Data Integration with Dependent Sources

Anish Das Sarma Xin Luna

Yahoo Research

AT&T Labs—Research

Dong Alon Halevy

Google Inc.

anishdas@yahoo-inc.com lunadong@research.att.com halevy@google.com

ABSTRACT

Data integration systems offer users a uniform interface et of
data sources. Previous work has typically assumed thatate d
sources are independent of each other; however, in scenario
volving large numbers of sources, such as the Web or larga-ent
prises, there is apco-systenof dependensources, where some
sources copy parts of their data from others.

This paper considers the new optimization problems thaeari
while answering queries over large number of dependentesur
These are the (Qost-minimization problemwhat is the minimum
costwe must incur to get all answer tuples, (Baximum-coverage
problem given a bound on the cost, how can we get the maximum
possible coverage, and (3) theurce-ordering problenfor a set of
data sources, what is theestorder to query them so as to retrieve
answer tuples as fast as possible.

We consider these optimization problems under severahcogt
els and we show that, in general, they are intractable. Weritbes
effective approximation algorithms that enable us to sdhese
problems in practice. We then identify the causes of the bagh-
plexity and show that for restricted classes, the optinomaprob-
lems can be solved in polynomial time.

1. INTRODUCTION

Data integration has received significant research atterstnd
recently enjoyed commercial success [11, 12, 13]. Dataiate
tion systems offer users a uniform interface to a set of daieces.
The user formulates a query over a mediated schema, andghe sy
tem uses a set of semantic mappings to reformulate the query o
the relevant set of data sources. The data integrationrsytbten
combines the answers from the sources appropriately.

Data integration systems typically assume data sourceadge
pendent of each other. However, in scenarios involvingelamgm-
bers of data sources, such as the Web or large enterpriggs, th
is aneco-systenof dependensources, where some sources copy
parts of their data from others [3]. The copying sources may b
aggregators or have some data sharing agreement with tiieadri
source. A data integration system can benefit significariynfe-
ing aware of dependencies between its data sources. Fanoast
the system can save resources by not querying data souateseh

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

EDBT 2011 March 22—-24, 2011, Uppsala, Sweden.

Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

unlikely to add many new answers to the query, or order thesacc
to the sources to maximize the distinct answers it fetchdg ea.
As another example, searching for “France Capital” on Geogi
turns the answer “Paris” with a total number of data sourbas t
corroborate this fact (without knowing whether mentionghefse
facts on the sources are independent); by considering depeies
between these data sources, a more authoritative resldtloeue-
turned. This paper considers the new optimization probléras
arise when answering queries over collections of dependitat
sources.

EXAMPLE 1.1. We extracted information about computer sci-
ence books provided by searchiAbeBooks.coma listing-service
website that integrates information from online bookssorél'he
collection includes data from 877 bookstores (sources), lanap-
plying techniques in [6], we found copying between 465 pairs
sources. There were 314 copiers, and among them, 202 capy fro
a single source, 26 copy all tuples provided by the origimmairses,

30 copy over 90% of their data from other sources, and 100 copy
at least half of their data from others.

Now consider deciding the correct list of authors for eacbko
As different sources can provide conflicting informatidiong with
each answer we would like to return the number of sourcesstlat
port the answer, and take a vote. To avoid bias, we want totcoun
only sources that independently support the answer andégthe
copied data. Hence, we can issue a query that returns alldade
dently provided tuples.

When we answer such a query, we can ignore copiers that copy
all data from others without changing the results; we can didlia
tion ignore sources that copy most of their data, so furthgpriove
the efficiency without sacrificing the accuracy of the resuaiuch.

In an online query answering system where we return answers a
they are generated, we may wish to order the sources such that
copiers with little independent contributions are queriast. O

1.1 The IDS System

We are building a system called IDS (Integrating Dependent&es),
for integrating a large number of data sources, where depmies
may exist between sources. We briefly describe the compsinent
the architecture of the IDS system (depicted in Fig.1) amedtidly
key problems we need to solve to build such a system.

Upon receiving a user query, IDS answers the query in three
steps. First, th&ource Selectiortomponent picks aoptimalsub-
set of sources to visit for returning all answers with the imid
cost, or the maximum number of answers with the given resourc
limit. This is because in an IDS system, it is often not neagss
or feasible to visit all sources, as a subset of sources may dia
ready covered all answers or we have only limited resourses:
ond, theSource Ordering component orders the sources (either

@§

o - Scurce Selecticn S
] o
» c o .2 =1
8170 |e| |®% % B
e = o8 28
=1 OO © o 3 O Q
(9] = > Q
] S o £ =
z| 0O £ 1° 8 8
= S ©] Y Scurce Ordering
O 8
Query Answering

Answer
Figure 1: Architecture for IDS (Integrating Dependent Sources).

all sources or the ones returned by source selection) in ssuely
that the system can obtain answers most quickly. This stejpea
skipped in offline query answering, but would be critical man-
line query answering scheme where we return answers to #re us
as they arrive from the sources, suitable for many apptinatsuch

as vertical search. Third, tH@uery Answering component visits
the selected sources in the specified order, takes the ufithre o
answers, and returns to the users.

Three components are required for the above process. thiest,
Coverage Computationcomponent computes the fraction of an-
swers a set of sources cover for a particular query. Sectied, t
Cost Computation component computes the cost of querying a
set of sources, taking into consideration the number ofcgsuin
the set, the size of each source, connection cost, latendysa
on. Finally, theConfiguration component identifies dependencies
between data sources and is also responsible for tradititziia
integration configuration tasks such as schema mapping.

This paper addresses the following fundamental challetiges
are needed to build the services described above, and laykeh
oretical foundation for building the IDS system.

1. Coverage:what is the fraction of the overall set of answers
that can be computed by a subset of sources.

Cost minimizationwhat is the minimal set of sources from
which we can retrieve all the answers to a query.

Maximum coveragegiven a resource bound, what is the set
of sources for obtaining the maximum set of answers.
Source orderingwhat is the best ordering of the data sources
that provides more answers quickly.

2.
3.

4.

1.2 Summary of Contributions

sourcesT is the expected percentage of the overall set of indepen-
dent answers that can be computed frdmWe establish the fol-
lowing results about coverage. In the case of the randorgiegp
scenario, we show that coverage is, in general, #P-coniptetee
total number of input data sources. We describe a randonaized
gorithm that yields an arbitrarily accurate estimate ofdbeerage

in polynomial time, and we identify a subclass of the probtaat
gives an exact polynomial-time solution. In the scenari@mehwe
have more information on how tuples were copied, we show that
the complexity of the coverage problem is lower.

We consider the&ost-minimizatiorproblem and thenaximum-
coverageproblem under multiple cost models, including theear
cost modelwhich counts the sizes of the accessed sources, and the
number-of-sources cost mogdeihich does not distinguish between
the sources’ sizes. We show that in the general case botlepisb
are intractable under these cost models, and show that wiéncan
an approximation in polynomial time. Moreover, we show tinat
number of data sources that a source can copy from and tigy abil
to copy a fraction of the data are critical to the complexitythe
above problems. In fact, if each data source can copy either a
no tuples and from at most one other data source, both prsetdesn
PTIME for the number-of-sources model. For s@mirce-ordering
problem we show that there is an efficient 2-approximatiothef
optimal ordering.

Note that although our primary motivation for this work wasal
integration, the problems and techniques we study are alse r
vant for other applications, such as query answering oveiatig-
replicated data [1, 19]. Partial replication among datasesican
be captured using dependencies, and we are interested ingfind
sets of sources that provide required portion of the data.

For the rest of the paper, Section 2 formally defines the prob-
lem. Section 3 studies the coverage problem. Section 4 derssi
the cost-minimization and maximum-coverage problemsti@eb
discusses the source-ordering problem. Section 6 showsohow
results extend to more complex queries. Proofs for all tesare
presented in Appendix A.

2. PROBLEM DEFINITION

We begin by formally defining the dependency model and the
optimization problems we consider. Consider a set of dateces
S = {S1,...,S.}. We refer to the contents of sources as tu-
ples, each modeling an objecat.§, books, movies, job listings)
and providing values for a set of attributes. The names ofthe
tributes can vary from one source to another; we assume that w

To address the above problems, we model dependency betweery 5o already reconciled heterogeneity with schema-nrejdiich-

sources with a directed acyclic graph whose nodes are tltze dat
sources. An edge from sourés to S» indicates thatS; copies
from S> (S1 may have additional data that is not$a). We distin-
guish two versions of the underlying copy model: the firstiasss
that tuples are copied at random and applies when we havéare in
mation about how the sources are related; the second assunes
information such as a selection predicate over the copieccso
We assume that dependencies are given as input. There diglenul
ways for obtaining such information; for example, [6] shdwesv

one can discover dependency between sources, decide the cop
ing direction, and compute percentage of data that are dparel
provenance annotation may contain information such astsmbe
predicates in copying.

The goal of query answering in this context is to findiate-
pendentanswers. Roughly, this means we do not want to get the
same answer fror§; andS- if S1 copied the data frony’.

We begin by identifying theoverageproblem as a core building
block for the optimization problems. The coverage of a subge

niques [22] and query answering starts with query reforiaa

Dependency between source®ur goal is to capture the fact that,
in addition to having original data of their own, data sosrcé-

ten copy data from others. In general, a copier may copy data b
performing a query over another source and adding the reéult
that query to its database; in practice, however, one maknmt

the queries used to copy data and can only estimate thecinamfti
tuples that are copied. We use the followidgpendency DAG
record the copying relationships between sources.

DEFINITION 2.1 (DeEPENDENCYDAG). The dependencies be-
tween the set of data sourcé&s= {Si,...,S,} are given by a
DAG G(S) = (V,E) where

o for every sourceS; € S, there is a node iV, associated

1#P-completeness corresponds to the complexity class of ¢wunting
problems [23].

with a numbern(S;) specifying the number of tuples inde-
pendently added by,2, and

e adirected edged; — S; denotes thab; copies tuples from
S;, and the edge is associated with an “annotation” describ-
ing tuples copied by; from S;. a

There are at least three kinds of annotations for copying&dg
and accordingly we have three types of dependency graphs: (1
Fraction-copying DAG the annotation orb; — S; is a fraction
fi,; (calledselectivity denoting the fraction of tuples copied Ky
from Sj;; (2) Select-copying DAGthe annotation oi%; — S; is a
select condition composed of predicates of the fatmp a, where
Ais an attribute inS;, a is a constant, andp is one of=, <, <,
>, >, and all tuples ir; satisfying the select condition are copied
into S;; (3) Histogram-copying DAGhe annotation o1%; — S; is
a histogram specifying the copying fraction for each rarfgeossi-
ble attribute values. Results in this paper can be easignebed for
a hybrid case with different types of annotations in the dejpacy
graph, and also for the case where a copier copies by indilidu-
ues rather than by tuples. Note that we leave projection jiyicg
for future work, as estimating the size of projection resigknown
to be hard because of the duplicate-elimination problem [5]

When the graph has an ed§e— S;, we refer taS; as acopier.
We say thatS; is afull-copying copier if it copiesall data from
the original sources whenever it copies anything. In thiecave
call the dependency graphfal-copying DAG We say thatS; is a
single-sourcecopier, if it is a full-copying copier and copies from
a single source. We assume no-loop copying (common in pejcti
and copying direction has been given as input (from provemam
formation or by applying techniques in [6]), thus restriatgelves
to a DAG.

We assume that each tuple is annotated with the source from
which it was copied, or marked as independently added. Bhat i
tuplesare of the form(¢, S) wheret is the tuple value, anff is the
source that independently providedWe assume sources agets
of tuples. Hence, even {t, S) is obtained by copying from multi-
ple sources, only one copy of the tuple is retained in thecgour

The total number of tuples in a soursg, denoted by .S;|, can
be estimated by its dependencies and independently addkss;tu
however, as we show shortly, this estimation is non-trivial

ExamMPLE 2.2. Fig.2(a) shows an example dependency graph
for 6 sources. Among the sources, and S2 each independently
provides 100 tuplesSs and .S, each copie$).5 fraction of tuples
from S; and also independently provides 50 tuples each. Sources
S5 and Ss copy from multiple sourcess§ from S; and Sz, and.Ss
from Sz, S3, and S4) without independently providing data. O

Query answering: For most of the paper we first present our so-
lutions for one prototypical query: find all the tuples frommet
sources, denoted(S). This prototypical query already unveils
many challenges that arise in our context, and isolates dhe c
plexity of our problems from that of answerirdg. In practice, the
majority of queries tend to ask for all tuples that satisfytaia
predicates. Section 6 describes an extension of our solufiar
queries with select, project, join predicates.

We define the semantics of a query as the union of answers from
all sources. Formally, given a sourSg, we denote byQ(S;) the
set of answers frons; (either independently added or copied). We
defineQ(S) asUs,csQ(S:), whereuU is the set union of)(S;).
Recall that each tuplé, S), is annotated by the source that inde-
pendently provides it. Hence, if tupteis independently provided
by S1 andSz, both (¢, S1) and(¢, S2) will be in the answer.

2Changed values are also considered as independently edovid

Our goal is to take advantage of the dependency betweenesourc
to compute(S) efficiently. Hence, we try to answer the query (or
get a nearly complete answer) from a subset of sources. \Weealen
by |Q(7)| the total number of answer tuples returned by a subset
T C S of sources. Whei is the identity query, we us€Z’) and
|Q(T)] interchangeably.

Cost models: Given a setZ” of data sources, we consider the fol-
lowing variations on the cost model and show that they hatéesu
effects on the complexity results. Our results can be eastgnded

to the case when we need to combine the models, (Querying
each source incurs a constant connection cost and a cosirprop
tional to the size of the data).

1. Linear Cost Model (LCM): We denote by S;| the num-
ber of tuples inS;. The cost of queryingl is ¢(7) =
>_s,cr |Si|- This model applies when data are already stored
Iocally and thus performing the union can be done in near-
linear time in the size of the answers returned from each data
source (and certainly in linear time in the number of 1/0s) us
ing either a hash table or an ordered index; it can also captur
the bandwidth usage in case data are stored at each source.

. Number-of-Sources Cost Model (NSCM):We denote by
|7| the number of sources i andc¢(7) = |7|. Such a
model applies when the system is being charged for every
query over any of the sources.

. Arbitrary Source Cost Model (ASCM): Here we assume
each sourcé; is associated with an arbitrary cestincurred
in querying it. Hence¢(7) = > . ., ci. This model ap-
plies when the system is charged on different sources differ
ently.

Coverage: Given a subset of sourcés, we would like to define
the coverageof 7 w.r.t. S as the expected value of the fraction of
answers t@)(S) that we can obtain frord .

DEFINITION 2.3 (CovERAGEPROBLEM). Given a setS of
data sources, a dependency grapliS), and a subse? C S of
sources, compute the expected valu ﬂ . m|

In certain cases, such as when we know only copying frac(ems
we have a fraction-copying DAGYZ(! cannot be uniquely de-
termined byG(S), and hence we are interested in obtaining the
(M) i i
expected value o%. The coverage problem will play an im-

portant role in the other problems we consider in the paper.

Optimization problems: We now formally define our optimiza-
tion problems, given a cost model

The cost-minimization problentries to find a minimal set of
sources that still yields all the answers to the query:

DEFINITION 2.4 (CoSTMINIMIZATION PROBLEM (CMP)).
Given a query®, a setS of data sources, and a dependency graph
G(S), find a subsef” C S such that

1.Q(T) = Q(S);

2. foranyZ’ C S,if Q(T") = Q(S), thenc(T') > ¢(7). O
The maximum-coverage probletnies to find the best answer

(measured in number of tuples) that can be obtained with d fixe

cost limit.

DEFINITION 2.5 (MAXIMUM COVERAGEPROBLEM (MCP)).
Given a query@, a setS of data sources, a dependency graph
G(S), and allowed cosCnq., find a subse?” C S such that

A<=2"B<=2 @
~,

®
2<A<4 7B>5
~

@ ® ® ®
©) (d)

Figure 2: (a) An example dependency graph. Each node is marked with thgource it represents and the number of independent tuples atkd by
that source; each edge is marked with the fraction of data beig copied. (b) An example of Limited Coverage Problem. (c) Iput dependency graph in
Example 3.8: each edge is associated with a fraction of 1 and sve omit the fractions; the marked nodes are those consideden computing coverage
of {S4, Se}. (d) An example dependency graph with selection predicatesn each node. The graphs on the right show two graphs constrted by
restricting to specific combinations of attribute values.

1. ¢(T) < Craa; S> may copy a fraction of the data of a sourgg, and we do not
2. forany7’ C S, if ¢(7") < Chnaz, then|Q(T)| < |Q(T)|. O know the overlap between the data they copied. Hencestimate
the coverage assuming each tuple is equally likely to beecbpi
The source-ordering problentries to find the optimal order of We establish three main results. First, we show that in gen-
sources in which to execute the query, so we return queryemssw eral, the coverage problem is #P-complete in the numbenotss
as quickly as possible. Intuitively, if we plot the curve bétnum- (Section 3.1.1). Second, we show that a PTIME randomizeat alg

ber of tuples returned as we query more sources, we want te max rithm yields arbitrarily good approximations of the covgeaSec-
imize the area under the curve. Formally, Iebe a permutation tjon 3.1.2). Finally, we show that the hardness of the pmble

of the data sources, wherH(j) denotes thejth source in the comes from allowing a copier to copy only a fraction of theadat
permutationI. We define the area below a curve that represents from the original source (Section 3.1.3).

answering the query with respect to permutafibas o
l 3.1.1 The limited coverage problem
_ Ry i) Our results rely on identifying a limited version of the coage
Ao ;C({SH(Z)}) Q=145 DI problem and relating it to the computation of the probapitif a
)) boolean formula. In the limited-coverage problem we havegles
The source ordering problem can be defined as follows. original sourcethat independently provides data, a set of sources
that copy from the original source directly or transitivedpd a sin-
gle sinksource that is not copied by any other source (see Fig.2(b)
for an example).

DEFINITION 2.6 (SOURCEORDERINGPROBLEM (SOP)).
Given a query?, a set of source§ = {S1,..., S;}, adependency
graph G(S8), find a permutationl,,; of {1,...,1} such that for
any other permutatiofil, we haveAq (Ilop:) > Ag(I1). d DEFINITION 3.1 (LiIMITED COVERAGEPROBLEM). Thelim-

ited coverage problem considers a set of data souscegth depen-

ExAampPLE 2.7. Consider the dependency graphin Fig.2(a). For dency graphG(S) = (V, E) that satisfies the following properties:
the cost minimization problem, an optimal solutiod &, Si, S5}

w.r.t. the linear cost model (with cost 100 + 100 + 200=400utB o there exi§tsjucsjt one sourcy € S whose nodey € V has
this solution is not optimal w.r.t. the number-of-sourcestanodel, no outgoing edges,
where the optimal solution &5, S } instead e there exists just one sourég € S whose node; € V has
Now assume we can query at most one source (the number- ggl;nggmggpiﬂ%?n’tsngdds tuples
of-sources model) for the maximum coverage problem. Qugryi '
Se} is the optimal solution, returning 255 tuples in expectatio ~ The limited coverage problem is to comp 7| assuming equal
ol

Finally, w.r.t. the number-of-sources model the optimainmgta- probability of a tuple being copied, whe}#/| is the number of tu-

tion of sources iss — S5 and then the rest of the sources (which ples ing. 0

do not add new tuples). O o]

We reduce the limited coverage problem to the problem of find-

ing the probability of a boolean formul&in DNF form constructed

3. THE COVERAGE PROBLEM O astolows Y

We begin by considering the coverage problem, which is fun- .)))

damental to all of the other three problems. In Section 34, w e There is a boolean variable i for every edge inG. Each

consider the case when all we know is the fraction of tuplésgbe variable is independent of the others. For the variableseorr

copied between sources. In Section 3.2 we study the casewden sponding tae;; = (vi, v;) € E, its probability of beingrue

know more about the specific set of tuples being copied, Spdci is fi,5, wheref; ; is the fraction associated with the edge.

e For each distinct path fromd; to So in G (there must exist
such a path) consisting a sequence of edges. . . , ex }, we
add a conjuncte; A ... Aeg) to F.

by a selection query or a histogram. Table 1 summarizes sutse
we establish in this section.

3.1 Copying a fraction of tuples

In practice we often do not have a-priori knowledge of which
tuples are more likely to be copied by which sources. In sasles
we cannot compute a precise coverage, since two copieend (ex AeaNer)V (ea Nes Aer)V (es Aes Aes)

For Fig. 2(b), the coverage problem can be reduced to congputi
probability of the following DNF

Table 1: Summary of results for the coverage problem for various copynodels. Let N be the number of nodes in the input dependency graphi be
the number of edgesk be the number of attributes on which selection predicates ohistograms are presentp be the maximum number of constants
in predicates for each attribute on each edge when selectigredicates are present and the maximum number of buckets foeach attribute on each

edge when histograms are present, and = 105’2% . For some copying models we consider two cases: attributesessindependent or correlated.
Fraction-copying | Full-copying Select-copying Histogram-copying
Exact Solution #P-complete O(N + E) | Attr. Dep: O((2bE)*(N + E)) #P-complete
Attr. Indep: O(bkE(N + E))
(e, 6)-approx O(LNE) N/A N/A Attr. Dep: O((bE)*LNE)
Attr. Indep: O(bkLN E?)

The probability of a boolean formula is defined as the sum of
the probabilities of all its satisfying assignments. Thhofeing
lemma provides the key result that we will use next by retathe
coverage problem and the probability Bf

LEMMA 3.2. The probability ofF constructed as described is
equal to%. O

The lemma below shows that even the limited-coverage pnmoble
is #P-hard. It is proved by a reduction from the #P-completdp
lem of counting the number of satisfying assignments in autbie
monotone 2-DNF formula [21].

LEMMA 3.3. The limited coverage problem is #P-hard. O

Finally, we establish the #P-completeness of the genersiore
of the coverage problem.

THEOREM 3.4. Given a setS of data sources, a dependency
graphG(S), and asubsel” C S, the associated coverage problem
is #P-complete in the number of sourcesSin a

3.1.2 Approximating coverage

This procedure is repeatdd times and the following theorem
shows that we can get an estimation that is arbitrarily ctoshe
correct coverage in polynomial number of iterations. Siedly,
for a given allowed erroe > 0, we can ensure that the probability
of the error exceedingis at mos®, when the number of iterations

1
is more thanloge#. In other words, we can arbitrarily reduce the
probability of exceeding a given error bound in polynomiairber

of iterations. Since each iteration is polynomial in the iemof
1
edgest = |E| of the graph, the total complexity @(EIZL;?)).
THEOREM 3.5. If L > “’i@ and the randomized algorithm
satisfiesF in C of the L iterations, thenPr(| Pr(F) — C—LL| >
€) < 4, wherePr(F) is the true probability ofF. i

Next, we show how to solve the general coverage problem us-
ing the limited coverage problem. Consider the Setf sources
and a subsef C S, and our goal is to estimatg—i. Algorithm
COVERAGE first computes the coverage @f on tuples indepen-
dently added by each source. Since the contribution of suplé
by every source it is independent of other sourcesdh these
contributions are added to obtain the total coverage.

We now show that we can approximate the coverage problem
with a monte-carlo based algorithm. We will establish thésm in
two steps. First, we show that we can give an arbitrarily eateu
estimate for the limited coverage problem. We then showleat
can solve the general coverage problem by solving a lineabeu
of limited coverage problems.

To show the first part, we note that although the form#laon-
structed in Section 3.1.1 could be of size exponentiaFinwe can
apply the following randomized algorithm to compute thebaro
bility of F in time polynomial in|S]|.

0: Input: 8,7 C S, and dependency graghi(S).
Output: Estimation of%.
1. SetD = Zsies n(S;) andC = 0;
2: foreach (sourceS; € S wheren(S;) > 0 and.S; has at least ong
descendant i)
3: Construct the subgraph, of G induced by vertexes
S; and7 as follows: withS; as the root, traverse
child node to reach all possible descendantsof
in 7. Add a special nod€; in I, with edges to each
descendant af; in 7. Set the fractions associated with
all these added edges 1o
4: Compute the coveragg of {S} in I, by invoking
Algorithm LIMITED COVERAGE;
5: C =C+ ¢ *n(S;);
6: retun £.

0: Input: Dependency grapt for the limited coverage problem.
Output: Estimation of%.

1: Topologically sort the nodes ii: Sy first andS last;

2. SetCr, = 0. RepeatL times:

3: For each edge; ;, include it with probabilityf; ;
(and omit it with probability(1 — f; ;));

4. Decide in the topological order for each source if it is
connected thp;

5: if (Sy is connected t&o) C++.

6: return CTL

Algorithm 1: LimiTED COVERAGE Randomized algorithm to solve the
limited coverage problem.

Algorithm LiMITED COVERAGE (Algorithm 1) proceeds as fol-
lows. In every iteration, we adjust edges of the dependenayig
For each original edge with fractiof, ;, we include the edge with
probability f; ; and remove it otherwise. We count 1 if there exists
a path fromS to Sp, which can be decided in polynomial time.

Algorithm 2: CovERAGE Randomized algorithm to solve the coverage
problem.

THEOREM 3.6. Let N be the number of sources & E be the
number of edges in the input fraction-copying DAGS), andL =
1
loi(f). Algorithm CovERAGE (Algorithm 2) can give an arbitrar-
ily accurate estimate for the coverage problem in tie NE).
m]

3.1.3 APTIME subclass

Finally, we show that the high complexity of the coveragebpro
lem is due to the fact that each copier can copy only a fraaifon
data from an original source. AlgorithmukL COPYINGCOVER-
AGE (illustrated in Ex. 3.8, and described in Algorithm 3) cortgsu

the exact coverage of a set of sources when they are alldpikcs:
if they copy any data from a source, then they copy all of it.

0: Input: 8,7 C S, and dependency graghi(S).
- (T)
Output: SR
ns = 0;n¢ = 0;
. foreach (S € S) ns+t=n(95); IIn(S) is #(independent tuples) ifi.
. foreach(T € 7)
Q = {T}; Il the queue to traverse
while (Q # 0)
N = pop(Q);
if (IV is not visited yet)
ng+=n(N);
Mark N as visited;
PushN'’s parents intaQ;

EbooNouswNE

s return ng/ng;

Algorithm 3: Algorithm FuLL COPYINGCOVERAGE.

THEOREM 3.7. Let N be the number of sources &, E be
the number of edges in the input full-copying DAGS). Algo-
rithm FuLL CoPYINGCOVERAGE solves the coverage problem in
timeO(N + E). O

3. Solve the coverage problem for eaGh, i € [1, P], using
Algorithm FuLL CoPYINGCOVERAGE. Sum up the results
as the coverage fakr.

ExAamMPLE 3.9. Fig.2(d) shows an example dependency graph
with selection predicates on two attributelsand B. Attribute A
has two end points2 and 4, so has 5 possible ranges, < 2,
A=22< A<4, A=4,andA > 4. Similarly, there are
5 possible ranges foB: B < 2, B = 2,2 < B < 5, B = 5,
and B > 5. Hence, there are a total of 25 combinations, giving 25
full-copying DAGs. Fig.2(d) shows two of them; in the fudpging
DAGs, we have combined multiple ranges (suchBas< 2 and
B =2into B < 2). m|

The next theorem establishes complexity for the coverage-pr
lem over &ELECTCOPY dependency graphs.

THEOREM 3.10. Let N be the number of sourcesd) E be the
number of edges in the select-copying DAGS), k be the number
of distinct attributes on which predicates are specifiedd(sS),
andb be the maximum number of constants in predicates for each
attribute on each edge. Algorith®eLECTCOPYINGCOVERAGE
solves the coverage problem in tidg(20E)* (N + E)). O

EXAMPLE 3.8. Consider the dependency graph shown in Fig.2(c). If we know that the attributes are independent of each othen,

To compute the coverage 64, Ss}, Algorithm FuLL COPYING-
CoVERAGE traverses them and their ancestors in the ordefof

Sa, S1, Se, S3. The number of independently added tuples by these

nodes is 27. The total number of independent tuples of aitesu
is 36. So the coverage 25/36 = .75. O

3.2 Select copying

In this section we consider cases in which we have more infor-
mation. We start with the case where we know the exact setecti
predicates applied in copying. We then extend our resultafo
hybrid case, where we have histograms describing the dract
tuples copied for each bucket.

3.2.1 Conjunctive predicates

the complexity is significantly reduced, and we can show tte f
lowing result.

COROLLARY 3.11. Let N be the number of sources &, F
be the number of edges in the select-copying OAG), and k
be the number of distinct attributes on which predicatessareci-
fied inG(S). When for each source the attributes are independent
in value distribution, the coverage problem can be solvetinre
O(bKE(N + E)). m]

3.2.2 Histograms

In a histogram-copying DAG, each edge is annotated with-a his
togram that specifies the copy fraction for ranges of possi
tribute values, and we assume uniform copying within eactéit.i

copying DAG as the input. To solve the coverage problem, we
transform the select-copying DAG to a setfafl-copying DAGs
apply the PTIME algorithm BLL COPYINGCOVERAGE on each
result DAG and then aggregate the results. In the transtiwma
for each attribute we define a set of disjoint value rangeseaath
result DAG corresponds to a combination of value ranges ifer d
ferent attributes. We specify theeSECTCOPYINGCOVERAGEal-
gorithm rigorously as follows.

1. Suppose we have predicateskoattributesA, ..., Ax. For
each attributed;,: € [1, k], do the following. (1) Collect
and order all constants that appear in the predicadtesp a
on some edge; the results{a, ..., a;, }, wherel; is the
number of distinct constants fot; andVj € [1,1;),a; <
aj+1. (2) Consider alRl; + 1 possible value rangesi; <
a1, Ai =ar,a1 < A; <ag, A =as, ..., A > a, -

2. CreateP = Hle(Qli + 1) full-copying dependency graphs,
G1,...,Gp, each corresponding to a combination of value
ranges for thé attributes, denoted b®(G;), ¢ € [1, P]. Do
the following for eachG;. (1) For each edge, if R(G;)
satisfies the predicate ferin ¢, associate a fraction df;
otherwise, remove. (2) For each sourcé, updaten(S;)
as the number of independently added tuple®{d;) (we
assume such(.S;)’s are given as input).

histograms. We can proceed as in AlgorithmLECTCOPYING-
COVERAGE, except that each dependency graph we construct is a
fraction-copying DAG and computing its coverage is #P-hard

THEOREM 3.12. Let N be the number of sources &, E be
the number of edges in the histogram-copying D&), k be the
number of distinct attributes on which histograms are sfetiin
G(S), andb be the maximum number of buckets for each attribute
on each edge.

e The coverage problem is #P-complete.

e We can get am-approximation with confidendd —4) (in the
sense of Theorem 3.5) in the coverage in tiné¢h)" LN E)
in general, and inO(bkL N E?) when the attributes are in-

1
dependent, wheré = bgﬁ# O

4. MCP AND CMP

We now consider the closely-related maximum-coverage asd ¢
minimization problems. We begin by showing that in geneaihb
problems are intractable w.r.t. each of the cost models Viaatke
previously (Section 4.1). In Section 4.2 we show that we gan a
proximately solve both problems using a greedy algorithinalfy,
in Section 4.3 we identify copy patterns that are common &cpr
tice, under which we can exactly solve the problems witheesp

Table 2: Summary of complexity of (1) cost-minimization problem, (3 maximum-coverage problem, and (3) source-ordering prot@m. The results
apply to all cost models, unless otherwise specified. The agximation takes polynomial time.

[| Cost Minimization | Maximum Coverage | Source Ordering |
[Non-full-copying | NP-complete, MaxSNP-hard PP-hard | PP-hard | a For NSCM cost model
Full-copying NP-complete, MaxSNP-hard NP-complete in NP b | For LCM or ASCM cost model
Single-Source Copying PTIME PTIME®, NP-complete PTIME c | With PTIME coverage algorithm
Approximation log a-approx¥ (1- %)-appro% 2-approx
to certain cost models in polynomial time. The results of gec- 0: Input: SourcesS, dependency grap&(S), cost functionc.
tion are summarized in Tablé’2 Note that the results apply to 1 (g)UtpgtASetg %AS' afhthe ffs;llt-
. o :) . :) : 5=0,A=0;//Ais the set of answers.
all copying models (fraction-copying, select-copyingstograms 2 while (35 € & — § such thatl'(S) ¢ A) /IT(S) is the set of tuples
copying). ins. _
4.1 Complexity 3: Let Sy € S — S be the source with maximurhi?s;o’?‘;
As we show in Section 3, computing the coverage of a subsef 4: S=8SU{So}; A=AUT(So);
of sources is #P-complete. Interestingly, although theimarm 5 retun S;

coverage problem, which requires computing coverage of afse “Ajgorithm 4. GreepvAPPROX Greedy approximate algorithm for the
sources, is PP-ha‘fdthe cost minimization problem has a lower cost-minimization problem. For the maximum-cove_rage tmmbwe_only
complexity bound and is NP-complete. need to replace the while condition witB§ € S — S such thate(S) +
We first consider the restricted case where all copiers dke fu c(S) < Cmaa), WwhereCina. is the maximum allowed cost.
copying copiers. Section 3 shows that for this case findiagtiv-
erage of a set of sources takes only polynomial time. Howewer
next show that even for this case, both the cost minimizatiof- We start with the cost-minimization problem. Recall frontSe
lem and the maximum coverage problem are already NP-coenplet tion 3.1.2 that we can approximate the coverage in polynomia
time; thus, we can efficiently estimate the number of addéidu-
THEOREM 4.1. The following hold: ples we obtain by querying a new source. AlgorithrREEDYAP-

e The maximum-coverage problem is NP-complete w.r.t. the PROX (Algorithm 4) proceeds by including sources in a greedy
LCM, NSCM and ASCM cost models when all copiers are fashion: ititeratively picks the source that adds the maxmmum-
full-copying copiers. ber of new tuples per unit cost, until no more source can add ne

e The cost-minimization problem is NP-complete w.r.t. th&l.C answer tuples. The following result gives an approximatioar-
NSCM and ASCM cost models when all copiers are full- antee for REEDYAPPROX
copying copiers. a

. . THEOREM 4.3. Let « be the number of tuples in the largest
For the complexity of the maximum-coverage problem, thepro g rce in the input to the cost minimization probléBREEDY

uses a reduction from the Knapsack problem for the LCM and A pproxobtains alog a-factor approximation to the optimal solu-
ASCM cost models, and a reduction from the Set Cover problem tion; i.e., if the optimal cost i, GREEDYAPPROX0btaiNs a cost

for NSCM. For the cost-minimization problem, we use a défér ot ot mos. . log a. O
reduction from the Set Cover Problem (the reduction for LGM i
slightly different from that for the other two cost models).

For the unrestricted versions of the problems we have the fol
lowing results. Note that we have different complexity testor
the two problems in the general case: cost minimizationiregu
all answers to be returned, so we can ignore edges with a fraction
less than 1, but the maximum-coverage problem does not have t
same property and requires estimating source coverage.

Note that REEDYAPPROXcannot obtain a constant-factor ap-
proximation. Indeed, we can prove that the problem is MaxSNP
hard. This is because in our NP-completeness proofs for the cost-
minimization problem, the reduction from the Set Cover Rrob
preserves the approximation ratio and thus yields L-rédns{20],
so the MaxSNP-hardness of the Set Cover Problem carries over

THEOREM 4.2. The following hold: COROLLARY 4.4. The cost minimization problem is MaxSNP-

e The cost-minimization problem is NP-complete w.r.t. th&l,.C hard w.rt. the LCM, NSCM, and ASCM cost models. =

NSCM and ASCM cost models.
e The maximum-coverage problem is PP-hard w.rt. the LCM, Finally, we can easily revise REEDYA PPROXfOr the maximum

NSCM and ASCM cost models. O coverage problem by iterating till reaching the cost lingiglding
the following result.
4.2 Approximation

We now show that we can approximate the maximum-coverage
and cost-minimization problems using a greedy algorithat thns

in polynomial time. In the following sections we shall seattbn- 4.3 Sing|e-Source Copying
der certain restricted conditions, our greedy algorithm actually We consider dependency graphs that satisfy the singlesour

obtain optimal answers. copying property, i.e., each source copies from at most glesin

THEOREM 4.5. We can obtain &1 —)-factor approximation
to the optimal solution for the maximum-coverage problem. O

3precisely, all the hardness results in this section refénealecision ver- source, and copies all of its data. First, the following fesstab-
sions of the optimization problems; i.e., deciding if thesésts a solution lishes a PTIME complexity for cost minimization for all caabd-
achieving a given value of the objective function. els, and then we show a result for the maximum coverage proble

4pp-hardness [10] is the analog of #P-hardness for decisaiigms: for
a #P problem “computg (x)”, the corresponding PP decision problem is SMaxSNP-hardness corresponds to a class of problems thabotcha ap-
“Does there exist a solution th(x) > v, for a specifiedy?". proximated within a factor of1 + ¢) for anye > 0 (unlessP = NP) [20].

(@ (b) (©)

Figure 3: Example 4.8: (a) input dependency graph; (b)-(c) new an-
swer tuples a source can introduce after selecting each node

THEOREM 4.6. The cost minimization problem can be solved
optimally in PTIME w.r.t. the NSCM, LCM, and ASCM cost models
when all copiers are single-source copiers. ad

THEOREM 4.7. Let N be the number of sources §1andi be
the maximum number of sources that are allowed to be queried.
When all copiers are single-source copiers, we can find thienah
solution to the maximum coverage problem w.r.t. the nunolber-
sources cost model in tin@(IN). O

The full proof by induction is based on a greedy algorithm-(Al
gorithm 5) presented in the appendix. In our proof, we carsid
T, the optimal set ok sources, and, the best source that can be
added taZ;,. We arrive at a contradiction supposing the optimal set
of k + 1 sources is obtained by adding some souftéo a set7”’
of k sources, wher@”’ # 7.

Next we illustrate the greedy algorithm using an examplee Th
example also shows that the same algorithm is not guaramteed
obtain the optimal solution with respect to other cost medel

EXAMPLE 4.8. Consider a set of data sources with the depen-
dency graph in Fig.3(a) and assume we can query at most two
sources. Fig.3(b) shows the number of answer tuples eaahesou
can introduce initially and so we selest. Fig.3(c) shows the an-
swer tuples each source can introduce after selecfipgaccord-
ingly, we selec57 and obtain the answer séf5,, S7 }.

Note that if we consider the linear cost model and a maximum
allowed cost 35, the optimal answer {85, S¢}, but the greedy
algorithm incorrectly choose§S, }. O

In fact, the maximum coverage problem remains NP-complete
for the LCM and ASCM cost models. The NP-hardness proof fol-
lows from the fact that the reduction from 0-1 Knapsack used f
Theorem 4.1 only involves single-source copiers. Furthiege
single-source copying is a special case of full-copying, phob-
lem remains in NP.

The PP-hardness of the source ordering problem follows from
the hardness of the coverage problem (Theorem 3.4). When cov
erage takes polynomial time, e.g., with full-copying, tbeise or-
dering problem is easily seen to be in NP: given a solution, we
simply evaluate the total coverage in sequence and compate t
area under the curve. However, the exact complexity claderun
full-copying remains an open problem.

The main result of this section isfactor-2 approximatioralgo-
rithm for the source ordering problem. That is, if we dendie t
optimal permutation byI,,: and the permutation computed by our
algorithm byIT, thenA(IT) > A(Il,p¢)/2. In the rest of the section,
we first show that an optimal permutation must hawecamotonicity
property. We then show that although monotonicity does natg
antee an optimal solution, it ensures a 2-approximatiomalb,
we give a greedy algorithm that returns a monotonic pernauntat
in case we can compute coverage of a set of sources in polyno-
mial time, our greedy algorithm can generate a 2-approXxanan
polynomial time. Note that results in this section apply ltacast
models. We next start with the formal definition of the momite
ity property, which uses notiohncr: for a setS = {S1,...,S;} of
data sources and a permutatidrover {1, ..., 1},

Iner(1) {Suy s
Incr(i) (U;:1{Sl‘[(j)}> - <Uj;11{sn(j)}>'

DEFINITION5.2 (MONOTONIC PERMUTATION). Let S
{S1,...,S:} be a set of data sources ad¢(S) be its dependency
graph. A permutatiodl over{1,...,[} is said to bemonotonicif

. alner(i) Incr(i+1)
for each: € [1,1], we hav\.c(sn(i)) 2 o) O

Intuitively, the monotonicity property says that the rafeiro
crease of answer tuples as we query more sources decreases mo
tonically. Not surprisingly, we can show that the optimaimata-
tion for source ordering must be monotonic.

LEmMmA 5.3. Given a set of sourceS = {Si,...,S;} and a
dependency grapty(S). If IL,,: is an optimal permutation to the
source-ordering probleni],,; is monotonic. a

Whereas monotonicity is a necessary condition for optipali
the following lemma shows that it is not sufficient.

LEMMA 5.4. There exists a set of data sourcgs= {S1,...,Si},
a dependency grapl#(S), and a monotonic permutatiofl of
{1,...,1}, such thafll is not an optimal permutation to the source-
ordering problem. |

COROLLARY 4.9. The maximum coverage problem is NP-complete Next we prove the main result of this section: any monotonic

w.r.t. the LCM and ASCM cost models when all copiers are singl
source copiers. O

5. THE SOURCE ORDERING PROBLEM

Ordering the sources optimally is the key challenge for dimen
query answering system over dependent sources. Our goabiis t
der the sources in a way that returns answers as quickly atpms
Recall from Section 2 that we are trying to maximize the arateu
the curve that plots the cumulative number of answers retiwith
time, and that given a permutation of the sourbiesve denote the
area under the curve by (IT). The following theorem establishes
some basic complexity results for the coverage problem.

THEOREM 5.1. The following hold: (1) The decision version of
the source-ordering problem is PP-hard in the number of sesir
(2) Assuming finding the coverage takes polynomial time, the
decision version of the source-ordering problem is in NP.TBe
source ordering problem can be solved optimally in PTIME mhe
all copiers are single-source copiers. ad

permutation is at most a factor of two off from any other (and i
particular, the optimal) permutation.

THEOREM 5.5. LetS = {51, ..., S;} be a set of data sources
and G(S) be a dependency graph 6% LetIl,,: be the optimal
permutation to the source ordering problem arde a monotonic

permutation of1, ..., 1}. Then,A(IT) > 20eet), O

According to Theorem 5.5, we can design a 2-approximatien al
gorithm to the source ordering problem by greedily pickimgnext
source whose ratio of incremental return versus cost is mmlxi
Note that this algorithm does not necessarily generate filimal
solution (Lemma 5.4). In cases where we can solve the cogerag
problem in polynomial time, we can find the 2-approximation s
lution in polynomial time.

THEOREM 5.6. Let N be the number of sources dhand E be
the number of edges in the input full-copying DAGS). We can
find a 2-approximation solution to the source ordering peshlin
timeO(EN?).]

6. MORE COMPLEX QUERIES

Until now we considered answering the identity query ovar ou

Previous work [7, 8, 18, 25] developed algorithms for detect
when a data source can be ignored in answering a query. Yat oth

data sources. We now show how our results are used for querieswork [9] studied the use of probabilities to model sourcesrage

with selection, which are the most common in practice. We als
comment on projection and join queries.

Selection queries:A typical query over a large collection of sources
is specified by a selection predicate (typically by selertialues
in forms). We now show how to extend our results to queries tha
involve equality and comparison predicates. We denoteghefs
predicates byP.

We assume that for each data souf;e we can estimate the
selectivity s” of P for S;, i.e., the fraction of(S;) tuples inde-
pendently provided by; that satisfyP. We can use traditional es-
timation techniques for this purpose. When we assume eqobi p
ability of a source tuple being copied, the fraction of datpied
from sourceS; should have the same selectivity 8sw.r.t. P.
When we know the exact selection condition for copying, wiy on
consider the copied data that satisfy predic#es

Given any inputZ including a selection query with predicafe
we can transform the problem to an ingtitincluding an identity
query, such that solving any of the four problems we congjders
the same solution af andZ’. In particular, given a selection query
@ with predicateP, a set of sources§, and a dependency graph
G(S) = (V, E), we constructG?(S) as follows: (1)(V”, E”) =
(V, E), @Qn"(S;) = sT+n(S;), (3) if annotationR,; is a fraction,
RT; = R ;; if Ry; is a selection conditionR”; = R; j A P. We
then have the following result.

THEOREM 6.1. Any of the coverage problem, cost minimiza-
tion problem, maximum coverage problem, and the sourcerorde
ing problem gives the same solution for @EJS) w.r.t. Q, and (b)
G* (S) w.rt. the identity query. o

Projection queries: The main challenge introduced by projections
is duplicate elimination. When we project onto a subset of at
tributes, the number or fraction of tuples that merge to tmaes
tuple value may be different for different sources. In theegal
case, estimating the size of projection results requiregssing
most of the data in each source [5]. If we assume that datédaav
independently by different sources have the same fractioariy
projection, and assume random copying (so in expectatofraic-
tion of copied tuples remaining after a projection is the s&on all
data sources), we can directly apply the results from thiepa

Join queries: It is easy to extend our dependency model for cases
in which sources contain multiple tables, each with diffe@py-

ing sources and patterns. Under the random-copying assurmpt
our results extend to join queries in a rather straightfodwash-

ion. However, when we use selection queries to model theiegpy
pattern, we need to consider how to estimate the join seites.

We leave that to future work.

7. CONCLUSIONS AND RELATED WORK

We considered the problem of answering queries over larlge co
lection of possibly overlapping data sources. Although hesed
that many problems are intractable in general, we propossztly
or randomized approximation algorithms that ran in polyr@m
time and have provable quality guarantees. In addition,deati-
fied practical restricted classes of dependencies that gainomial-
time optimal solutions. Together, these results provideiadation
on which to build such an integration system. One intergstirec-
tion for future work is the case in which the data itself is etain,
and therefore seeing the data from multiple independentcesu
can affect our belief in the answer.

and overlap for data integration. These works are all barezbo-

erage of sources and did not consider dependence betweeesou
Several authors have discussed mechanisms that resufien-de

dencies between sources on the Web. Leskovec et al. [17] stud

influences in web-data, such as how blog linkage structwase

and [2] provides a formalism for creating web documents kpgyeo

ing portions of data from other documents. Our work is a fitep s

to integrating web data with such dependencies. Of coursega

body of recent work (see [4] for a tutorial) studies the ogibal

issue of tracking data provenance.

%i] R&%Es%%%’a}rltgg% G-Molina, and S. Abad. Quasiesp

Efficient data sharing for information retrieval systentsEDBT,

1988.

P. Atzeni and G. Mecca. Cut & paste. Rroc. of ACM PODS1997.

L. Berti-Equille, A. Das Sarma, X. Dong, A. Marian, and

D. Srivastava. Sailing the information ocean with awarsrafs

currents: Discovery and application of source dependdnderoc.

of CIDR, 2009.

P. Buneman and W. Tan. Provenance in databasd2oa of ACM

SIGMOD, 2007.

S. Chaudhuri, R. Motwani, and V. Narasayya. Random saxgbor

histogram construction: how much is enough®Pmc. of ACM

SIGMOD, 1998.

X. L. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava. &ial

detection of complex copying relationships between saurice

PVLDB, 2010.

0. Duschka. Query optimization using local completenés Proc.

of AAA| 1997.

O. Etzioni, K. Golden, and D. Weld. Tractable closed wlorl

reasoning with updates. Proc. of the Conference on Principles of

Knowledge Representation and Reasonit@p4.

D. Florescu, D. Koller, and A. Y. Levy. Using probabiiist

information in data integration. IRroc. of VLDB 1997.

J. Gill. Computational complexity of probabilisticring machines.

SIAM Journal on Computind(4), 1977.

L. Haas. The theory and practice of information intégra In Proc.

of ICDT, 2007.

A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper

J. Pollock, A. Rosenthal, and V. Sikka. Enterprise infoiiorat

integration: successes, challenges and controversi€sotm of ACM

SIGMOD, 2005.

A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data imtggpn: The

teenage years. IRroc. of VLDB 2006.

D. S. Hochbaum and A. Pathria. Analysis of the greedyraagh in

problems of maximunk-coverageManuscript 1994.

W. Hoeffding. Probability inequalities for sums of bmled random

variables. InJ. of the American Statistical Associatjd963.

S. Khuller, A. Moss, and J. Naor. The budgeted maximurecage

problem.Inf. Process. Let}.70(1), 1999.

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, andHMrst.

Cascading behavior in large blog graphsSIBM, 2007.

A. Y. Levy. Obtaining complete answers from incompldtgabases.

In Proc. of VLDB 1996.

C. Olston and J. Widom. Offering a precision-performautradeoff

for aggregation queries over replicated dataPtac. of VLDB 2000.

[20] C. Papadimitriou and M. Yannakakis. Optimization, apgmation,
and complexity classedCS$43, 1991.

[21] J. S. Provan and M. O. Ball. The complexity of countingscand of
computing the probability that a graph is connec®®M J. of
Computing 12, 1983.

[22] E. Rahm and P. A. Bernstein. A survey of approaches tonaatic
schema matching/LDB Journa 10(4):334-350, 2001.

[23] L. G. Valiant. The complexity of computing the permahéfCS
8(2), 1979.

[24] V. V. Vazirani. Approximation AlgorithmsSpringer-Verlag, 2001.

(2]
(3]

(4
(5]

(6]

(7]
(8]

El
[10]
[11]

[12]

(23]
[14]
[15]
[16]
[17]
(18]

[19]

[25] Z., S. Kambhampati, and U. Nambiar. Effectively miniagd using
coverage and overlap statistics for data integrafid¢DE, 17, 2005.

APPENDIX

A. PROOFS

Proof of Lemma 3.2: The probability that a random tuplec Sy

appears inSy is given byPr(t € Sflt € So) = % Now
consider tuple in So. The tuplet can appear ir%y through one of
the paths fromS, to Sy. The combined probability of these paths

is given by the probability ofF. O

Proof of Lemma 3.3: We prove the theorem with a reduction from
the following #P-complete problem of counting the numbesatf
isfying assignments in a bipartite monotone 2-DNF formalh]{

GivensetX = {z1,...,zn, fandY = {y1,...,Yny }
of boolean variables, and conjunds, . .., C,, where
eachC; is of the form(z; A yi), count the number of
satisfying assignments fof = (C1 VCa V...V Chn).

Given the input to the above problem, we construct an in-
put to the coverage problem whose solution gives an answer
to the above problem. Let the set of sources e =
{S°,81,...,8},, 88, ...,8%,,5°}. Letthe only source that adds

new tuples befi0 and the dependencies between the sources be as

follows. EachS} copies fromS®, andS® copies from eacl§7, and
all these edges have fractign= 0.5. Additionally, for each clause
C; = (z; A yk), add an edge frons} to S}, i.e., S; copies from
S}, with corresponding fractiofi = 1.0. We are now interested in
computing coverage of the set containing the single so{if¢é.
Intuitively, eachS} corresponds to variable;, S7 corresponds
to variabley;, and the sourc&® may obtain tuples of° only
through one of the “paths” corresponding to the clausesrefbee,
using Lemma 3.2, the coverage of the $6t'} is given by the
probability Pr of F in the input problem, where all variablesXa
andY are independent of one another and have a probabilitysof
each. Since each variable has a probability 6f the number of
satisfying assignmentdy and the probabilityPr of F are related
by N = Pr s 2m1+n2, O

Proof of Theorem 3.4: Since the limited-coverage problem is #P-
hard, the general version of the coverage problem is alshaté-

The general version of the coverage problem can be solved us-

ing a polynomial number of limited coverage problems (see Al
gorithm 2). If any of the limited-coverage problems givesaan
zero coverage, the general coverage problem has non-zego- co
age. Therefore, we establish the #P-completeness fromattie f
that the limited-coverage problem is in #P: the computatibtihe
probability of F is in #P. O

Proof of Theorem 3.5: Let X; € {0, 1} be the random variable
that is0 if the i'" iteration falsifies” and1 if it satisfies 7. We
have that expected valug X;) = Pr(F). Hence, using Hoeffd-
ing’s inequality [15], which is a special case of Chernofitsund,
we have

Pr(| Pr(F) — %| >e) < e 2
Our result follows by bounding the right-side by a

Proof of Theorem 3.6:Clearly, |Us,esSi| = 3. c s n(S:i) = D.
Furthermore, the number of tuples from any sousgeresent in
Us,e7Si is given by N;, whereN; = 0 if n(S;) = 0 or if S;

does not have any descendantZin Therefore we haveT) =

| Us,eT Si| =Y, Ni, and hence coverage given

Algorithm CoOVERAGE invokes LMITED COVERAGE at most
once for each data source, and thus also takes polynomialitim
the number of sources. O

Proof of Corollary 3.10: We create at most2bFE + 1)* full-
copying DAGs: each attribute has at mégt end points and so
at most2bE + 1 value ranges, and we consider all combinations of
ranges for thé attributes. For each full-copying DAG the coverage
problem can be solved in tin@(N + E) (Theorem 3.7). m|

Proof of Corollary 3.11: If we know that distinct attributes are
independent of each other, then the complexity is signifigan
reduced, and we can show the following result. In particular
if all attributes are independent of one another, the depacel
on k also becomes polynomial: Instead of consideriRg =
Hf:1(2li + 1) dependency graphs, we now only need to con-
siderS = Zf;l(Qli + 1) dependency graphs, corresponding to
the ranges of values for each attribute independently, ssritbed
below.

1. Suppose we have eL{JredlcateskoattrlbutesAl,...,Ak
2. For every attributed; appearing in any selection query, col-

lect and order all the constants;, , .. ., a;, } that appear in
the predicates! op a, at any edge. Suppose (without loss of
generalityvq, ai, < ai,.,

3. Defines! to be the select|V|ty of the'"

partlcular sourceSo.
4. CreateS = Y/, (2l; +1) dependency graph§i1, ..., Gs,

with all edge fractlons being or 1 as follows. Consider a
graph for one range, say, , < A < a;,. For every edge
disregard all predicates on attributes other tHa\ssociate a
fraction of0 if a predicate oA falsifies the condition above,

otherwise associate a fraction bf]
. Determine the coveragé of the graph based on the selectiv-

ities s?’s for each source in the graph: Source is assumed to
haves! tuples, and similarly all other sources are assumed to
have number of tuples given by their selectivities. Deteeni

I for the full-copying graph based on Section 3.1.3.
'Ilhe combined coverage Is given by the following expressio

> I«

q1=1..(I1+1),...,qp=1..(Ip +1) i=1..k

range forA on a

C =

Intuitively, we separately compute the coverage for eadsipte
range of values for each attribute. The coverage for eaclicam
tion of values is then given by their product because atebare
independent of each other. |

EXAMPLE A.l. In Figure 2(d), assumel < 2 had selectivity
of 0.3, and B < 2 had selectivity 0.4, then selectivity oA <
2AB < 2is0.3-04 = 0.12. Hence if the coverage of the
dependency graph correspondingA4o< 2 and B < 2is 1, then
the total fraction of tuples witld < 2 A B < 2 in the final source
is also bel, and its contribution to the coverage would é2. O

Proof of Theorem 3.12: The #P-completeness directly follows
from Theorem 3.4: the #P-hardness reduction carries ovel, a
once again coverage computation is in #P since we only need to
solve multiple fraction-copying coverage problems as igokithm
SELECTCOPYINGCOVERAGE: If at least one of the subproblems
has coverage> 0, the overall problem has coverage 0. For

the (e, §) approximation, the time complexity follows from The-
orem 3.5, Theorem 3.10, and Corollary 3.11: The algorithm co
responding to Theorem 3.5 is either applied@((bE)") graphs
(similar to the proof for Theorem 3.10) in general afdbk E)

graphs (similar to Corollary 3.11) when attributes are patelent
of each other. a

Proof of Theorem 4.1:

First bullet: We first prove hardness of the problem. NP-
hardness w.r.t. the LCM model can be proved by a reductian fro
the NP-hard 0-1 Knapsack problem. Given a maximum weight
W, a set ofn items each with valuqv,,...,v,} and weight
{w1,...,w,}, the 0-1 knapsack problem looks for a subset of
items whose total weight does not excdédand maximizes the
total value. Given a 0-1 Knapsack problem where = v; for
each: € [0,n], we can construct an equivalent MCP as follows.
For each item, create a sourcs; with v; independent tuples (and

tion 7' containing at least+1 sourcesg(7") > (k+1)xM.
SinceM > m? andk < m, we havec(7”) > ¢(T).

. “only if”: Consider an optimal solutiof for the CMP con-
taining k£ sources. If there is ang; € 7, we can replace
it with .S’ wheres; is the singleton set containingand the
resulting setZ”’ is still optimal. The set of thé& sets corre-
sponding to the sources i’ is a set cover fot/.

The proof that the decision version of CMP is NP-complete fol
lows as in the case of MCP above: For any solution we can eealua
the total cost and compute the coverage in polynomial tinmeges
the sources are full-copying. m|

Proof of Theorem 4.2: Cost minimization requireall tuples to

hence cost;). There is no dependency between the sources. Setpe covered and no edge with fraction less thagor select con-

Cmaz in the MCP tolV. We can easily prove the correspondence
of the optimal solution of the 0-1 Knapsack problem and tHe-so
tion of the maximum coverage problem.

NP-hardness w.r.t. the ASCM model can be proved by a similar
reduction.

We next prove NP-hardness w.r.t. the NSCM model by a reduc-
tion from the NP-hard Set Cover problem. Given a univérse-
{1,...,m}, subsets olJ, {51,...,3,}, such thatui_,5; = U,
the Set Cover problem decides if there is a set cover offsiatle
construct an input to the MCP as follows. Construcindependent
sourcesSt, . . ., S, where eactb;, i € [1,m], has a single tuple
i. Then, for each subset,j € [1,n] in the set cover problem,
construct a sourcé; in the MCP wheres’; copies all data from the
sources corresponding to all elementsspfand does not add any
new tuples. We can prove that there is a set cover offsit@nd
only if with costk the MCP has a solution that returns all indepen-
dently added source tuples (this can be decided in polyridimia
when all copyings are full-copying).

In NP: We next show that the decision version of the MCP is
NP-complete. Given a target maximum coverégsuppose a sub-
set7 of sources gives coverage C. Because all sources are
full-copying, we can get the coverage @f in polynomial time.
Additionally, the size of each source (i.e., coverage of #igle
source) can also be obtained in polynomial time. Hence,dche
of the cost models, we can polynomially give a solution egaeg
some maximum coveragé O

Second bullet: NP-hardness of the problem w.r.t. the NSCM and
ASCM models can be proved by a similar reduction from the Set
Cover Problem as in the proof of Theorem 4.1.

The hardness w.r.t. the LCM model is also through a reduction
from the Set Cover Problem, but constructed differently. a§e
sume an input to the Set Cover Problem, where for each eleiment
of U, there is a singleton set containing only(The problem still
remains NP-hard.)

We next construct an input to CMP as follows. Const®icion-
taining (m + n + 1) sources{Sar, S1, .. ., Sm, S1, ..., S5}, and
the following dependency DAG!(S). Si is the root ofG(S) and
containingM > m?, tuples. For each € [1,m], there is an edge
Si — Sar with fraction 1 andh(S;) = 1 (i.e., S; adds a single new
tuple ¢ that is not present ii¥r). For eachj € [1,n], S} copies
all data from the sources corresponding to all the elemdrsists;

(so the edge has fraction 1) and hds) = 0.

The solution of the above CMP has casif and only if there is

a set cover of sizé:

1. “if: If there is a set cover of sizk, pick the correspond-
ing set7 of sources from{Sy....,S;}. ClearlyT returns
all answer tuples. Further, the total cost of query answerin
e(T) < k= (M + m), since eaclt; has theM tuples from
S and at mostn other tuples. Now consider any other solu-

dition other thartrue) can guarantee all tuples in the derived re-
lation; thus, the problem can be solved by first removing aths
dependency edges and then solving the problem on the resulti
full-copying dependency graph. On the other hand, the maxim
coverage problem does not have the same property and thus re-
quires estimating coverage of a set of nodes, resulting in PP
hardness: PP-hardness follows from the #P-hardness ofothe c
erage problem (Theorem 3.4). a

Proofs of Theorem 4.3 and Theorem 4.5We have the follow-
ing direct L-reduction from the cost minimization problemthe
weighted set cover problem: The set of all tuples correspdad
the universal set/, and each sourcé§; corresponds to a subset
si € U, wheres; contains the elements corresponding to the tu-
ples inS;. The weight ofs; is the cost ofS;. GREEDYAPPROX
mimics the greedy algorithm for weighted set cover thatdgein
approximation ratio ofog « [24].

We can easily revise the REEDYAPPROX algorithm for the
maximum coverage problem (MCP): the only difference is that
iterate until reaching the cost limit. We call this thek EEDYA P-
PROXMCP, which obtains &1— 1)-approximation for the number-
of-sources cost model. Th — 1)-approximation is based on
reducing MCP to thé:-Coverage problem [14]. Further, we can
adapt the approximation ratio for all cost models using gpgmax-
imation algorithm for the Budgeted Maximum Coverage Proble
proposed in [16]; BMCP is a generalization of the set covebpr
lem with weights on elements and sets. a

Proof of Corollary 4.4: Note that our reductions from set cover in
the proof of Theorem 4.1 give L-reductions.pfapproximation to
the reduced CMP problem givespaapproximation to the original
set cover problem. O

Proof of Theorem 4.6: A simple algorithm yields an optimal so-
lution for all cost models. Note that under single-sourcpyaug,
the dependency graph is a tree. (1) We first find all “specidesd
in the tree: A node is special if it adds at least one tuple -inde
pendently, and no descendent node adds any tuple indepgnden
Note, clearly, that no two special nodes are ancestor/ddacgs
of each other. Further, any solution to CMP must include astle
one node from the subtree rooted at each special node. (2p&or
NSCM and LCM cost models, we simply return all special nodes
as the solution to CMP. For the ASCM cost model, from each sub-
tree rooted at each special node, we pick the source thathss |
cost. The set of selected nodes gives an optimal solutiottB.C
The following proposition establishes several propertieghe
restricted case on which we base Algorithm 5, used in theffuoo
Theorem 4.7.

PROPOSITION A.2. Let S be a set of sources with dependency
graph G(S), where all copiers are single-source copiers. The
graph G(S) has the following properties.

O: Input: SourcesS, dependency grapt¥(S), maximum number of alt
lowed sourceg:.
Output: Set7 C S as the result of MCP.
T =0
. TraverseG(S) in depth-first order; for the root nod®, A[R] =
n(R), and for any other nod&, A[S] = n(S) + A[P(S)], where
P(S) is the parent of.
for(i=1:k)
Find the leaf nodd with the highestA[L];
Add L to 7 and markA[L] = 0;
while (A[P(L)] # 0)
for each (descendanD of P(L) but not of L)
A[D] = A[D] — A[P(L)};
A[P(L)] =0; L = P(L);

NE

oINoURW

10: return 7;

Algorithm 5: SscMCP: Greedy algorithm for the maximum coverage
problem with respect to the number-of-sources cost modehvetii copiers
are single-source copiers.

T
g

SI;/ S/
Figure 4: Leaf Root Paths under single-source copying.

’

e The graphG(S) is a set of trees. _
e Given anumbek, there exists a sét of k leaf nodes irG(S),

such that there does not exist any sek @burces whose cov-

erage is higher tharL. _
e LetS be aleaf node irG(S). Let.S C S be a set of nodes

in G(S). LetS’ be the node irf that has the lowest common
ancestor withS and letS.ca be this ancestor. Letl be the
set of nodes on the path frofrca (excludingSrca) to S.
Then

(SU{SH —(S)=>_ n(4). O

A€A

Proof of Theorem 4.7: We prove the optimality of SCMCP by
showing that the optimat + 1 set of sources can be obtained by
adding one source to the optimal solution fosources. This, in
conjunction with the fact that the greedy algorithm obvigug-
turns the optimal solution fak = 1, completes the proof.

We prove the result by contradiction. L&t be the optimal set
of k& sources and le$ be the best source that can be added;to
Suppose the optimal set &f+ 1 sources i7" U {S’}, whereT”’
is a set of sources anfl’ is a source such that’ ¢ 7;, U {S}.
(We must have such a souréé ¢ 7, U {S} as otherwiseZ;, U
{S} = T" U {S'}, which is optimal fork + 1 sources.) We have
(T) > (T")y and(T, U{S}) < (T'U{S’}). We show that we can
either find a solution withk sources better thaf, or a solution
with k + 1 sources better tha?’ U {S'}.

The main idea used in our argument is the fact that the cogerag
of any set of sources can be represented by the nodes cowered b
leaf—root paths from all the nodes in the set. Whenever a source is

added, the increase in coverage is given by the total nunfher-o
covered nodes from it to the covered set of nodes (Propndiia).
Consider sources§, S’, and the setd; and7’ as shown in Fig-
ure 4. The figure has marked places where the-lgabt paths of
S, 8" meet the already covered nodesZafand7’. Let P, and

P’ be the points wher§’ and.S meet7;, and7’ respectively. The
increase ir7, due toS’ is a and the increase ifi”’ is a + §: Since
there is just one leafroot path because each source copies from
at most one other source, theéuples added must completely over-
lap. Further,S" must add more tuples t&’, otherwiseZ; U {S'}
would result in a higher coverage. Similarly, the figure shahe
increments on adding to 7’ and7;.

Recall S’ ¢ T,. LetS” be the source ir7; that meetsS”’s
leaf—path atP;, with number of tuples added till then beingWe
must haver > « as otherwiseZ,, — S” + S’ is a better solution
for k sources. AsS”’ meetsS’ at Py, it cannot belong t&”’. Now
consider addings” instead ofS’ to 7’. If ¢ > a, we have an
even better solution fak + 1 sources. Otherwise, if = a, S’ and
S’ are equivalent in terms of coverage addition, &idJ {S” } is
also optimal fork + 1 sources. Hence, we find some ottt#r ¢
7w U{S}, Sy # 5, instead ofS" and apply the same argument
above. O

Proof of Theorem 5.1: Since the coverage problem was shown to
be #P-hard, and the decision version of the source orderioig- p
lem is at least as hard, we obtain PP-hardness. When the eompu
tation of coverage can be performed in polynomial time, foy a
sequence, we progressively compute the coverage for egenf s
sources, and thus can compute the exact area under the thmve.
der single-source copying, the source ordering problenorbes
PTIME, based on the observation from the proof of Theorem 4.6
as a greedy ordering of the special nodes yields an optirh&i@o.

]

Proof of Lemma 5.3: Suppose, in contrast, thHt,,; is not mono-
tonic. If we denote:; = ¢(S,,,(;)), then there exists< [1,1-1],
such that™) < I"cc’f“l“). Constructll as the same ad,
except thall(: + 1) = Il,p (i) @andIL(i) = ILope (2 + 1). We next
show thafll is strictly better tharil,,, leading to a contradiction.
After switchingIl,,:(7) andIlope (i + 1) to getll, we have
A(Tpe) — A(TT)
= ¢ - Iner(i) + civ1 - (Iner(d) + Iner(i + 1))
—Cit1 - Incr(i+1) — ¢ - (Incr(d) + Iner(i + 1))
= ciy1-Iner(i) —ci - Iner(i+1) <0

This proves the claim. |

Proof of Lemma 5.4: ConsiderS with 103 data sources. For each
i € [1,100], S; independently provides a single tuple. Source
S101 copies all data from{Si,...,Ss0}; source Sig2 copies
all data from{Ss1,...,Si00}; sourceSio3 copies all data from
{Sa2s,...,S75}; and none of these three sources adds new tuples.
Consider the source orderirjos — Si02 — Si01 and then an
arbitrary ordering of the rest of the sources. Under the rarol-
sources cost model, the rate of increase of coverage is mm@not
cally decreasing; that is, the permutation is monotonicweicr,

it is not optimal: an optimal permutation Bo1 — Si02 — Si03
(and then the rest of the sources).

Proof of Lemma 5.5: Let C = Y\, ¢(S;). Also, (S) =
S, Incr(i). Then, we have
A(llopt) < C-(S).

Sincell is monotonic, for each unit of cost, the incremental return
decreases monotonically. Thus, we have

! J -y A(Mopt)
:Jz_:l(ZIncrz)ZZ: 5)271)

i=1

