCM model by a reduc-
tion from the NP-hard Set Cover problem. Given a universeU =
{1, . . . , m}, subsets ofU , {s̄1, . . . , s̄n}, such that∪n

i=1s̄i = U ,
the Set Cover problem decides if there is a set cover of sizek. We
construct an input to the MCP as follows. Constructm independent
sourcesS1, . . . , Sm where eachSi, i ∈ [1, m], has a single tuple
i. Then, for each subset̄sj , j ∈ [1, n] in the set cover problem,
construct a sourceS′

j in the MCP whereS′
j copies all data from the

sources corresponding to all elements ofs̄j and does not add any
new tuples. We can prove that there is a set cover of sizek if and
only if with costk the MCP has a solution that returns all indepen-
dently added source tuples (this can be decided in polynomial time
when all copyings are full-copying).

In NP: We next show that the decision version of the MCP is
NP-complete. Given a target maximum coverageC, suppose a sub-
set T of sources gives coverage≥ C. Because all sources are
full-copying, we can get the coverage ofT in polynomial time.
Additionally, the size of each source (i.e., coverage of that single
source) can also be obtained in polynomial time. Hence, for each
of the cost models, we can polynomially give a solution exceeding
some maximum coverageC. 2

Second bullet: NP-hardness of the problem w.r.t. the NSCM and
ASCM models can be proved by a similar reduction from the Set
Cover Problem as in the proof of Theorem 4.1.

The hardness w.r.t. the LCM model is also through a reduction
from the Set Cover Problem, but constructed differently. Weas-
sume an input to the Set Cover Problem, where for each elementi
of U , there is a singleton set containing onlyi. (The problem still
remains NP-hard.)

We next construct an input to CMP as follows. ConstructS con-
taining(m + n + 1) sources{SM , S1, . . . , Sm, S′

1, . . . , S
′
n}, and

the following dependency DAGG(S). SM is the root ofG(S) and
containingM > m2, tuples. For eachi ∈ [1, m], there is an edge
Si → SM with fraction 1 andn(Si) = 1 (i.e.,Si adds a single new
tuple i that is not present inSM). For eachj ∈ [1, n], S′

j copies
all data from the sources corresponding to all the elements of sets̄j

(so the edge has fraction 1) and hasn(S′
j) = 0.

The solution of the above CMP has costk if and only if there is
a set cover of sizek:

1. “if”: If there is a set cover of sizek, pick the correspond-
ing setT of sources from{S′

1. . . . , S
′
j}. ClearlyT returns

all answer tuples. Further, the total cost of query answering
c(T) ≤ k ∗ (M + m), since eachS′

j has theM tuples from
SM and at mostm other tuples. Now consider any other solu-

tionT ′ containing at leastk+1 sources;c(T ′) ≥ (k+1)∗M .
SinceM > m2 andk ≤ m, we havec(T ′) > c(T).

2. “only if”: Consider an optimal solutionT for the CMP con-
taining k sources. If there is anySi ∈ T , we can replace
it with S′

j wheres̄j is the singleton set containingi and the
resulting setT ′ is still optimal. The set of thek sets corre-
sponding to the sources inT ′ is a set cover forU .

The proof that the decision version of CMP is NP-complete fol-
lows as in the case of MCP above: For any solution we can evaluate
the total cost and compute the coverage in polynomial time, since
the sources are full-copying. 2

Proof of Theorem 4.2: Cost minimization requiresall tuples to
be covered and no edge with fraction less than1 (or select con-
dition other thantrue) can guarantee all tuples in the derived re-
lation; thus, the problem can be solved by first removing all such
dependency edges and then solving the problem on the resulting
full-copying dependency graph. On the other hand, the maximum-
coverage problem does not have the same property and thus re-
quires estimating coverage of a set of nodes, resulting in PP-
hardness: PP-hardness follows from the #P-hardness of the cov-
erage problem (Theorem 3.4). 2

Proofs of Theorem 4.3 and Theorem 4.5:We have the follow-
ing direct L-reduction from the cost minimization problem to the
weighted set cover problem: The set of all tuples corresponds to
the universal setU , and each sourceSi corresponds to a subset
si ⊆ U , wheresi contains the elements corresponding to the tu-
ples inSi. The weight ofsi is the cost ofSi. GREEDYAPPROX

mimics the greedy algorithm for weighted set cover that yields an
approximation ratio oflog α [24].

We can easily revise the GREEDYAPPROX algorithm for the
maximum coverage problem (MCP): the only difference is thatwe
iterate until reaching the cost limit. We call this the GREEDYAP-
PROXMCP, which obtains a(1− 1

e
)-approximation for the number-

of-sources cost model. The(1 − 1
e
)-approximation is based on

reducing MCP to thek-Coverage problem [14]. Further, we can
adapt the approximation ratio for all cost models using a an approx-
imation algorithm for the Budgeted Maximum Coverage Problem
proposed in [16]; BMCP is a generalization of the set cover prob-
lem with weights on elements and sets. 2

Proof of Corollary 4.4: Note that our reductions from set cover in
the proof of Theorem 4.1 give L-reductions. Aρ-approximation to
the reduced CMP problem gives aρ-approximation to the original
set cover problem. 2

Proof of Theorem 4.6: A simple algorithm yields an optimal so-
lution for all cost models. Note that under single-source copying,
the dependency graph is a tree. (1) We first find all “special nodes”
in the tree: A node is special if it adds at least one tuple inde-
pendently, and no descendent node adds any tuple independently.
Note, clearly, that no two special nodes are ancestor/descendants
of each other. Further, any solution to CMP must include at least
one node from the subtree rooted at each special node. (2) Forthe
NSCM and LCM cost models, we simply return all special nodes
as the solution to CMP. For the ASCM cost model, from each sub-
tree rooted at each special node, we pick the source that has least
cost. The set of selected nodes gives an optimal solution to CMP.2

The following proposition establishes several propertiesof the
restricted case on which we base Algorithm 5, used in the proof of
Theorem 4.7.

PROPOSITION A.2. Let S be a set of sources with dependency
graph G(S), where all copiers are single-source copiers. The
graphG(S) has the following properties.

0: Input: SourcesS, dependency graphG(S), maximum number of al-
lowed sourcesk.
Output: SetT ⊆ S as the result of MCP.

1: T = ∅;
2: TraverseG(S) in depth-first order; for the root nodeR, A[R] =

n(R), and for any other nodeS, A[S] = n(S) + A[P (S)], where
P (S) is the parent ofS.

3: for (i = 1 : k)
4: Find the leaf nodeL with the highestA[L];
5: Add L to T and markA[L] = 0;
6: while (A[P (L)] 6= 0)
7: for each (descendantD of P (L) but not ofL)
8: A[D] = A[D] − A[P (L)];
9: A[P (L)] = 0; L = P (L);

10: return T ;

Algorithm 5: SSCMCP: Greedy algorithm for the maximum coverage
problem with respect to the number-of-sources cost model when all copiers
are single-source copiers.

T’

Tk
T’

Tk
δ

δ'

c

S’ S’’ S’

a

b

Figure 4: Leaf Root Paths under single-source copying.

• The graphG(S) is a set of trees.
• Given a numberk, there exists a set̄L ofk leaf nodes inG(S),

such that there does not exist any set ofk sources whose cov-
erage is higher than̄L.

• Let S be a leaf node inG(S). Let S̄ ⊆ S be a set of nodes
in G(S). LetS′ be the node in̄S that has the lowest common
ancestor withS and letSLCA be this ancestor. Let̄A be the
set of nodes on the path fromSLCA (excludingSLCA) to S.
Then

〈S̄ ∪ {S}〉 − 〈S̄〉 =
X

A∈Ā

n(A). 2

Proof of Theorem 4.7: We prove the optimality of SSCMCP by
showing that the optimalk + 1 set of sources can be obtained by
adding one source to the optimal solution fork sources. This, in
conjunction with the fact that the greedy algorithm obviously re-
turns the optimal solution fork = 1, completes the proof.

We prove the result by contradiction. LetTk be the optimal set
of k sources and letS be the best source that can be added toTk.
Suppose the optimal set ofk + 1 sources isT ′ ∪ {S′}, whereT ′

is a set of sources andS′ is a source such thatS′ 6∈ Tk ∪ {S}.
(We must have such a sourceS′ 6∈ Tk ∪ {S} as otherwiseTk ∪
{S} = T ′ ∪ {S′}, which is optimal fork + 1 sources.) We have
〈Tk〉 ≥ 〈T ′〉 and〈Tk ∪{S}〉 < 〈T ′∪{S′}〉. We show that we can
either find a solution withk sources better thanTk, or a solution
with k + 1 sources better thanT ′ ∪ {S′}.

The main idea used in our argument is the fact that the coverage
of any set of sources can be represented by the nodes covered by
leaf→root paths from all the nodes in the set. Whenever a source is
added, the increase in coverage is given by the total number of un-
covered nodes from it to the covered set of nodes (Proposition A.2).
Consider sourcesS, S′, and the setsTk andT ′ as shown in Fig-
ure 4. The figure has marked places where the leaf→root paths of
S, S′ meet the already covered nodes ofTk andT ′. Let Pk and

P ′ be the points whereS′ andS meetTk andT ′ respectively. The
increase inTk due toS′ is a and the increase inT ′ is a + δ: Since
there is just one leaf→root path because each source copies from
at most one other source, thea tuples added must completely over-
lap. Further,S′ must add more tuples toT ′, otherwiseTk ∪ {S′}
would result in a higher coverage. Similarly, the figure shows the
increments on addingS to T ′ andTk.

Recall S′ 6∈ Tk. Let S′′ be the source inTk that meetsS′’s
leaf→path atPk, with number of tuples added till then beingc. We
must havec ≥ a as otherwiseTk − S′′ + S′ is a better solution
for k sources. AsS′′ meetsS′ atPk, it cannot belong toT ′. Now
consider addingS′′ instead ofS′ to T ′. If c > a, we have an
even better solution fork + 1 sources. Otherwise, ifc = a, S′ and
S′′ are equivalent in terms of coverage addition, andT ′ ∪ {S′′} is
also optimal fork + 1 sources. Hence, we find some otherS′

2 6∈
Tk ∪ {S}, S′

2 6= S′, instead ofS′ and apply the same argument
above. 2

Proof of Theorem 5.1: Since the coverage problem was shown to
be #P-hard, and the decision version of the source ordering prob-
lem is at least as hard, we obtain PP-hardness. When the compu-
tation of coverage can be performed in polynomial time, for any
sequence, we progressively compute the coverage for every set of
sources, and thus can compute the exact area under the curve.Un-
der single-source copying, the source ordering problem becomes
PTIME, based on the observation from the proof of Theorem 4.6,
as a greedy ordering of the special nodes yields an optimal solution.
2

Proof of Lemma 5.3: Suppose, in contrast, thatΠopt is not mono-
tonic. If we denoteci = c(SΠopt(i)), then there existsi ∈ [1, l−1],

such thatIncr(i)
ci

< Incr(i+1)
ci+1

. ConstructΠ as the same asΠopt

except thatΠ(i + 1) = Πopt(i) andΠ(i) = Πopt(i + 1). We next
show thatΠ is strictly better thanΠopt, leading to a contradiction.

After switchingΠopt(i) andΠopt(i + 1) to getΠ, we have

A(Πopt) − A(Π)

= ci · Incr(i) + ci+1 · (Incr(i) + Incr(i + 1))

−ci+1 · Incr(i + 1) − ci · (Incr(i) + Incr(i + 1))

= ci+1 · Incr(i) − ci · Incr(i + 1) < 0

This proves the claim. 2

Proof of Lemma 5.4: ConsiderS with 103 data sources. For each
i ∈ [1, 100], Si independently provides a single tuple. Source
S101 copies all data from{S1, . . . , S50}; sourceS102 copies
all data from{S51, . . . , S100}; sourceS103 copies all data from
{S25, . . . , S75}; and none of these three sources adds new tuples.
Consider the source orderingS103 → S102 → S101 and then an
arbitrary ordering of the rest of the sources. Under the number-of-
sources cost model, the rate of increase of coverage is monotoni-
cally decreasing; that is, the permutation is monotonic. However,
it is not optimal: an optimal permutation isS101 → S102 → S103

(and then the rest of the sources). 2

Proof of Lemma 5.5: Let C =
Pl

i=1 c(Si). Also, 〈S〉 =
Pl

i=1 Incr(i). Then, we have

A(Πopt) ≤ C · 〈S〉.

SinceΠ is monotonic, for each unit of cost, the incremental return
decreases monotonically. Thus, we have

A(Π) =
l

X

j=1

0

@cj ·

j
X

i=1

Incr(i)

1

A ≥
C

X

j=1

j·
〈S〉

C
>

C

2
·〈S〉 ≥

A(Πopt)

2

2

