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Abstract

Providing Best-Effort Services in Dataspace Systems

Xin Dong

Chair of the Supervisory Committee:

Professor Alon Y. Halevy

Computer Science and Engineering

Nowadays many data sharing applications need to manage a dataspace [68], which contains

a number of heterogeneous data sources and partially unstructured data. Such scenarios

include large enterprises, collaborative scientific projects, digital libraries, personal infor-

mation, and the Web. Understanding the relationships between the data sources requires

specifying schema mappings, such as one stating that full-name in one data source corre-

sponds to the concatenation of first-name and last-name in another data source. However,

the data sources in a dataspace are only loosely coupled, so we may not have schema map-

pings specified up front. This dissertation studies how to provide best-effort search, querying

and browsing services in a dataspace system, even when precise schema mappings are not

present.

To provide useful services over all data in a dataspace, we need to resolve heterogeneity

in the data. Heterogeneity exists at three levels in a dataspace. At the instance level, the

same real-world entity can be referred to using different values; for example, a person can

be referred to as “Mike” in some data sources and as “Michael” in others. At the schema

level, the same domain can be described using different schemas; for example, a person

can be described by his first-name and last-name in one data source and by his full-name

and other-name in another data source. At the query level, user queries can be composed

according to a schema different from the source schema, or even in a language that is not

supported by the data model of the source data; for example, a user may compose a SQL





query whereas some data sources are unstructured.

In this dissertation we describe solutions for resolving heterogeneity in a dataspace. To

resolve heterogeneity at the instance level, we describe an algorithm that reconcile references

that refer to the same real-world entity. Our algorithm can be applied to references that

belong to multiple classes where rich associations between the references exist. To resolve

heterogeneity at the schema level, we propose the concept of probabilistic schema mapping,

with which we can return approximate answers even when precise mappings do not exist.

We study the complexity of query answering with respect to probabilistic mappings. To

resolve heterogeneity at the query level, we design an index over heterogeneous data in a

dataspace. Our index extends inverted lists to capture both text and structure of the data

to facilitate efficient answering of queries that combine keywords and structure. In addition,

we design an algorithm that answers structured queries on unstructured data, such that we

can provide seamless search on both structured and unstructured data.

Finally, we have grounded all our technical solutions to a particular system, the Semex

Personal Information Management System. Semex provides a logical view of one’s personal

information, such that it supports associative browsing and provides seamless search and

querying over one’s personal data.
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1

Chapter 1

INTRODUCTION

Nowadays many data sharing applications need to manage a dataspace [68], which con-

tains a number of heterogeneous data sources and partially unstructured data. Such sce-

narios include large enterprises, collaborative scientific projects, digital libraries, personal

information, and the Web. Heterogeneity exists in various aspects of the data in a dataspace.

It can exist at the schema level; for example, a person can be described by his first-name

and last-name in one data source and by his full-name and used-name in another data source.

It can also exist at the instance level; for example, the person can be referred to as “Mike”

in some data sources and as “Michael” in others. Understanding the relationships between

the data sources requires specifying schema mappings, such as one stating that full-name

in one data source corresponds to the concatenation of first-name and last-name in another

data source. However, the data sources in a dataspace are only loosely coupled, so we

may not have schema mappings specified upfront. This dissertation studies how to provide

best-effort search, querying and browsing services in a dataspace system, even when precise

schema mappings are not present.

1.1 Traditional Data Integration Systems

We begin this chapter by reviewing the state of the art for managing heterogeneous data.

As a consequence of the advent of modern networking technologies and the rapid evolution

of data management technologies, many applications need to manage a multitude of data

sources, where data sets are produced independently by different organizations. These

data sets can be highly heterogeneous, describing the same domain using different schemas

and referring to the same real-world entity using different attribute values. To provide

users a unified view of these data, we need to combine data residing at autonomous and
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Figure 1.1: Architecture of data integration systems.

heterogeneous sources.

As depicted in Figure 1.1, a traditional data integration system (surveyed in [128, 90,

69, 70]) obtains this goal by specifying a mediated schema, which provides an integrated

and virtual view of the disparate sources and captures the salient aspects of the domain

being considered. Users query the underlying data by composing queries over the mediated

schema. To retrieve answers from the various data sources, the system builds schema

mappings between the source schemas and the mediated schema, and uses these mappings

to reformulate a user query into a set of queries on the data sources.

A schema mapping specifies the semantic relationship between the contents of different

data sources. As a simple example, consider the following source schema S and mediated

schema T .

S: Author(aID, aName)

Paper(pID, pTitle, pYear)

AuthoredBy(aID, pID)

T: Paper(title, year, author)

The source schema describes papers and their authors using three tables. The mediated

schema describes such information using a single table. The schema mapping between them,



3

specified as follows, states that the Paper table in the mediated schema can be obtained by

joining the three tables in the data source.

SELECT P.pTitle AS title, P.pYear AS year, A.aName AS author

FROM Author AS A, Paper AS P, AuthoredBy AS B

WHERE A.aID=B.aID AND P.pID=B.pID

A data integration system heavily relies on the mappings between the data sources and

the mediated schema for query reformulation. However, it is well known that creating and

maintaining such mappings is non-trivial and requires significant resources, upfront effort,

and technical expertise. Recently, there has been significant research on semi-automatically

generating these schema mappings. For our example source and target schemas, the schema

mapping tool first creates correspondences between the attributes, such as the correspon-

dence between pTitle in the source schema and title in the mediated schema, and the one

between aName in the source schema and author in the mediated schema. Then, according

to the attribute correspondences, the tool generates the query that specifies the schema

mapping. However, even with such tools, domain experts need to get involved to refine

the automatically generated mappings. Therefore, generating schema mappings is still the

major bottleneck in building a data integration system.

1.2 Dataspaces

Recently, [68] proposed the concept of dataspace, which is a collection of loosely-coupled

heterogeneous data sources. Schema mappings may not exist between the data sources,

either because it is hard and tedious to create them, or because it is even impossible to

generate precise mappings. Before we describe dataspace systems in detail, we first give

three example scenarios that motivate us for studying dataspace management.

Personal information management: Owing to the affordability of large amounts of

storage, individual computer users have developed their own vast collections of data on

their desktops. Personal data typically contain unstructured data, such as text documents,

and also some structured or semi-structured data, such as address books and spreadsheets.
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Those data are created and managed by different applications and are heterogeneous by na-

ture. Currently, operating systems organize personal information into directory hierarchies,

where data created by different applications are often stored in different directories for the

particular applications.

Personal Information Management (PIM) [79] aims at offering easy access and manipu-

lation of all of the information on one’s desktop, with possible extension to mobile devices,

personal information on the Web, and even all the information accessed during a person’s

life time. Recent desktop search tools such as Google Desktop Search [63], Yahoo! Desktop

Search [140] and Windows Desktop Search [135] are an important first step towards PIM;

however, they are limited to keyword search. The next step for PIM is to allow the user

to search the desktop in more meaningful ways, asking questions such as “find the restau-

rant where we went to celebrate Joan’s birthday,” “find all emails with comments on my

dissertation sent by my committee members,” and “list all software I have participated in

developing and count the number of lines of code I wrote.” To answer such questions, a

PIM system needs to seamlessly mesh the disparate personal data created by different ap-

plications. However, typical PIM users are not skilled enough to provide mappings between

data sources; sophisticated users, on the other hand, may not be motivated to go through

the tedious process of mapping generation. Hence, we often do not have mappings between

the data sources.

Web-scale information management: The World Wide Web has been dominated by

unstructured data since its inception; however, recently we are witnessing an increase both

in the volume and in the variety of structured data on the web. The prime example of such

data is the deep web, referring to content on the web that is stored in databases and served

by querying HTML forms. More recent examples of structure are a variety of annotation

schemes (e.g., Flickr [53], the ESP game [131], Google Co-op [64]) that enable people to

add labels to content (pages and images) on the web, and Google Base [65], a service that

allows users to upload structured data about any domain into a central repository.

Ideally, a web search engine should provide one uniform interface that enables users to

search all web data. To take a concrete example, suppose a user poses the query “The Da
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Vinci Code” to a web search engine. We would like the engine to return relevant webpages,

and in addition links to web forms where users can buy the book or the movie DVD,

entries from Google Base that sell second-hand books, and links to special sites that have

been annotated by movie enthusiasts as relevant. Providing such a search service requires

an understanding of the semantic relationships between the heterogeneous web sources.

However, the heterogeneity of the structure is at a scale that we have never seen before.

Completely reconciling heterogeneity in this context is inconceivable, especially given that

the structure and contents of the websites can evolve over time.

Bio-informatics data management: The last ten years has witnessed an explosion of

biological data, including sequenced human genome, gene arrays, protein structure, and sci-

entific literature. Biological databases typically consist of a mixture of data files, metadata,

sequences, annotations, and relational data obtained from various sources [126].

To do global analysis, biological researchers often need to access data from multiple

archival databases. Biology encompasses many domains of knowledge (molecular and cell

biology, genetics, structural biology, pharmacology, physiology, etc.), where each domain has

its own terminology and data needs and different domains are concerned with overlapping

or complementary entity types. Furthermore, the domains themselves are a subject of study

and knowledge on these domains is still evolving over time. Consequently, by nature there

will always be parts of the schema mappings that cannot be precisely specified.

Whereas in such applications it is critical for providing quality search and browsing,

we may not have mappings between the data sources. A DataSpace Support Platform

(DSSP) solves this problem by taking a data co-existence approach. It emphasizes pay-as-

you-go data management: provide some services from the outset and evolve the schema

mappings between the different sources on an as-needed basis. Given a query, a DSSP

generates best-effort or approximate answers from data sources where perfect mappings

do not exist. When a DSSP discovers a large number of sophisticated operations (e.g.,

answering relational queries, data mining) required over certain sources, it will guide the

users to make additional effort to integrate those sources more closely.

The goal of my dissertation is to provide best-effort search, querying and browsing as a
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dataspace system evolves, even when we do not have schema mappings or have only imperfect

mappings between the data sources. This is an important first step towards pay-as-you-go

data management, because only if we can offer “mapping-later” and even “mapping-never”

services, can we realize the promise of the pay-as-you-go principle.

1.3 Levels of Heterogeneity in Dataspaces

Managing dataspaces raises many new challenges that have not been addressed in previous

data-sharing systems. In particular, to provide useful services over all data in a dataspace,

the DSSP needs to resolve heterogeneity at three levels: instance level, schema level, and

query level (see Figure 1.2).

Instance-level heterogeneity: The first level of heterogeneity is the instance level: the

same real-world entity can be referred to using different values. In Figure 1.2, “Stonebraker,

M.” in D1, “Mike Stonebraker” in D2, and “Michael Stonebraker” in D3, indeed refer to

the same real-world person. Variations in representation arise for multiple reasons: mis-

spellings, use of abbreviations, different naming conventions, naming variations over time,

and the presence of several values for particular attributes.

To provide seamless search, querying and browsing of a dataspace, it is crucial that a

DSSP can detect the different object instances that refer to the same real-world entity. This

problem is known as reference reconciliation. This problem is hard in general, and has been

the subject of study in the Statistics, Database and Machine Learning communities. Most

of the previous work considered techniques for reconciling instances referred to by tuples

in a single database table, where typically each tuple contains a fair number of attributes

and all tuples contain the same set of attributes. A DSSP, instead, often needs to tackle

complex information spaces that contain instances of multiple classes and rich relationships

between the instances; in addition, instances may have only few attributes and instances of

the same class may have values for different sets of attributes.

Schema-level heterogeneity: The second level of heterogeneity is the schema level: the

same domain can be described using different schemas. Since the schemas are often indepen-

dently developed by different people in different real-world contexts, they often use different
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Figure 1.2: Heterogeneity at various levels in a dataspace.
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structure and terminology. Consider Figure 1.2 as an example. To describe authors of a

paper, D1 uses the author attribute of the Paper table, D2 nests the authors element under

the publication element and each authors element can have a set of author sub-elements, and

D3 uses text to describe a paper and its authors.

Recall from Section 1.1 that to answer a query on heterogeneous data sources, we need

to understand the semantic relationships between schemas, described by schema mappings.

Although there has been active research on semi-automatic schema mapping, specifying

schema mappings remains a hard and tedious process and in many dataspace applications

it is even not possible to find precise mappings.

Query-level heterogeneity: The third level of heterogeneity is the query level: user

queries can be composed not only according to a schema different from the source schema,

but also in a language that is not supported by the data model of the source data (e.g., a

SQL query over unstructured data). For example, to search for a paper titled “distributed

query processing” and authored by “Stonebraker”, a user can either do a keyword search,

or compose a SQL query, as shown in Figure 1.2. No matter what kind of queries the users

ask, they wish to apply the queries to all content in the dataspace, and retrieve information

from both structured and unstructured data sources. In addition, the users may not know

or remember the exact structural terms or attribute values in the data sources, but rather

use those that they feel best express their information needs.

A DSSP aims to provide seamless search and querying over all data in the dataspace.

Recently the database community has studied how to do keyword search on structured

data such as relational data or XML data [73, 4, 15, 139, 74]. However, providing seamless

querying is far beyond supporting keyword search on structured and unstructured data: the

system needs to identify the data sources that are relevant to the query, it needs to provide a

meaningful ranking for answers from different data sources, and it needs to be able to answer

structured queries on unstructured data. Furthermore, structured querying is often too

strict in requiring detailed knowledge of the underlying schemas, whereas keyword search

is often inadequate for sophisticated users who wish to specify structural requirements.

To improve users’ querying experience, a DSSP needs to support new kinds of querying
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paradigms that combine structured and unstructured querying in a fundamental way.

1.4 Contributions of the Dissertation

This dissertation makes the following contributions.

Reference reconciliation

Chapter 2 describes a reference reconciliation algorithm to resolve heterogeneity at the

instance level. It studies the problem for a complex information space, which does not just

consist of a set of tuples as in previous work, but can be viewed as a network of instances of

multiple classes and associations between the instances, where each instance in itself may

contain only limited amount of information.

Our algorithm extends traditional reference reconciliation to complex information spaces.

First, we make extensive use of context information (the associations between references) to

provide evidence for reconciliation decisions. For example, given two references to persons,

we will consider their co-authors and email contacts to help decide whether to reconcile

them. Second, we propagate information between reconciliation decisions for different pairs

of references. For example, when we decide to reconcile two papers, we obtain additional

evidence for reconciling the person references to their authors. This, in turn, can further

increase the confidence in reconciling other papers authored by the reconciled persons.

Third, we address the lack of information in each reference by reference enrichment. For

example, when we reconcile two person references, we gather the different representations

of the person’s name, collect her different email addresses, and enlarge her list of co-authors

and email-contacts. This enriched reference can later be reconciled with other references

where we previously lacked information for the reconciliation.

To incorporate these three strategies, we construct a dependency graph, where a node

represents the similarity between a pair of references or attribute values, and an edge rep-

resents the dependency between the similarities. Our framework captures the dependency

between similarities of different reference pairs, allows propagating information from one

reconciliation decision to another, and helps enriching references right at the time of recon-

ciliation.
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We evaluate our reconciliation algorithm on several personal information data sets and

on the Cora citation data set. In the PIM context, the experiments show that our approach

significantly improves on standard reference reconciliation techniques. On the Cora data

set, the results show that our approach is comparable to recent adaptive approaches for

paper reconciliation, and at the same time produces accurate reconciliation on person and

publisher instances.

Indexing heterogeneous data

As one step in resolving heterogeneity at the query level, Chapter 3 describes a generic

index for loosely-coupled heterogeneous data to support efficiently answering queries that

contain keywords and are structure aware.

In particular, we define two types of queries that allow users to combine keywords

and structural requirements in a fundamental way. The two types of queries are predicate

queries and neighborhood keyword queries. A predicate query allows the user to specify both

keywords and simple structural requirements, such as “a paper with title ‘Birch’, authored

by ‘Raghu’, and published in ‘Sigmod 1996’”. A neighborhood keyword query is specified

by a set of keywords, but differs from traditional keyword search in that it also explores

associations between data items, and so it leverages additional structure that may exist in

the data or may have been automatically discovered. For example, searching for “Birch”

returns not only the papers and presentations that mention the Birch project, but also

people working on Birch and conferences in which Birch papers have been published. For

both types of queries, we emphasize returning possibly related data in answers to queries

rather than only the data that strictly satisfy the query.

Our contribution is a framework that indexes heterogeneous data from multiple sources

through a (virtual) central association network, so as to support predicate queries and

neighborhood keyword queries. Our index extends the traditional inverted list by capturing

not only text values, but also structural information when it is present. Specifically, we

describe extensions to inverted lists that capture attribute information and associations

between data items. We also explore several methods for extending inverted lists such that

they can incorporate various types of heterogeneity, including synonyms and hierarchies of
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attributes and associations.

Our experimental results show that our techniques improve search efficiency by an order

of magnitude and perform better than competing alternatives. In addition, the experiments

show that our technique scales well and supports efficient index updates.

Answering structured queries on unstructured data

Chapter 4 proposes seamless querying of structured and unstructured data. Querying

structured and unstructured data in isolation has been the main subject of research for

the fields of Databases and Information Retrieval. Recently the Database Community has

studied the problem of answering keyword queries on structured data such as relational

data or XML data. The only combination that has not been fully explored is answering

structured queries on unstructured data. We design an algorithm that answers structured

queries on unstructured data by constructing a keyword query from a given structured

query, and submitting the keyword query to the search engine for retrieving unstructured

data. This is another contribution we make in resolving heterogeneity at the query level.

The key element in our solution is to construct a query graph (essentially the associa-

tion network) for the structured query. Our algorithm selects node labels and edge labels

(representing attribute values and schema elements that appear in the query) that best

summarize the query graph, and uses them as keywords to the search engine. Our goal is

to include only necessary labels to construct the keyword query, so keyword search returns

exactly the query results and excludes irrelevant documents.

We describe an algorithm that extracts keywords based on the informativeness and

representativeness of a label: the former measures the amount of information provided by

the label, and the latter is the complement of the distraction that can be introduced by the

label. One important observation that guides our algorithm is that the informativeness of a

label also depends on the already selected keywords. For example, consider searching a paper

instance. The term “paper” is informative if we know nothing else about the paper, but its

informativeness decreases if we know the paper is about “dataspaces”, and further decreases

if we also know the paper is by “Halevy”. In other words, in a query graph, once we select

a label into the keyword set, the informativeness of other labels is reduced. Our algorithm
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uses the query graph to model the effect of a selected label on the informativeness of the rest

of the labels, and select the labels with the highest informativeness and representativeness

in a greedy fashion.

The experimental results show that our algorithm works fairly well for a large number

of query schemas from various domains even if we do not have domain knowledge, and the

results improve when knowledge of the schema and the data is available.

Probabilistic schema mapping

Finally, Chapter 5 proposes the concept of probabilistic schema mapping to accommodate

query answering in the presence of imprecise schema mappings and resolve heterogeneity at

the schema level.

We define probabilistic schema mapping as a set of possible (ordinary) mappings between

a source schema and a target schema, where each possible mapping has an associated prob-

ability. We begin by considering a simple class of mappings, where each mapping describes

a set of correspondences between the attributes of a source relation and the attributes of

a target relation. We introduce two possible semantics of probabilistic mappings. In the

first, called by-table semantics, we assume there exists a single correct mapping between the

source and the target, but we don’t know which one it is. In the second, called by-tuple

semantics, the correct mapping may depend on the particular tuple in the source to which

it is applied. In both cases, the semantics of query answers is a generalization of certain

answers [2] for data integration systems.

Beyond the definition of probabilities schema mappings, we make the following con-

tributions. First, we study query answering with respect to probabilistic mappings. We

show that the data complexity of answering select-project-join queries in the presence of

probabilistic mappings is PTIME for by-table semantics and #P-complete for by-tuple se-

mantics. We identify a large subclass of real-world queries for which we can still obtain all

the by-tuple answers in PTIME.

The size of a probabilistic mapping may be quite large, since it essentially enumerates a

probability distribution by listing every combination of events in the probability space. In

practice, we can often encode the same probability distribution much more concisely. Our
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second contribution is to identify two concise representations of probabilistic mappings for

which query answering can be done in PTIME in the size of the mapping. We also examine

the possibility of representing a probabilistic mapping as a Bayes Net, but show that query

answering may still be exponential in the size of a Bayes Net representation of a mapping.

Finally, we show we can extend our results to several more powerful mapping languages,

such as arbitrary GLAV mappings and complex mappings (where the correspondences are

between sets of attributes). We show how our definitions and formal results carry over to

these cases.

1.5 An Application: Personal Information Management

Whereas our technical contributions apply to dataspace applications in general, we have

grounded them into a particular system, the Semex (short for SEMantic EXplorer) Personal

Information Management System [43, 24]. To further motivate the technical problems we

solve in the dissertation, we next describe the goals of Semex and the challenges we face to

achieve these goals. We describe the Semex system in detail in Chapter 6.

As early as in 1945, Vannevar Bush [22] described the vision of a Personal Memex, which

was motivated by the observation that our mind does not think by way of directory hier-

archies, but rather by following associations between related objects. For example, a user

may think of a person, emails sent by the person, then jump to thinking of one of her

papers, papers cited by that paper, etc. However, currently operating systems organize

personal information into directory trees, thus users need to examine different directories

or open specific applications to access the data. Desktop search tools such as Google Desk-

top Search [63], Yahoo! Desktop Search [140] and Windows Desktop Search [135] provide

keyword search on data across applications, but it does not allow users to browse or search

their information by following associations either.

We built the Semex System, which offers users a flexible platform for personal informa-

tion management. Semex has two main goals. The first goal is to enable browsing personal

information by association. The challenge is to automatically create associations between

data items on one’s desktop. The second goal is to leverage the associations we created to

provide a better search tool to increase users’ productivity. For this purpose, Semex enables
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lightweight information integration and provides a uniform interface to search across both

structured and unstructured data. We next elaborate on each of these goals.

1.5.1 Browsing by Association

The key impediment to browsing personal information by association is that data on the

desktop is stored by application and in directory hierarchies, whereas browsing by association

requires a logical view of the objects on the desktop and the relations between them. As

a simple example, information about people is scattered across our emails, address book,

and text and presentation files. Even answering a simple query, such as finding all of

one’s co-authors, requires significant work. Semex provides a logical view of one’s personal

information, based on meaningful objects and associations. The instantiation of the logical

view is indeed an association network. For example, users of Semex can browse their

personal information by objects such as Person, Publication and Message and associations

such as AuthoredBy, Cites and AttachedTo. Importantly, since users are typically not willing

to tolerate any overhead associated with creating additional structure in their personal data,

Semex attempts to create the logical view automatically.

It is impossible to anticipate in advance all the sources of associations between objects

in one’s personal information. Hence, it is important that Semex be extensible in the ways

in which associations can be added. Semex obtains objects and associations from multiple

types of sources. First, some associations are obtained by programs that are specific to

particular file types. In the simple case, Semex extracts objects and associations from

Address books and email clients (e.g., senders and recipients, phone numbers and email

addresses). In more complex cases, Semex extracts some associations (e.g., AuthorOf) by

analyzing Latex and Bibtex files. Second, associations can be obtained from external lists

or databases (e.g., a list of one’s graduate students or departmental colleagues). Finally,

complex associations can be derived from simple ones (e.g., one’s co-authors).

Extracting associations from multiple sources raises one of the important technical chal-

lenges for PIM. An association relates two objects in the world, and the objects are repre-

sented by references. In order to combine multiple sources of associations and to support
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effective browsing and querying, Semex needs to reconcile references; that is, to decide if

two references represent the same object in the world. Unlike previous work, the reconcilia-

tion problem is exacerbated in our context because each of the references typically contains

only little information. For example, a person can be referred to by her full name or an

abbreviated name in a citation, or only by an email address in emails. In Chapter 2 we will

discuss how we leverage the association network to resolve such instance-level heterogeneity.

1.5.2 Seamless Search and Querying

One of the key services of Semex is to support efficient search and querying over one’s

personal data, with extension to organizational data and the Web. Personal information

contains both unstructured data, such as text documents, and structured data, such as

address books and spreadsheets. In addition, a large volume of application data are a mix:

they contain some metadata that indicates the structure, and also rich text bodies (e.g.,

emails and Latex files). In addition to the data already on the desktop, a user may often

access some organizational data, such as the DBLP data, which contain useful information

about publications and researchers, and a departmental database that lists the courses and

instructors in the department.

Whereas data in the personal information space can be highly heterogeneous, typical

users are not skilled enough to provide schema mappings between the data sources. To

understand the semantic relationship between data sources and resolve such schema-level

heterogeneity, Semex needs to rely on automatic schema mapping tools, which may generate

imprecise mappings. We need to make the best use of such imprecise mappings and generate

approximate answers with respect to them even when the users are not in the loop to refine

the mappings. Chapter 5 proposes probabilistic schema mapping for this purpose.

Finally, to satisfy users’ various needs, Semex allows a spectrum of search strategies,

ranging from simple keyword search to expressive but sophisticated querying. Meanwhile,

personal data vary from unstructured to structured, and well-defined mappings may not

exist between different sources. To provide a uniform search interface through which users

can search all data unaware of the underlying heterogeneity, Semex needs to tackle the
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possible mismatch between the user query and the data model of a data source. In Chapter 3

and Chapter 4 we describe how we leverage the association network to resolve such query-

level heterogeneity.

1.6 Outline

The following four chapters–Chapter 2 to 5–describe reference reconciliation, indexing het-

erogeneous data, answering structured queries on unstructured data, and probabilistic

schema mappings, respectively. They elaborate on the ideas outlined in Section 1.4. Then,

Chapter 6 describes how we incorporate these technical solutions in the Semex Personal In-

formation Management system. Finally, Chapter 7 concludes the dissertation and discusses

directions for future research.

Parts of this dissertation have been published in conferences. In particular, the reference

reconciliation algorithm (Chapter 2) is described in [45], the indexing method (Chapter 3)

is described in [44], the algorithm for answering structured queries on unstructured data

(Chapter 4) is described in [91], and the concept of probabilistic schema mapping is described

in [47]. Finally, the Semex system is described in [43] and demonstrated in [24].
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Chapter 2

RESOLVING INSTANCE-LEVEL HETEROGENEITY:

REFERENCE RECONCILIATION

One of the major impediments to integrating data from multiple sources in a dataspace

is resolving references at the instance level (see Figure 2.1). Data sources have different

ways of referring to the same real-world entity. For example, recall from Section 1.5 that

in personal information the same person can be referred to using his full name, abbreviated

name, email addresses, and so on. To join data from multiple sources, and therefore, to

provide seamless search, querying and browsing, we must detect when different references

refer to the same real-world entity. This problem is known as reference reconciliation.

This chapter studies resolving heterogeneity at the instance level by reference recon-

ciliation. We begin by defining the reconciliation problem and giving an overview of our

approach. Then, Section 2.2 describes our framework for reference reconciliation, and Sec-

tion 2.3 describes the computation of similarities. Section 2.4 presents experimental evalu-

ation and Section 2.5 describes related work. Finally, Section 2.6 discusses the limitations

and extensions of our algorithm and Section 2.7 summarizes this chapter.

2.1 Problem Definition and Overview of Our Approach

Reference reconciliation has received significant attention in the literature, and its variations

have been referred to as record linkage [137], merge/purge [72], de-duplication [115], hard-

ening soft databases [34], reference matching [96], object identification [125] and identity

uncertainty [97]. Most of the previous work considered techniques for reconciling references

to a single class, where typically the data contain many attributes with each instance. How-

ever, a dataspace system often needs to tackle complex information spaces where instances

of multiple classes and rich relationships between the instances exist, a class may have only

a few attributes, and references typically have unknown attribute values.

In the rest of this section, we first define our notion of association network. We then
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Figure 2.1: Heterogeneity at the instance level in a dataspace.
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formally define the reference reconciliation problem and give an overview of our approach

using an example from the application of personal information management.

2.1.1 Association network

We describe the data from different sources using a domain model, which is close in spirit

to an E-R model. A domain model contains object classes such as Person, Publication and

Message, and associations such as AuthorOf, Cites, Sender, MentionedIn. Each object class

contains a set of attributes, and an attribute value is of atomic type (e.g., string, integer,

etc.). An object instance can have multiple values for the same attribute. An association

is a relationship between two instances (being of different classes or of the same class). We

assume that associations are directional, and in particular, each association has a domain

and a range, both being classes. For convenience, for a particular class C, we call both the

attributes of C and the associations whose domain is C as the properties of C. For example,

both attribute title and association author (whose domain is Paper and range is Person) are

properties of the class Paper.

Example 2.1. Figure 2.2(a) shows a subset of a domain model for a personal information

management application. The domain model contains four classes: Person, Article, Confer-

ence and Journal, each with a particular set of properties. The association properties are

denoted with “*”. As an example, the Person class has two attribute properties, name and

email, and two association properties, coAuthor and emailContact, whose values are links to

other Person instances. These associations link a Person instance with other Person instances

that they have co-authored with or have exchanged emails with. �

To further accommodate heterogeneity, our domain model also models (1) synonyms

among class, attribute and association names (as well as an association being synonymous

with an attribute), and (2) class or property hierarchies. Taking property hierarchies as an

example, hierarchies can be of sub-property type or sub-field type. The sub-property type

describes the is-a relationship between properties; for example, father is a sub-property of

parent. The sub-field type describes the is-a-part-of relationship between properties; for

example, city is a sub-field of address. Heterogeneity often arises in the way data sources
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Person (name, email, *coAuthor, *emailContact)

Article (title, year, pages, *authoredBy, *publishedIn)

Conference (name, year, location)

Journal (name, year, volume, number)

(a)

a1={title=“Distributed Query Processing in a Relational Data Base System”, pages = “169-180”,

authoredBy = p1, authoredBy = p2, authoredBy = p3, publishedIn = c1}

p1={name = “Robert S. Epstein”, name = “Epstein, R.S.”, coAuthor = p2, coAuthor = p3}

p2={name = “Michael Stonebraker”, name = “Stonebraker, M.”, name = “mike”,

email = “stonebraker@csail.mit.edu”, coAuthor = p1, coAuthor = p3, emailContact = p3}

p3={name = “Eugene Wong”, name = “Wong, E.”, email = “eugene@berkeley.edu”,

coAuthor = p1, coAuthor = p2, emailContact = p2}

c1={name = “ACM Conference on Management of Data”, name = “ACM SIGMOD”,

year = “1978”, location = “Austin, Texas”}

(b)

stonebraker@csail.mit.edu

169-180

Michael Stonebraker Stonebraker, M. mike

p2

p3

Eugene Wong

Wong E.

p
1

eugene@berkeley.edu

Epstein, R.S.

Distributed Query ...

Robert S. EpsteinAustin, Texas

ACM SIGMOD

ACM Conference ...

1978

a1

c
1

name name

name

name

name

name

email

name email

title

name

name

page

location
year

publishedIn

authoredBy

coAuthor,
emailContact

coAuthor coAuthor

authoredBy

authoredBy

(c)

Figure 2.2: An example association network: (a) the domain model; (b) the list represen-
tation of the association network; (c) the graph representation of the association network.
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model structure hierarchies (e.g., different ways of modeling addresses and people).

A data instance of a domain model is called an association network, consisting of object

instances and the associations between the instances. In the rest of this dissertation, we

represent an association network in two ways: the list representation represents an associ-

ation network by listing for each object its attribute and association properties; the graph

representation represents an association network as a graph, where ellipses nodes repre-

sent instances, rectangles nodes represent attribute values, undirectional edges represent

attributes, and directional edges represent associations. We illustrate by an example.

Example 2.2. Consider the association network depicted in Figure 2.2(b). It contains one

Article instance a1, three Person instances p1, p2, p3, and one Conference instance c1. Fig-

ure 2.2(b) lists for each instance its attribute values and associated instances. For example,

Paper a1 has title “Distributed Query Processing...”; it is associated with Person instances

p1, p2 and p3, and Conference instance c1. Figure 2.2(b) describes the association network

using a graph representation. �

Finally, a reference partially specifies an instance of a particular class: it has a set of

values (possibly empty set) for each attribute of that class. Typically a reference is extracted

from the data by some extractors.

Example 2.3. Figure 2.3(a) shows a set of references extracted from a personal data set.

The Article references a1 and a2, Person references p1 to p6, and Conference references c1

and c2 are extracted from two Bibtex items. The other three Person references, p7, p8 and

p9, are extracted from emails. Note that they are indeed references to the instances shown

in Figure 2.2. �

2.1.2 Problem definition

Ultimately, our goal is to populate the association network according to the domain model

such that each instance of a class refers to a single real-world entity, and each real-world

entity is represented by at most a single instance. However, what we are given as input are

references to real-world objects, obtained by some extractor programs.
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a1={title=“Distributed Query Processing in a Relational Data Base System”, pages = “169-180”,

authoredBy = p1, authoredBy = p2, authoredBy = p3, publishedIn = c1}

a2={title=“Distributed query processing in a relational data base system”, pages = “169-180”,

authoredBy = p4, authoredBy = p5, authoredBy = p6, publishedIn = c2}

p1={name = “Robert S. Epstein”, coAuthor = p2, coAuthor = p3}

p2={name = “Michael Stonebraker”, coAuthor = p1, coAuthor = p3}

p3={name = “Eugene Wong”, coAuthor = p1, coAuthor = p2}

p4={name = “Epstein, R.S.”, coAuthor = p5, coAuthor = p6}

p5={name = “Stonebraker, M.”, coAuthor = p4, coAuthor = p6}

p6={name = “Wong, E.”, coAuthor = p4, coAuthor = p5}

p7={name = “Eugene Wong”, email = “eugene@berkeley.edu”, emailContact = p8}

p8={email = “stonebraker@csail.mit.edu”, emailContact = p7}

p9={name = “mike”, email = “stonebraker@csail.mit.edu”}

c1={name = “ACM Conference on Management of Data”, year = “1978”,

location = “Austin, Texas”}

c2={name = “ACM SIGMOD”, year = “1978”}

(a)

{{a1, a2}, {p1, p4}, {p2, p5, p8, p9}, {p3, p6, p7}, {c1, c2}}

(b)

Figure 2.3: Example for reference reconciliation: (1) references extracted from personal
data; (2) reconciliation results.
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The reconciliation algorithm tries to partition the set of references in each class, such that

each partition corresponds to a single unique real-world entity, and different partitions refer

to different entities. We measure the quality of a reconciliation with recall and precision.

The recall measures the percentage of correctly reconciled pairs of references over all pairs

of references that refer to the same entity, and the precision measures the percentage of

correctly reconciled pairs over all reconciled pairs of references.

As an example, Figure 2.3(b) shows the ideal reconciliation result for the references

in Figure 2.3(a). According to this reconciliation results we can populate an association

network as shown in Figure 2.2.

2.1.3 Overview of the approach

The goal of our approach is to address several challenges arising in dataspace applications

such as PIM. First, it is often the case that each reference includes very limited information;

that is, each reference contains values for only a few attribute properties. For example, a

Person reference often has values for only one or two attribute properties. In Example 2.2,

references p5 and p8 do not have any attribute in common. Second, some attributes are

multi-valued, so the fact that two attribute values are different does not imply that the

two references refer to different real-world objects. For example, two Person references

with completely different email addresses may refer to the same person. This phenomenon

is especially common in applications where the real-world entities (and hence, the data)

evolve over time.

As we show in our experimental results, the above problems lead to unsatisfactory ac-

curacy of existing reference reconciliation algorithms. The key behind our approach is that

we exploit the richness of the information space at hand. We illustrate the main concepts

of our algorithm with the example.

Exploiting context information: The main idea underlying our algorithm is to capture

and leverage various forms of context we can glean about the references, which are not

considered by traditional reference reconciliation approaches. For example, we can consider

the co-author lists and email-contact lists of person references. In our example, we notice
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that p5 has co-authored articles with p6, and p8 has email correspondences with p7. If we

decide that p6 and p7 are the same person, we obtain additional evidence that may lead

us to reconcile p5 and p8. Second, we compare values of different attributes. For example,

the name “Stonebraker, M.” and the email address “stonebraker@csail.mit.edu” are closely

related: “stonebraker” corresponds to the last name of “Stonebraker, M.”. This observation

provides positive evidence for merging references p5 and p8.

Once we decide to merge two references, we have two mechanisms for leveraging this

information: reconciliation propagation and reference enrichment.

Reconciliation propagation: When we reconcile two references, we reconsider reconciling

references that are associated with them. For example, when we detect that the Article

references a1 and a2 share the same title and similar authors and that they appeared in

similar conferences and pages in the proceedings, we decide to reconcile them. Presumably

an article has a unique set of authors, so the reconciliation of a1 and a2 implies that the

authors p1 and p4, p2 and p5, and p3 and p6 should be reconciled respectively. Similarly, we

reconcile the conference references c1 and c2.

Reference enrichment: When we decide to reconcile two references, we join their at-

tribute values together, thereby enriching the reference. For example, consider the rec-

onciliation of the person references p5 and p8. Although “stonebraker@csail.mit.edu” and

“Stonebraker, M.” are rather similar, this information is insufficient for reconciliation. Sim-

ilarly, we lack evidence for reconciling p5 and p9. However, after we reconcile p8 and p9, we

can aggregate their information and now know that “mike” and “Stonebraker, M.” share

the same first name initial, and contact the same person by email correspondence or coau-

thoring. This additional information will enable us to reconcile p5, p8, and p9.

In summary, our approach obtains better reference reconciliation results by exploit-

ing context information, propagating reconciliation decisions and enriching references. To

facilitate these mechanisms, we define a graph, called the similarity-dependency graph (ab-

breviated as dependency graph in the rest of this chapter), whose nodes represent similarities

between pairs of references and edges represent the dependencies between the reconciliation

decisions. Using the dependency graph, we are able to capture the dependencies of reference
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similarities and attribute-value similarities, and at the same time retain the flexibility of

using established reference comparison techniques. In the next section, we describe how we

construct the dependency graph and use it for reconciliation.

2.2 Reference Reconciliation Algorithm

Our reconciliation algorithm proceeds as follows. First, we construct the dependency graph

that captures the relationships between different reconciliation decisions. Then, we itera-

tively recompute scores that are assigned to reconciliation-decision nodes in the graph until

a fixed point is reached. Finally, we compute the transitive closure for the final reconcilia-

tion results. Section 2.2.1 describes the construction of the dependency graph. Section 2.2.2

describes how we use the graph for reconciliation. Section 2.2.3 describes how we enrich ref-

erences during the reconciliation process. Section 2.2.4 describes how our algorithm exploits

negative information to further improve the accuracy of reconciliation.

2.2.1 Dependency graph

To reconcile references, we need to compute the similarity for every pair of references of

the same class. The similarity between a pair of references is based on the similarity of

their attribute values and the similarities of their association properties. Meanwhile, the

dependency is often bi-directional; that is, the similarity of the references also affects the

similarity of the values of their attribute or association properties. In a dependency graph, a

node represents the similarity between a pair of references or a pair of attribute values, and

an edge represents the dependency between a pair of similarities. If we change the similarity

value of a node, we may need to recompute the similarity of its neighbors. Formally, we

define a dependency graph as follows:

Definition 2.4. Let R be a set of references. The dependency graph for R is an undirected

graph G = (N,E), such that

• For each pair of references r1, r2 ∈ R of the same class, there is a node m = (r1, r2)

in G.
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• For each pair of property values a1 of r1 and a2 of r2 (the two attributes may be of

different types), there is a node n = (a1, a2) in G and an edge between m and n in E.

• Each node has a real-valued similarity score (between 0 and 1), denoted interchangeably

as sim(r1, r2) or sim(m). �

In what follows, we refer to references and attribute values collectively as elements.

Note that there is a unique node in the dependency graph for each pair of elements. This

uniqueness is crucial for exploiting the dependencies between reconciliation decisions (as we

will see in Section 2.2.2).

Pruning and refining the graph: In practice, building similarity nodes for all pairs

of elements is unnecessarily wasteful. Hence, we only include in the graph nodes whose

references potentially refer to the same real-world entity, or whose attribute values are

comparable (i.e., are of the same attribute, or according to the domain knowledge are of

related attributes, such as a name and an email) and similar.

Rather than considering all edges in the graph to be the same, we refine the set of

edges in the graph to be of several types, which we will later leverage to gain efficiency.

This refinement can be obtained by applying domain knowledge, either specified by domain

experts or learned from training data. The first refinement generates a subgraph of the

original graph. In the subgraph, there is an edge from node n to m only if the similarity

of m truly depends on the similarity of n. We call n an incoming neighbor of m, and m an

outgoing neighbor of n. Note that the subgraph is directed.

The second refinement distinguishes several types of dependencies as follows. Consider

nodes m and n, where there is an edge from m to n. First, we distinguish between boolean-

valued dependencies and real-valued dependencies. If the similarity of a node n depends only

on whether the references in the node m are reconciled, we call m a boolean-valued neighbor

of n. In contrast, if the similarity of n depends on the actual similarity value of node m,

we call m a real-valued neighbor of n. As an example, given two conference references, c1

and c2 in Figure 2.2(b), their similarity depends on the real similarity value of their names.

Thus, a node for conference-name similarity is a real-valued incoming neighbor of a node for
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the similarity of the conference references with the names. On the other hand, although it

also depends on the similarity of the articles a1 and a2, what really matters is whether they

are reconciled, not their actual similarity value (we assume that a single article cannot be

published in two different conferences). So a node for article similarity is a boolean-valued

incoming neighbor of a node for the similarity of the associated conference references.

We further divide boolean-valued neighbors into two categories. If the reconciliation of

m’s two references implies that the two references in n should also be reconciled, m is called

n’s strong-boolean-valued neighbor. The second case in the earlier example illustrates a

strong-boolean-valued neighbor. If the reconciliation of m’s references only increases the

similarity score of n, but does not directly imply reconciliation, m is called n’s weak-boolean-

valued neighbor. For example, the similarity score of two persons will increase given that

they have email correspondence with the same person.

Constructing the graph: We build the graph in two steps. In the first step we consider

attribute properties, in the second step we consider association properties.

1. For every pair of references r1 and r2 of the same class, insert m = (r1, r2) with

similarity 0. Further,

(1) For every pair of attribute values a1 of r1 and a2 of r2, if a1 and a2 are comparable,

then proceed in two steps.

Step 1. If n = (a1, a2) 6∈ G, we compute the similarity score of a1 and a2. If the

score indicates that a1 and a2 are potentially similar, then insert n with the computed

score.

Step 2. Insert an edge from n to m and an edge from m to n when the corresponding

dependency exists.

(2) If m does not have any neighbors, remove m.

Note that at this stage we are liberal in identifying potentially similar attribute pairs

(we use a relatively low similarity threshold) in order not to lose important nodes in

the graph.
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2. We now consider references r1 and r2, where m = (r1, r2) ∈ G. For every pair of

instances a1 and a2, where a1 is an association property value of r1 and a2 is an

association property value of r2, if there exists dependence between sim(r1, r2) and

sim(a1, a2), we do as follows:

• if a1 = a2, we add the node n = (a1, a1) and set sim(n) = 1 if n does not exist,

and add an edge from n to m;

• if a1 6= a2 and the node n = (a1, a2) exists, add an edge from n to m when

the corresponding dependency exists, and add an edge from m to n when the

corresponding dependency exists.

The requirement m = (r1, r2) ∈ G is based on the assumption that two references

cannot refer to the same entity unless they have some similar attribute property

values. However, this assumption is not germane to our algorithm.

We show the pseudo code for constructing a dependency graph in Figure 2.4.

Example 2.5. Consider the dependency graph for the instances in Figure 2.2(b), as shown

in Figure 2.5.

Figure 2.5(a) shows the subgraph for references a1, a2, p1, p2, p3, p4, p5, p6, c1 and c2. The

similarity of papers a1 and a2 is represented by the node m1; it is dependent on the simi-

larity of the titles (represented by n1), the pages (n2), the authors (m2,m3 and m4), and

the conferences (m5). Note that there does not exist an edge from m5 to n7, because the

similarity of years is pre-determined and is independent of the similarity of any conferences.

Also note that there is no node (p1, p5), because their name attributes have very different

values.

Figure 2.5(b) shows the subgraph for references p5 and p8. Since p5 has coauthored

with p6, and p8 has email correspondence with p7, there is a node m7 = (p6, p7), and a

bi-directional edge between m6 and m7. Note that m6 does not have a neighbor (p4, p7),

because p4 and p7 do not have any similar attributes and so the node (p4, p7) does not exist.

�
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procedure GraphConstruction(R) return G

// R is a reference set;

// G = (N,E) is a dependency graph for references in R

for each (class C)

for each (references r1 and r2 of C)

Insert into N a node m = (r1, r2) with similarity 0;

for each (attribute a1 of r1 and a2 of r2)

if (a1 and a2 are comparable)

if (n = (a1, a2) 6∈ N && a1 and a2 are potentially similar)

Insert into N a node n with similarity sim(a1, a2);

if (n = (a1, a2) ∈ N && sim(n) depends on sim(m))

Insert into E an edge from m to n;

if (n = (a1, a2) ∈ N && sim(m) depends on sim(n))

Insert into E an edge from n to m;

if (m does not have neighbors)

Remove m from N ;

for each (m = (r1, r2) ∈ N)

for each (association property value a1 of r1 and association property value a2 of r2)

if (sim(r1, r2) depends on sim(a1, a2) or vice versa)

if (a1 = a2)

if ((a1, a2) 6∈ N)

Insert into N a node n = (a1, a1) with similarity 1;

Insert into E an edge from n to m;

if (a1 6= a2 && n = (a1, a2) ∈ N)

if (sim(r1, r2) depends on sim(a1, a2))

Insert into E an edge from n to m;

if (sim(a1, a2) depends on sim(r1, r2))

Insert into E an edge from m to n;

Figure 2.4: Algorithm for constructing the dependency graph.
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Figure 2.5: The dependency graph for references in Figure 2.2(b): (a) the subgraph for
references a1, a2, p1, p2, p3, p4, p5, p6, c1 and c2. (b) the subgraph for references p5 and p8.

2.2.2 Exploiting the dependency graph

Our algorithm is based on propagating similarity decisions from node to node in the graph.

For example, after we decide to reconcile articles a1 with a2, we should reconcile their

associated conferences c1 and c2, and further trigger recomputation of the similarities of

other papers that mention the conferences c1 and c2, etc. Given that the dependency graph

has captured all the dependencies between similarities, it guides the recomputation process,

as we now describe. We describe similarity-score functions in Section 2.3.

We mark the nodes in a dependency graph as merged, active, or inactive. A node is

marked merged when its similarity score is above a pre-defined merge threshold, and it thus

represents already reconciled references. A node is marked active if we need to reconsider

its similarity. The rest are marked inactive. The algorithm proceeds as follows, until no

node is marked active.

1. Initially, all nodes representing the similarity between different references are marked

active and those representing the similarity between the same reference are marked

merged. The nodes representing the similarity between attribute values are marked

merged or inactive depending on their associated similarity score.

2. We select one active node at a time and recompute its similarity score. If the new

similarity score is above a merge threshold, we mark the node as merged; otherwise,
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we mark it as inactive. In addition, we mark as active all its outgoing neighbors with

similarity scores below 1.

This process is guaranteed to terminate under the following two assumptions. First, we

assume that the similarity-score functions for any node are monotonic in the similarity

values of its incoming neighbors. Second, for a given node, we activate its neighbors only

when its similarity increase is more than a small constant. It might appear that requiring

monotonic similarity functions precludes fixing initial incorrect reconciliation decisions in

the presence of later negative evidence; however, this is not the case and we will show in

Section 2.2.4 how we account for negative evidence.

Implementing the propagation procedure: To improve the efficiency of the algorithm,

we treat different types of neighbors (according to the categorization of similarity depen-

dencies) differently in the second step, rather than activate all neighbors of a node. In

this way, we can significantly reduce similarity recomputation. Specifically, given a node n

whose similarity score increases, we do the following:

• we mark as active all of its outgoing real-valued inactive neighbors whose similarity

scores are below 1.

• if we decide to reconcile the references in n, we mark as active all of its outgoing

boolean-valued neighbors whose similarity scores are below 1.

In addition, a careful choice of the recomputation order can further reduce the number

of recomputations and improve the algorithm’s efficiency. In particular, we employ the

following heuristics.

• We compute similarity for a node only if the scores of its incoming value-based neigh-

bors have all been computed, unless there exist mutual real-valued dependencies. For

example, we compare two articles only after comparing their associated authors and

conferences (or journals).

• When a node is merged, we consider its outgoing strong-boolean-valued neighbors first

for recomputation.
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Our algorithm proceeds by maintaining a queue of active nodes. Initially, the queue contains

all active similarity nodes (representing similarities of pairs of different references), and it

satisfies the property that a node always precedes its outgoing real-valued neighbors if

there does not exist mutual real-valued dependencies. At every iteration, we compute the

similarity score for the top node in the queue. If we activate its outgoing real-valued or

weak-boolean-valued neighbors, then we insert them at the end of the queue. If we activate

its strong-boolean-valued neighbors, we insert them in front of the queue.

Figure 2.6 shows the algorithm for information propagation. Note that Propagation

invokes Enrichment, which we will describe in the next sub-section.

Example 2.6. Consider the dependency graph shown in Figure 2.5(a). Initially, the queue

contains nodes {m5,m4, m3,m2,m1}, and nodes n1, n2, and n7 are marked merged. We

then compute the similarity of m5,m4,m3,m2, and m1 in succession. When we decide to

merge papers a1 and a2, we insert m2,m3,m4, and m5 back to the front of the queue, so

the queue becomes {m5,m4,m3,m2} (the order among these nodes can be arbitrary). Note

that n2 is not added back both because it is not an outgoing neighbor of m1, and because

it already has similarity score 1. Next, we consider m5 and decide to merge c1 and c2, so

we insert its strong-boolean-valued neighbor, n6, in the front of the queue and the queue

becomes {n6,m4,m3,m2}. This process continues until the queue is empty. �

2.2.3 Enriching the references

Another important aspect of our algorithm is that we enrich the references in the pro-

cess of reconciliation. Specifically, after merging references r1 and r2, all the properties

of r2 can also be considered as those of r1. For example, if r1 has email address “stone-

braker@csail.mit.edu” and r2 has email address “stonebraker@mit.edu”, the real-world per-

son object actually has both email addresses. Now, when we compute the similarity between

r1 and another reference r3, we compare both email addresses with the email address of r3,

and choose the one with a higher similarity. Note that for the purpose of reconciliation, we

do not need to distinguish multiple email addresses and misspelled email addresses.

A naive way to enrich the references would be to run our propagation algorithm, then
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procedure Propagation(G)

// G = (N,E) is a dependency graph;

Initialize queue q as empty;

for each (node n = (r1, r2) ∈ N)

if (r1 and r2 are references && r1 6= r2)

Mark n as active;

Insert n into q;

while (there exists n = (r1, r2) ∈ q and m = (a1, a2) ∈ q such that (1) m is an incoming

neighbor of n, (2) there is no loop between m and n, and (3) n is in front of m in q)

switch m and n in q;

while (q is not empty)

Remove the first node n = (r1, r2) from q and mark it as inactive;

oldSim = sim(n); Recompute sim(n);

if (sim(n) > oldSim)

for each (n’s outgoing real-valued neighbor m)

if (m is not active AND sim(m) < 1)

Insert m to the end of q and mark m as active;

if (sim(n) is above the merge threshold)

Mark n as merged;

for each (n’s outgoing strong-boolean-valued neighbor m)

if (m is not active AND sim(m) < 1)

Insert m to the front of q and mark m as active;

for each (n’s outgoing weak-boolean-valued neighbor m)

if (m is not active AND sim(m) < 1)

Insert m to the end of q and mark m as active;

Enriching(n,G);

Figure 2.6: Algorithm for information propagation in reference reconciliation.
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Figure 2.7: Enrichment of references in Figure 2.5(b): (a) the original subgraph representing
the similarity of references p5 and p8 (node m6), and the similarity of p5 and p9 (node m8);
(b) the subgraph after the first step of reference enrichment; (c) the subgraph after the
second step of reference enrichment.

compute transitive closures and merge the references within the same cluster, and repeat

the algorithm iteratively. However, with a little bit of care, we can implement enrichment

with only local changes to the graph.

Specifically, after we decide to merge references r1 and r2, we search for all references r3,

such that there exist nodes m = (r1, r3) and n = (r2, r3). We proceed to remove n from the

graph in the following steps: (1) connect all neighbors (incoming and outgoing neighbors) of

n with m while preserving the direction of the edges, (2) remove node n and its associated

edges from the dependency graph and from the queue, (3) if m gets new incoming neighbors

and is not active in the queue, we insert m at the end of the queue; similarly, n’s neighbors

that get new incoming neighbors and are not active are inserted at the end of the queue.

We show in Figure 2.8 the algorithm for reference enrichment.

Example 2.7. Consider enrichment of references in Figure 2.5(b). Figure 2.7(a) shows

the original subgraph that represents the similarity of references p5 and p8 (node m6), and

the similarity of p5 and p9 (node m8). When we decide to reconcile p8 and p9, we need to

compute a similarity score for only one of m6 and m8.

In the first step, whose result is shown in Figure 2.7(b), we connect all of m8’s neighbors

with m6, so n9 is connected with m6. Note that n8 is already connected with m6 so no

change is needed. In the second step, whose result is shown in Figure 2.7(c), we remove

node m8 and all associated edges. We now have more evidence for reconciling p5 and p8. �
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procedure Enriching(n,G)

// n = (r1, r2) is the node that is just marked merged

//G = (N,E) is a dependency graph;

for each (r3 where m = (r1, r3) and l = (r2, r3) exist)

for each (edge e connecting l with a node j)

if (j is not a neighbor of m)

Insert into E an edge between j and m (with the same direction as e);

Remove from E the edge e;

if (j is not marked active)

Mark j as active and insert j to the end of q;

if (m’s neighbors changed && m is not marked active)

Mark m as active and insert m to the end of q;

Remove l from N and q;

Figure 2.8: Algorithm for reference enrichment in reference reconciliation.
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2.2.4 Enforcing constraints

Up to now, our algorithm has considered only positive evidence for similarity computation.

In many cases, we may have negative evidence that can contribute to the reconciliation

process. As a simple example, if in Figure 2.2(b), reference p9 were p9={name=“Matt”,

email=“stonebraker@csail.mit.edu”}, then we would not want to merge p9 with p2, which

has “Michael Stonebraker” for the name attribute. However, as shown in Figure 2.7, the

algorithm as described so far might reconcile p8 and p9 with p5, and since p2 is merged with

p5, they will all be merged together when we compute the transitive closure.

Indeed, this problem is a fundamental one when we generate partitions by computing

transitive closures: if we decide to reconcile r1 with r2, and r2 with r3, then r1, r2 and r3

will be clustered even if we have evidence showing that r1 is not similar to r3.

We begin to address this problem by considering constraints. A constraint is a rule

enforcing that two references are guaranteed to be distinct. For example, a constraint may

specify that the authors of one paper are distinct from each other. Constraints are typically

domain dependent. They can be manually specified by domain experts, or learned from

training data or a clean auxiliary source [41]. To enforce constraints, we add one more

status to the nodes in the dependency graph: non-merge. The two elements in a non-merge

node are guaranteed to be different and should never be reconciled. Note that a non-merge

node is different from a non-existing node. The absence of the node (r1, r2) indicates that

r1 and r2 do not have similar attributes; but r1 can still be reconciled with r2 if both of

them are reconciled with another reference r3.

To incorporate constraints in our algorithm, we make the following modifications.

1. When constructing the dependency graph we also include nodes whose elements are

ensured to be distinct. Such nodes are marked non-merge and will never enter the

processing queue.

2. A node that has a non-merge incoming real-valued neighbor might be marked as

non-merge according to the constraints.

3. After the similarity computation reaches a fixed point, we examine every non-merge
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procedure Constraint(G)

// G = (N,E) is a dependency graph;

for each (l = (r1, r2) that is marked non-merge)

for each (r3 where m = (r1, r3) and n = (r2, r3) exist and sim(m) ≥ sim(n))

if (m is marked merged)

Mark n as non-merge;

Figure 2.9: Algorithm for enforcing constraints in reference reconciliation.

node l = (r1, r2). Let r3 be another reference such that there exist nodes m = (r1, r3)

and n = (r2, r3), where sim(m) ≥ sim(n). If m is marked merge, we mark n as

non-merge. This step propagates the negative evidence from l to n, so r1 and r2 will

not be merged with a common reference. Figure 2.9 shows the algorithm for this step.

Note that with the above modification, the algorithm still converges under the assumptions

described in Section 2.2.2.

Figure 4.7 shows the overall reconciliation algorithm. As a further optimization, the

dependency graph can be pruned at the very beginning using inexpensive reference com-

parisons, such as merging Person references that have the same email address. This pre-

processing can significantly reduce the size of the dependency graph and thus improve the

efficiency.

2.3 Computing Similarity Scores

This section describes the similarity functions used in our algorithm. Given a node m =

(r1, r2), the similarity function for m takes the similarity scores of m’s incoming neighbors

as input and computes a score between 0 and 1.

Our dependency-graph based reconciliation algorithm has the flexibility that we can

use different domain-specific similarity functions for different classes in the domain model.

Training data, when available, can be used to learn or tune similarity functions for specific
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procedure Reconciliation(R) return P

// R is a reference set, P is a partitioning over R;

G = GraphConstruction(R);

Propagation(G);

Constraint(G);

Compute transitive closure according to G and return P;

Figure 2.10: Algorithm for reference reconciliation.

classes. As we explain in Section 2.5, this is an important advantage of our approach over

those based on global detailed probabilistic modeling [103, 118].

In what follows we propose a template of similarity functions that proved effective in our

experiments. The similarity functions are orthogonal to the dependency graph framework

and alternate simple or complex models can also be used. There are tunable parameters

in our functions and these can either be learned from training data, or manually set from

experience. Note that as we propagate information between reconciliation decisions, we may

also propagate incorrect information from an over-estimated similarity value and mislead

later similarity computations. Hence, we choose conservative similarity functions and merge-

thresholds in order to obtain high precision. We obtain improvement in recall mainly by

employing a broad collection of evidence.

The components of the similarity function: the similarity score S of a pair of elements

is the sum of three components and is always between 0 and 1: (1) Srv, contributed by

real-valued incoming neighbors, (2) Ssb, contributed by strong-boolean-valued incoming

neighbors, and (3) Swb, contributed by weak-boolean-valued incoming neighbors. When

their sum exceeds 1, we trunk S to 1. Below we discuss each component in detail.

Real-valued neighbors (Srv): Given the similarity values of the real-valued incoming

neighbors, we compute the value of Srv between 0 and 1. For example, the similarity

function of a person node combines the name similarities, email similarities, and name-and-

email similarities.
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Computing Srv is similar in spirit to traditional record-linkage techniques, but with a

few important differences. First, to account for the fact that most references do not have

values for all attributes, we employ a set of similarity functions, rather than a single one.

These functions account for cases in which some attributes are missing values (otherwise, we

need to assign 0 to the similarity of those attributes, resulting in recall reduction). Second,

our similarity functions account for some attributes serving as keys. For example, when

two person instances have the same email address, they should be merged even if other

attributes are different. Third, our similarity functions take into consideration any possible

non-merge neighbors. We organize the set of similarity functions as a decision tree, where

each branch node represents certain conditions, such as the existence of a similarity value

or a non-merge neighbor, and each leaf node represents a function for Srv.

Each function for Srv combines the elementary similarity values using a linear combina-

tion. Formally, we define

Srv =
n

∑

i=1

λixi, (2.1)

where n is the number of different types of real-valued neighbors (e.g., email similarity,

name similarity, etc.), xi is the score for the elementary similarity of type Ti and λi is its

corresponding weight.

The final wrinkle in computing Srv is to account for attributes having multiple values

(e.g., a person’s email). For the similarity node m = (r1, r2), we consider all attribute values

of r1 and r2, and compute the similarity for all pairs of attributes that are comparable. Let

Ni = {n1, . . . , nk} be the set of incoming neighbors of type Ti. We use MAX{sim(nj)|nj ∈

Ni} for the similarity value of type Ti when computing Srv in Equation 2.1.1

Strong-boolean neighbors (Ssb): Let m be a similarity node. In principle, if two ref-

erences in one of m’s strong-boolean-valued neighbors are merged, then the two references

in m should also be merged, unless they have very different attribute values. For exam-

ple, when we decide to merge two papers, we can merge their authors with similar names.

However, to remain conservative and avoid possible errors caused by noisy information, we

1More complex cases can arise; for example, an attribute value might be a set with each element in the

set being multi-valued. Strategies for such cases are beyond the scope of this dissertation.
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only increase the similarity score with a constant β for each merged strong-boolean-valued

incoming neighbor. Formally, Ssb is:

Ssb =







β · |Nsb| if Srv ≥ trv

0 otherwise

where β is a constant, |Nsb| is the number of merged strong-boolean-valued incoming neigh-

bors, and trv is a threshold indicating that two references may possibly refer to the same

entity. Given this function, when the initial similarity value of a pair of references, Srv, is

not very high (but above the threshold trv), the two references will be reconciled only if

there exist several strong-boolean-valued neighbors that are merged. A more sophisticated

function can require stricter conditions; for example, we increase the similarity score of two

person names only if both names are full names.

Weak-boolean neighbors (Swb): Intuitively, the reconciliation of two references in a

weak-boolean-valued incoming neighbor of m increases the similarity score of m. For exam-

ple, we will have higher confidence in reconciling two person references if they not only have

similar attribute values, but also contact common people (by email or by co-authorship).

However, people’s contact lists may vary a lot in length, and it is quite possible that two

references refer to the same real-world person but have very different contact lists. Hence,

requiring two contact lists to be similar is unnecessarily strict. In our algorithm we count

the number of common contacts and increase the similarity score with a constant γ for each

common contact. More generally, we define Swb as

Swb =







γ · |Nwb| if Srv ≥ trv

0 otherwise

where γ is a constant, and |Nwb| is the number of merged weak-boolean-valued incoming

neighbors. Note that the functions Swb and Ssb have the same form, but we assign a much

higher value to β than to γ. Finally, a sophisticated function for Swb can assign a higher

reward for the first several merged neighbors and a lower reward for the rest, or consider

the number of values for an association property.
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Person (name, *coAuthor)

Article (title, pages, *authoredBy, *publishedIn)

Venue (name, year, location)

Figure 2.11: Domain Model for references from Cora.

Data Set #(References) #(Entities) #Ref/#Entity

PIM A 27367 2731 10.0

PIM B 40516 3033 13.4

PIM C 18018 2586 7.0

PIM D 17534 1639 10.7

Cora 6107 338 18.1

Table 2.1: Properties of our data sets: the number of extracted references, the number of
real-world entities and the reference-to-entity ratio.

2.4 Experimental Evaluation

We tested our algorithm on two domains: personal information management and publica-

tion portal. We now describe a set of experiments that validate the performance of our

reconciliation algorithm. The experimental results show that our algorithm obtains high

precision and recall in both contexts.

2.4.1 Data Sets

Our first experiment involved four personal data sets. To ensure that we got a variety of

references, we chose the owners of the data sets to be in different areas of computer science

(database and theory), in different positions (faculty and graduate students), and most im-

portantly, from different countries (including China, India and the USA)2. The data sets

span several years of computer usage (from 3 to 7), and include references obtained from

2Names of people from these countries have very different characteristics.
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emails, Latex and Bibtex files, and PDF and Word documents. The references we extracted

conform to the domain model shown in Figure 2.2(a), except that when we measure the

reconciliation results, we consider both conferences and journals as venues and report preci-

sion and recall on them together. For each data set, we manually created the gold standard;

that is, the perfect reconciliation result.

In order to demonstrate the applicability of our algorithm in a more conventional setting,

our second experiment uses the subset of the Cora data set provided by McCallum [38] and

used previously in [36, 17, 118]. This data set is a collection of 1295 different citations to 112

computer science research papers from the Cora Computer Science Research Paper Engine.

We extracted references of types Person, Article and Venue from the citations, according

to the domain model shown in Figure 2.11. The papers in the data set are already hand

labeled, whereas we had to label the persons and venues.

The properties of our data sets are summarized in Table 2.1. The average reference-to-

entity ratio, 11.8, underscores the importance of reference reconciliation.

2.4.2 Experimental methodology

We reported the overall performance of our algorithm using two sets of measures. The first

set is precision, recall, and F-measure, which is also widely used in other reference recon-

ciliation works. Precision computes the percentage of correctly reconciled reference pairs

over all reconciled reference pairs; recall computes the percentage of correctly reconciled

reference pairs over pairs of references that refer to the same real-world object; F-measure

counts for both precision and recall, and is computed using the following formula:

F-measure =
2 · prec · recall

prec + recall
.

Precision, recall and F-measure all range from 0 to 1, and ideally should be 1.

When we compute precision, recall and F-measure, we can either consider all occur-

rences of references or consider only distinct references. We call the former occurrence-based

measures and the latter representation-based measures. For example, consider three Person

references, each containing a single name attribute, where the first two have value “Michael

Stonebraker” and the third one has value “Mike”. Occurrence-based measures are com-
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puted over all of the three references, whereas representation-based measures are computed

by viewing the first and second references as the same one (so two references in total). On

the one hand, occurrence-based measures penalize results more for incorrect reconciliation

of popular entities; that is, entities with more occurrences. This is as required in the PIM

context, where popular entities are browsed more often and errors in their reconciliation

cause more inconvenience. In addition, it is possible that different occurrences of the same

reference actually refer to different real-world entities; occurrence-based measures allow us

to explore this possibility. On the other hand, since most different occurrences of the same

reference will and should be merged, occurrence-based measures tend to result in very high

values and hide the significance of the improvement obtained by our algorithm.

The second set of measures is diversity and dispersion. Diversity measures on average

for every result partition, how many real-world entities are included. Dispersion measures

on average for every real-world entity, how many result partitions include them. Diversity

is related to precision and dispersion is related to recall. Both diversity and dispersion are

no less than 1 and ideally should be 1. Note that considering all occurrences of references

and considering only distinct references obtain the same diversity and dispersion, so we do

not distinguish them.

These different measures indeed present the same trend. Unless we specify otherwise,

we reported the performance of our algorithm using occurrence-based precision, recall, and

F-measure. For some of the results we in addition reported representation-based measures

and also diversity and dispersion for the purpose of comparison.

We employed the same set of similarity functions and thresholds for all data sets. We

manually set the thresholds and parameters and we used the same ones in all our experi-

ments. Specifically, we set the merge threshold to 0.85 for all reference similarities, and to

1 for all attribute similarities. We set β = 0.1, γ = 0.05 for all classes, except that we set

β = 0.2 for Venue. We set trv = 0.7 for Person and Article references and trv = 0.1 for Venue

references. We omit the detailed settings for Srv since they vary from one class to another,

and for each class there exists a set of functions forming a decision tree. We note that as

we chose the thresholds and parameters to be conservative, the results were insensitive to

small perturbations in their values.
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Table 2.2: Average precision, recall and F-measure for each class of references.

IndepDec DepGraph
Class

Prec/Recall F-msre Prec/Recall F-msre

Person 0.967/0.926 0.946 0.995/0.976 0.986

Article 0.997/0.977 0.987 0.999/0.976 0.987

Venue 0.935/0.790 0.856 0.987/0.937 0.961

In our experiments, we refer to our algorithm as DepGraph. On the PIM data, we

compared DepGraph with a candidate standard reference reconciliation approach, called

IndepDec (it roughly corresponds to approaches such as [72, 96]). To compare the two

algorithms on the class Person, IndepDec compares person names and emails indepen-

dently and combines the results for reference similarity without exploiting the dependencies

between individual reconciliation decisions. DepGraph, in addition, compares the names

with the email accounts, considers the articles authored by the persons, counts the common

people appearing in the coauthor or email-contact lists, applies reconciliation propagation

and reference enrichment, and enforces constraints. We use the same similarity functions

and thresholds for IndepDec and DepGraph.

For the Cora data set, we compared the results of DepGraph with the results reported

in papers that proposed state-of-the-art reference reconciliation approaches.

2.4.3 Reference reconciliation for personal data

Table 2.2 shows the average precision and recall for articles, persons and venues (conferences

and journals) over the four data sets. DepGraph obtained higher precision and recall for

both person and venue references. Specifically, it improved the recall for venue references

by 18.6%, and for person references by 5.4%. Note that this 5.4% is in fact substantial:

as we shall see in Table 2.4, it corresponds to a decrease in hundreds of partitions. Our

algorithm does not improve the results for articles. This is because the article references are

obtained from a set of Bibtex files that are typically very well curated by the user. From
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Table 2.3: Average precision, recall and F-measure for Person references when only the email
or paper subsets are considered and when the full data sets are considered.

IndepDec DepGraph
Data Set

Prec/Recall F-msre Prec/Recall F-msre

Full 0.967/0.926 0.946 0.995/0.976 0.986

PArticle 0.999/0.761 0.864 0.997/0.994 0.996

PEmail 0.999/0.905 0.950 0.995/0.974 0.984

Table 2.2 we also observe that whereas IndepDec may obtain either a low precision or a

low recall in some cases, DepGraph typically obtains both high precision and high recall.

Furthermore, as we will explain shortly, the improvement of DepGraph over IndepDec is

most pronounced on the data sets in which the references have little information, or there

is a great variety in the references to the same real-world entity.

We now examine person references, which are associated with rich context information

and therefore provide the most opportunities for performance improvement. We divided

each data set into two subsets: one contains person references extracted only from emails

(PEmail) and the other contains person references extracted from articles and other non-

email sources (PArticle). Table 2.3 shows the average precision and recall of the two ap-

proaches on the whole data set and each subset of data. The DepGraph approach improved

the recall by 30.7% on the article data sets, by 7.6% on the email data sets, and by 5.4% on

the full data sets. It obtained significant recall increase on the article data sets by exploiting

the associations between persons and articles, which compensate for the lack of information

for each person reference in itself (each reference contains only a person name). The high

precision and recall on the PEmail subset suggest that our algorithm has value also in infor-

mation spaces that include a single class of references, but with rich associations between

the references.

Table 2.4 shows the performance on each individual PIM data set. DepGraph obtained

higher F-measures and generated many fewer person reference partitions on all data sets.

It improved the recall by 34.8% on data set A, which has the highest variety in the pre-
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Table 2.4: Performance for different PIM data sets measured in occurrence-based precision,
recall and F-measure.

PIM data set IndepDec DepGraph

#(Persons)/#(Refs) Prec/Recall F-measure #(Par) Prec/Recall F-measure #(Par)

A (1750/24076) 0.999/0.741 0.851 3159 0.999/0.999 0.999 1873

B (1989/36359) 0.974/0.998 0.986 2154 0.999/0.999 0.999 2068

C (1570/15160) 0.999/0.967 0.983 1660 0.982/0.987 0.985 1596

D (1518/17199) 0.894/0.998 0.943 1579 0.999/0.920 0.958 1546

Avg 0.967/0.926 0.946 - 0.995/0.976 0.986 -

Table 2.5: Performance for different PIM data sets measured in representation-based preci-
sion, recall and F-measure.

PIM data set IndepDec DepGraph

#(Persons)/#(Refs) Prec/Recall F-measure Prec/Recall F-measure

A (1750/3114) 0.995/0.509 0.673 0.982/0.947 0.964

B (1989/3211) 0.81/0.803 0.806 0.958/0.891 0.923

C (1570/2430) 0.987/0.782 0.873 0.814/0.925 0.867

D (1518/2188) 0.694/0.837 0.759 0.942/0.737 0.827

Avg 0.872/0.733 0.778 0.924/0.875 0.895

sentations of individual person entities. Note that DepGraph reduced the recall on data

set D. The main reason is that the owner of the data set changed her last name and also

her email account (at the same email server) when she got married, so after enforcing the

constraint, DepGraph divided her references into two partitions with similar sizes. Since

the owner is typically the most popular entity in the data set, dividing her references into

two partitions leads to large loss in recall. However, we observe that the other references

in her data set were better reconciled: DepGraph obtained a much higher precision and

reduced the number of partitions by 33. In contrast, two other data set owners also have

name changing issues. DepGraph successfully merged their references because they con-

tinued to use the same email addresses after the name changes. One minor point is that
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Table 2.6: Performance for different PIM data sets measured in diversity and dispersion.

PIM data set IndepDec DepGraph

#(Persons)/#(Refs) Diversity Dispersion Diversity Dispersion

A (1750/24076) 1.003 1.18 1.003 1.047

B (1989/36359) 1.01 1.067 1.008 1.039

C (1570/15160) 1.003 1.053 1.017 1.03

D (1518/17199) 1.004 1.041 1.005 1.023

Avg 1.005 1.085 1.008 1.035

the precision on data set C is lower than others. The owner of the data set is Chinese

and her Chinese friends typically have short names with significant overlap, which makes

reconciliation more difficult. For such a data set, we did not find a set of similarity functions

or heuristics that improve recall without sacrificing precision. Except for data set C, we

did not find distinguishable performance difference between the data sets, which shows our

algorithm is robust to variations in the nature of references.

Finally, we also reported the performance on each PIM data set using different mea-

sures. Table 2.5 shows the performance measured by representation-based precision, recall

and F-measure. The average F-measure of DepGraph was 15% higher than that of Inde-

pDec, showing the significant improvement achieved by our algorithm. Table 2.6 shows the

performance measured by diversity and dispersion. Both average diversity and dispersion

were close to 1, and the dispersion was improved over that of IndepDec.

Component Contributions

We now analyze the contribution of different components of the algorithm. We conducted

experiments on data set A, which has the highest variety and most room for improvement

(DepGraph improved the recall from 0.741 to 0.999). This data set contains 24076 Person

references, and they refer to 1750 real-world persons.

Our analysis is along two orthogonal dimensions. Along one dimension, we analyzed the

contribution of different types of evidence. We started with Attr-wise that compares person



48

Table 2.7: The number of Person reference partitions obtained by different variations of the
algorithm on PIM data set A. For each mode, the last column shows the improvement in
recall (measured as the percentage reduction in the difference between the number of result
partitions and the number of real-world entities) from Attr-wise to Contact by considering
all the additional available evidence. For each evidence variation, the last row shows the
recall improvement by applying reconciliation propagation and reference enrichment. The
bottom-right cell shows the overall recall improvement of DepGraph over IndepDec.

Mode Attr-wise Name&Email Article Contact Reduction(%)

Traditional 3159 2169 2169 2096 75.4

Propagation 3159 2146 2135 2022 80.7

Merge 3169 2036 2036 1910 88.7

Full 3169 2002 1990 1873 91.3

Reduction(%) - 39.9 42.7 64.6 91.3

references by their names and their emails respectively. Then, we considered Name&Email

that compares names against email addresses. Next, we considered Article that exploits the

associations between persons and their articles – persons with similar names and having

authored the same paper are likely to be the same person. Finally, we considered Contact

that exploits common email-contacts and co-authors – persons with similar names and also

a similar set of email-contacts and co-authors are likely to be the same. Each of these

variations considers new evidence in addition to that of the earlier variation. We considered

Contact last because it is likely to perform the best when some person references have

already been reconciled, and thus the contact lists can be merged and enriched.

Along another dimension, we examined the independent contributions of reconciliation

propagation and reference enrichment. We considered four modes:

• Full: apply both reconciliation propagation and reference enrichment.

• Propagation: apply only reconciliation propagation.

• Merge: apply only reference enrichment.
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Figure 2.12: Contribution of each type of evidence and each algorithmic feature. The top-left
most point represents IndepDec and the bottom-right most point represents DepGraph.

• Traditional: apply neither.

We observed very similar precision for the different variations and modes of the algo-

rithm, so we focus on recall. To demonstrate the difference in recall, we counted the number

of person entities returned by each approach (i.e., the number of resulting partitions). Since

the precision is about the same in all cases, this count is proportional to the recall. As shown

in Figure 2.12, each type of evidence and each algorithm feature progressively contributes to

more reconciliation on Person references. Table 2.7 shows the recall improvement in terms

of the percentage of reduction in the difference between the number of person partitions re-

turned by the reconciliation algorithm and the number of real-world person entities included

in the data set. Note that Attr-wise in the Traditional mode is equivalent to the Inde-

pDec approach, and Contact in the Full mode is equivalent to the DepGraph approach.

The IndepDec approach reconciled the 24076 references into 3159 instances, whereas the

DepGraph approach reconciled them into 1873 instances, reducing the difference between

the result number of references and the real number of references by 91.3%.

Among the different evidence variations, Name&Email dramatically improved the recall.
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It helped greatly in reconciling the references extracted from Latex and Bibtex files with

the references extracted from emails. It also helped reconcile different email accounts of a

person. Contact also significantly increased the recall. In the full mode, it successfully

reduced an extra 117 person partitions.

Among the different modes, the Full mode obtained the highest recall, and the Tra-

ditional mode obtained the lowest recall. Even when we considered all types of evidence,

the Traditional mode generated 2096 instances. The gap between the resulting number

of partitions and the real number of partitions is a factor of 2.81 times the corresponding

gap to the Full mode. We observed that Merge performed much better than Propa-

gation independent of the types of evidence being used. One important reason is that

when the data has a high variety (i.e., one person has several different name presentations

and email addresses), reference enrichment effectively accumulates the evidence for more

informed reconciliation decisions. Another reason is that reference enrichment merges the

contact lists that are originally scattered across different references of the same person, and

thus significantly enhances Contact. However, the FULL mode does significantly better

than either, thus demonstrating their combined utility.

Finally, we observed that reconciliation propagation and reference enrichment require

abundant evidence to be effective. For Attr-wise, the four modes obtained very similar

results. As we considered more evidence, the difference gradually grew. In particular,

observe that Article enabled Propagation to reconcile authors of the reconciled articles,

although it did not provide any benefit for Merge. On the other hand, Contact provided

more benefit for Merge than for Propagation because of the consolidation of email-

contact and co-author lists.

Effect of Constraints

We now examine the effect of constraint enforcement. We compared with the Non-

Constraint approach, which does not consider any constraint or negative evidence. In

contrast, DepGraph enforces the following three conditions:

1. Authors of a paper are distinct persons.
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Table 2.8: Effect of considering constraints on reconciliation: the precision, recall, the
number of real-word entities that are involved in erroneous reconciliations (false-positives),
and the graph size in terms of the number of nodes.

#(Entities

Method Prec/Recall with false- #(Nodes)

positives

DepGraph 0.999/0.9994 13 692030

Non-Constraint 0.947/0.9996 61 590438

2. Two persons with the same first name but completely different last name, or with the

same last name but completely different first name, are distinct persons unless they

share the same email address.

3. A person has a unique account on an email server.

Table 2.8 shows the precision and recall of each approach, along with the number of real-

world Person instances involved in false positives. The DepGraph approach obtained very

high precision. Among the 1750 real-world instances, only 13 were incorrectly reconciled;

among them 5 were mailing lists and hence only 4 pairs of real person instances were in-

correctly reconciled. The Non-constraint approach had much lower precision, where

61 instances were incorrectly reconciled. We also observed that although considering con-

straints added more nodes in the dependency graph, a careful choice of constraints did not

necessarily blow up the graph.

2.4.4 The Cora Data Set

Table 2.9 shows the precision, recall and F-measure for DepGraph and IndepDec on the

Cora data set. We observed a large improvement of F-measure on Venue references and

an improvement on Article and Person references. We note that the Cora data set is very

noisy; for example, citations of the same paper may mention different venues. On such a

data set, the effect of the propagation from article nodes to venue nodes was two-fold. On
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Table 2.9: Precision, recall and F-measure for the Cora data set.

IndepDec DepGraph
Class

Prec/Recall F-msre Prec/Recall F-msre

Person 0.994/0.985 0.989 1/0.987 0.993

Article 0.985/0.913 0.948 0.985/0.924 0.954

Venue 0.982/0.362 0.529 0.837/0.714 0.771

the one hand, it helped reconcile a large number of venues and improve the recall on venue

references, and in turn improved the recall on article references. On the other hand, it

incorrectly reconciled the many different venues mentioned in citations to the same article

and thus reduced the precision.

Finally, we compared our results with other reported experimental results on the same

benchmark data set. Bilenko and Mooney [17] reported a 0.867 F-measure on their adap-

tive approach; Cohen and Richman [36] reported a 0.99/0.925 precision/recall on their

approach; and Singla and Domingos [118] reported 0.845/0.949 (precision/recall) for pa-

pers, 0.802/0.997 for persons, and 0.720/0.965 for venues on their collective record linkage

approach. Because our algorithms handle key attributes in a different way (two references

are reconciled if they agree on key values), both IndepDec and DepGraph obtained high

precision and recall. Nevertheless, the strength of dependency graph further improved the

result and made it comparable to those of the adaptive approaches, even without using any

training data.

2.5 Related Work

The problem of reference reconciliation, originally defined by Newcombe et al. [101], was first

formalized by Fellegi and Sunter [51]. A large number of approaches that have been since

proposed [17, 72, 96, 136, 125] use some variant of the original Felligi-Sunter model. Recon-

ciliation typically proceeds in three steps: first, a vector of similarity scores is computed for

individual reference pairs by comparing their attributes; second, based on this vector, each

reference pair is compared as either a match or non-match; and finally, a transitive closure
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is computed over matching pairs to determine the final partition of references. Attribute

comparison is done by using either generic string similarity measures (see [35, 18] for a com-

prehensive comparison and [26, 125, 17] for recent adaptive approaches) or some domain-

specific measures (e.g., geographic locality in [6]). The classification of candidate reference

pairs into match and non-match pairs is done through a variety of methods: (a) rule-based

methods [72, 89, 59, 78] that allow human experts to specify matching rules declaratively;

(b) unsupervised learning methods [136] that employ the Expectation-Maximization (EM)

algorithm to estimate the importance of different components of the similarity vector; (c)

supervised learning methods [105, 36, 125, 115, 18] that use labeled examples to train a

probabilistic model, such as a decision tree, Bayesian network, or SVM, and later apply the

model to identify matching pairs; and finally, (d) methods that prune erroneous matching

pairs by validating their merged properties using knowledge in secondary sources [41, 46, 98].

Our approach departs from the basic three-step model in that our dependency graph

effectively models relations between reconciliation decisions. There is a continuous feedback

loop between computing similarities and matching decisions. Importantly, our framework

retains the flexibility of employing the different established techniques described previously

for computing attribute and reference similarities.

Most prior work has treated reference reconciliation as a single class problem, and it is

typically assumed that attribute values, albeit noisy ones, are known for all the references.

This model breaks down in dataspace applications such as PIM, where there are multiple

classes and individual references can have not only missing attribute values, but also multiple

valid attribute values. We are able to offset this complexity by exploiting associations

between references to design new similarity measures, and to learn from matching decisions

across multiple classes.

The idea of capturing the dependencies between reconciliation decisions has recently

been explored in the Data Mining and Machine Learning community. In [103], a complex

generative model is proposed to capture dependencies between various classes and attributes

and also possible errors during reference extraction. In [118], a dependency model is pro-

posed that propagates reconciliation decisions through shared attribute values. Both of

the above approaches entail learning a global detailed probabilistic model from training
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data and having the entire reconciliation process guided by that probabilistic model. In

complex information spaces that contain multiple classes and complex associations between

the classes, learning such a model is impractical. In contrast, our approach provides a

mechanism for exploiting influences between reconciliation decisions, and it allows apply-

ing different domain-specific models (either heuristic or learned) for particular classes of

references.

In [16, 81], associations are used to compute similarities and relate reconciliation deci-

sions. Their proposed heuristics are just a subset of the many heuristics we use. Further,

we consider a much more complex domain.

The use of negative information was proposed in [41] to validate individual reconciliation

decisions. Our framework exploits the dependency graph to propagate such information for

additional benefit.

Finally, several works [72, 96, 26, 78] have addressed the computational cost of reference

reconciliation. We follow the spirit of the canopy mechanism [96] to reduce the size of our

dependency graph. We insert into the graph only attribute-value pairs and reference pairs

that have some potential to be similar.

2.6 Discussion

We now discuss the limitations and possible extensions of our reference reconciliation algo-

rithm. We start with discussion of the performance, and then discuss incremental reconcil-

iation, efficiency of our algorithm, and representation of the reconciliation results.

Performance: Our experimental results show that we obtained an average 0.986 occurrence-

based F-measure and an average 0.895 representation-based F-measure on Person instances

in the four personal data sets. Whereas the performance was good in general, there are

several types of mistakes that our algorithm cannot avoid.

Regarding recall, our algorithm can miss reconciliations when there does not exist enough

evidence. This error can happen if the attribute values in the two references are very different

(such as “Luna Dong” and “Xin Dong”) and extra evidence from associations do not exist.

Such missed reconciliations often happen to unpopular instances, which occur rarely in the
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data set and have very few associations; thus, not being able to correctly reconcile them

typically is not too annoying.

In addition, constraints may inhibit correctly reconciling some references. Recall from

Section 2.4 that the owner of the data set D changed her account in the same email server

after marriage. However, we have the constraint that a person has a unique account on

an email server, which is typically true. This constraint prevents reconciling the references

to the owner and results in two similar-sized reference partitions. Therefore, choosing

constraints that are generally applicable while not too strict to be useful is important.

Regarding precision, there are several factors that can affect performance. First, we may

incorrectly reconcile references that contain exactly the same attribute values but actually

refer to different real-world entities (e.g., two persons with exactly the same name). To

completely avoid such mistakes, we should start by considering each occurrence of a reference

as an individual one, remove any rules that state references with exactly the same attribute

values are highly similar (above the merge threshold), and reconcile two references very

conservatively. However, such conservativeness can blow up the dependency graph and

often sacrifice the recall. Our algorithm partly solves this problem by merging references

that have sufficient attribute values that are the same; for example, two Person references

with the same email address or with the same name that is fairly long are considered to

have sufficient attribute values that are the same. However, how to distinguish individuals

with exactly the same attribute values without sacrificing recall remains an open problem.

Second, recall that our algorithm obtained low precision on data set C, which contains

a large number of Person references referring to Chinese people. The main reason is that

there is a many-to-one relationship between Chinese names and their English translations.

In particular, one reason for incorrect reconciliation is that the English translations are

typically short and similar; for example, “Xin Deng” and “Xin Dong”, which are signif-

icantly different in Chinese, look similar in English and our algorithm can consider one

as mis-spelling of the other and incorrectly reconcile them. Another reason for incorrect

reconciliation is that in English translation a Chinese name can occur both as a first name

and as a last name; for example, “Dong Xin” and “Xin Dong” are indeed names of two

different persons, but our algorithm may consider one has mis-ordered first name and last
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name and so incorrectly merge them. Our algorithm can even aggravate these mistakes by

gleaning extra evidence and enriching references. One solution to this problem is to use

even more conservative similarity functions when comparing references to Chinese people;

however, this requires detecting such references and defining a different set of similarity

functions. Another solution is to learn the similarity functions from training data; however,

it works better on data sets where all person references refer to Chinese people. It would be

beneficial to study which characteristics of a data set can affect the performance, automat-

ically detect such characteristics in the given data set, and adjust the similarity functions

accordingly.

Third, our algorithm does not allow backtracking on a reconciliation decision. Sometimes

the evidence we see later can fix an error we made early; however, once we decide to reconcile

two references, our algorithm merges them through reference enrichment and cannot roll

back. We currently solve this problem by introducing constraints to our framework. It is

also possible to keep the history of the reconciliation process; however, this potentially can

lead to a scalability problem and so we need to find the tradeoff.

Finally, the result of our algorithm is related to the order of the nodes for which we

compute similarity scores. We solve this problem by running our algorithm iteratively and

our experiments show that many computation orders indeed generate the same results.

User’s feedback: Currently our algorithm relies on automatic reconciliation and does

not ask for users’ feedback; however, users’ feedback can help fix errors made by our al-

gorithm and guide further reconciliation. It would be beneficial to study how to provide

an interface for user feedback, how to ask critical questions to fix possible errors made by

the algorithm, and how to learn from users’ feedback to improve the performance of later

reconciliations [115].

Incremental reconciliation: Consider two reference sets Ā and B̄. We can certainly

reconcile references in the two sets by constructing a dependency graph for every pair of

references in Ā∪ B̄. However, it often happens that we have already reconciled references in

Ā and obtained a reference set Ā′. In this case, we can reconcile references in B̄ incrementally

by constructing a dependency graph that compares (1) every pair of instances in B̄ and
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(2) every pair of instances where one instance is from Ā′ and one is from B̄. The latter

method can significantly improve efficiency when Ā′ is much larger than B̄. However, our

experiments showed that the first method exploits more evidence that is hidden in similarity

of references in Ā′ and tends to obtain slightly more accurate results. We plan to quantify

the difference of the two methods and find the balance between performance and efficiency.

Efficiency: Our algorithm by nature is expensive, because it needs to keep the similarity

of every pair of references or attribute values that are potentially similar. Indeed, building

the dependency graph (along with comparing attribute values) dominates the execution

time. Storing the dependency graph in memory is not scalable to large data sets. So far we

solve this problem by pre-processing using some inexpensive reference comparisons, such as

merging Person references with the same email address, and by incremental reconciliation.

A more scalable solution is to store the dependency graph on disk such as in a database.

The reconciliation algorithm requires frequent update of the graph, which can be well sup-

ported by the database management system (in contrast, storing the graph in files is not as

appropriate).

Representation of the results: There are two representations of our reconciliation re-

sults. First, we can discard all similarity scores and generate an instance for each result

reference partition. Second, we can keep the similarity score for each pair of input references.

Results in the second representation can be used in systems that support management of

probabilistic data [118] and the uncertainty we have about the reconciliation decisions can

be reflected in answers to queries. However, the space complexity of the second represen-

tation is much higher than the first. Let m be the number of input references and n be the

number of output partitions. Typically m is much larger than n. The space complexity of

the first representation is O(n) and that of the second is O(m2). Thus, we need to make a

trade-off between the reserved information and the space complexity. For example, we can

merge a pair of references when the similarity between them is high, and keep the similarity

scores for reference pairs that are only marginally similar.
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2.7 Summary

Many database applications require resolving heterogeneity at the instance level; that is,

reconciling references of multiple classes where rich relationships exist between instances.

Thus far, reference reconciliation has been mainly focused on the context of reconciling

references of a single class, where each instance contains a fair number of attributes. This

chapter fills in this gap by proposing a generic framework that effectively exploits the rich

information present in the associations between references and reconciles references of mul-

tiple classes at one time. Specifically, to make more informed reconciliation decisions, our

framework influences later similarity computation with early reconciliation decisions, and

enriches references by instant merging. We apply our algorithm to PIM and Cora data sets,

and our experimental results show that it obtains high precision and recall in both applica-

tions. Whereas we emphasize applications with multiple classes of objects, our experiments

on email-address reconciliation show that our algorithm also benefits record-linkage tasks

that match only a single class of objects.
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Chapter 3

RESOLVING QUERY-LEVEL HETEROGENEITY I:

INDEXING DATASPACES

A dataspace system aims to support queries over disparate data sources where users

may not be aware of the structure of the data and can specify queries that have different

structures (see Figure 3.1). In such a setting, the user’s querying has two characteristics.

First, much of the user interaction with the dataspace is of an exploratory nature—the user

is getting to know the data and its structure. Second, since there are many disparate data

sources, the user cannot query the data using a particular schema. To coordinate these

two characteristics, it is important that users are able to use varying degrees of structure

in their queries, ranging from keyword queries to structure-aware queries. Furthermore, it

is beneficial that the system return possibly related data in answer to queries and not only

the data that strictly satisfy the query.

To capture these novel querying needs, we propose a class of queries that use keywords

to specify values and meanwhile are aware of the structure of the data. We consider the

indexing support to efficiently answer such queries. Our index is based on extending inverted

lists to capture structure in the data when it is present. This chapter begins by formally

defining the queries we consider and introducing our indexing framework in Section 3.1.

Then, Section 3.2 describes how to extend inverted lists to support attribute and association

information. Section 3.3 shows further extensions for attribute hierarchies and synonyms.

Section 3.4 presents experimental results and Section 3.5 discusses related work. Finally,

Section 3.6 discusses possible extensions and Section 3.7 summarizes this chapter.

3.1 Problem Definition and Overview of Our Approach

A dataspace can contain data in various formats, such as relational data, XML data, RDF

data, and even unstructured data, and we cannot assume the schema mappings between

the data sources already known or specified. To provide uniform search and querying
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<publication>
  <title>Distributed Query Processing…</title>
  <authors>
    <author> Mike Stonebraker </author>
    …
  </authors>
  <conference>
    <name>ACM SIGMOD</name>
    <year>1978</year>
  </conference>
  <pages>
    <from>169</from>
    <to>180</to>
  </pages>
</publication>
...

title

Distributed query... Stonebraker, M., ...

author pages

169-180

year

1978

... ... ... ...

RDB Schema
Paper (title,  author, pages,
year)

XML DTD
<!ELEMENT publication
(title, authors , conference,
pages)>
<!ELEMENT title
(#PCDATA)>
<!ELEMENT authors
(author*)>
...

D1

D2

D3

Keyword Search
distributed query
processing by mike
stonebraker

SQL Query
SELECT *
FROM Paper
WHERE title LIKE
‘distributed  query
processing’ AND
writer=’Mike Stonebraker’

...

Data-levelSchema-level

Query-level

S1

S2

Figure 3.1: Heterogeneity at the query level in a dataspace.
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over these heterogeneous data, and index the data to support efficient querying, we need a

“normalized” view of the underlying data. The association network extracted from the data

sources can serve for this purpose as it captures the essence of the schemas and provides a

normalization of the data regardless of their particular formats. We can extract the instances

and associations in the association network using a variety of methods. In Chapter 6 we

describe several ways to extract instances and associations from personal data. As other

examples, we can extract instances and associations from tuples in a relational database by

trying to guess the E/R model that may lead to the schema. For example, if the key of a

table consists of multiple attributes and each is a foreign key to another table, we consider

tuples in the table as representing associations. Note that these extractions are imprecise in

nature, so our querying mechanisms and indexing techniques need to allow more flexibility.

This chapter omits the details of extraction and focuses on the indexing aspect.

We next formally define the queries we consider, and give an overview of our indexing

framework to support these queries.

3.1.1 Querying Heterogeneous Data

Our goal is to support specifying queries with varying degrees of structure requirement over

collections of heterogeneous data that are not necessarily semantically integrated as in data

integration systems. Structured queries require detailed knowledge of the source schemas

and precise values of the attributes and thus can be too strict in our context; keyword

search, on the other hand, is forgiving but does not allow any specification of structural

requirements. To fill in this gap, we consider a class of queries that use keywords to specify

values and meanwhile are aware of the structure of the data.

We introduce two types of queries in this class: predicate queries and neighborhood

keyword queries, which we will formally define next. When we define the queries, we use

the following example for illustration.

Example 3.1. Consider the association network depicted in Figure 3.2. It contains three

Person instances p1, p2, p3, one Article instance a1, and one Conference instance c1. For

example, Paper a1 has title “Birch:...”; it is associated with Person instances p1 and p2, and
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p1 = {name = “Tian Zhang”, authoredPaper = a}

p2 = {name = “Raghu Ramakrishnan”, email = “raghu@wisc”, email = “raghu@yahoo”,

authoredPaper = a}

p3 = {firstName = “Jie”, lastName = “Tian”, nickName = “Jeff”}

a = {title = “Birch:...”, contactAuthor = p1, author = p2, publishedIn = c}

c = {name = “Sigmod”, year = “1996”, publishedPaper = a}

(a)

p1

p2

p3

a1 c1

Tian Zhang
name

Raghu Ramakrishnan

raghu@wisc

raghu@yahoo

Jie

Tian Jeff

name

email

email

contactAuthor

author

authoredPaper

authoredPaper

Birch:... Sigmod 1996

firstName

lastName nickName

title name year

publishedPaper

publishedIn

(b)

Figure 3.2: An example association network: (a) list representation; (b) graph representa-
tion.
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Conference instance c1.

Here we assume that the attributes firstName, lastName and nickName are sub-attributes

of name, and the association contactAuthor is a sub-association of author. �

Predicate queries: The first type of queries, called predicate queries, describes the desired

instances by a set of predicates, each specifying an attribute value or an associated instance.

Definition 3.2. A predicate query contains a set of predicates. Each predicate is of the

form (v, {K1, . . . ,Kn}), where v is called a verb and is either an attribute name or an

association name, and K1, . . . ,Kn are keywords.

The predicate is called an attribute predicate if v is an attribute, and an association

predicate if v is an association.

The semantics of predicate queries is as follows. The returned instances need to satisfy

at least one predicate in the query. An instance satisfies an attribute predicate if it contains

at least one of {K1, . . . ,Kn} in the values of attribute v or sub-attributes of v. An instance

o satisfies an association predicate if there exists i, 1 ≤ i ≤ n, such that o has an association

v or sub-association of v with an instance o′ that has an attribute value Ki. �

We note that we can also express conjunctions of predicates in our language using boolean

expressions with “AND”, but the details are irrelevant to our discussion.

Example 3.3. The query “Raghu’s Birch paper in Sigmod 1996” can be described with the

following three predicates. The query is satisfied by instance a1 in our example association

network.

(title ‘Birch’), (author ‘Raghu’), (publishedIn ‘1996 Sigmod’)

�

In practice, users can specify predicate queries in two ways. First, they can specify a

query through a user interface featuring drop-down menus that show all existing attribute

or association labels. Second, they can compose the query in a certain syntax (such as the

one shown in Example 3.3), specifying attribute or association labels that they know (such
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as those in data sources familiar to them). In general, our querying is aimed to be more

forgiving in cases where users do not know the schema. For example, we support synonym

terms, and we don’t require knowledge of attribute hierarchies—users can specify terms

anywhere in a hierarchy.

Neighborhood keyword queries: The second type of queries, called neighborhood key-

word queries, extends keyword search by taking associations into account.

Definition 3.4. A neighborhood keyword query is a set of keywords, K1, . . . ,Kn. An

instance satisfies a neighborhood keyword query if either of the following holds:

• The instance contains at least one of {K1, . . . ,Kn} in attribute values. In this case

we call it a relevant instance.

• The instance is associated (in either direction) with a relevant instance. In this case

we call it an associated instance. �

Example 3.5. Consider the query “Birch”. Instance a1 is a relevant instance as it contains

“Birch” in the title attribute, and p1, p2, and c1 are associated instances. �

Predicate queries and neighborhood keyword queries are different from traditional struc-

tured queries in that the user can specify keywords instead of precise values, and provide

only approximate structure information. For example, the query in Example 3.3 does not

specify if “Raghu” should occur in an author attribute, or in an author sub-element, or in

the attribute of another tuple that can be joined with the returned instance. These types of

queries are also different from keyword search in that query answering explores the structure

of the data to return associated relevant instances.

Clearly, a significant part of answering the above queries is intelligent ranking of the

results. We can use a combination of methods, including ranking results that match sev-

eral keywords in a predicate more highly, weighing associations differently when ranking

associated instances, and applying PageRank on the association network. The rest of this

chapter focuses on the indexing aspects of query answering.
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RDB
Docs

XML

Inverted List

...
key1

key2

keyn

.

.

.

Figure 3.3: The framework of our index: an extended inverted list over a collection of
heterogeneous data.

3.1.2 Extending Inverted Lists

Broadly speaking, existing indexing methods either build a separate index for each attribute

in each data source to support structured queries on structured data, or create an inverted

list to support keyword search on unstructured data. Consequently, as we shall show,

they fall short in the context of queries that combine keywords and structure. The area

in which indexing structure and keywords has received most attention is in the context

of XML. However, the techniques proposed for XML indexing fall short in our context

for two reasons. First, the XML techniques typically rely on encoding the parent-child and

ancestor-descendant relationships in an XML tree; however, the relationships in a dataspace

do not fit this model. Furthermore, most XML indexing methods build multiple indexes;

as we show in our experiments, visiting multiple indexes to answer a predicate query or a

neighborhood keyword query can be quite time-consuming.

Our index is based on extending inverted lists, a technique widely used in Information

Retrieval. In our context, answers to queries are data items from the sources, such as files,

rows in spreadsheets, tuples in relational databases, or elements in XML data. Hence, in
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Table 3.1: The inverted list for the association network in Example 3.1.

a1 c1 p1 p2 p3

1996 0 1 0 0 0

birch 1 0 0 0 0

jeff 0 0 0 0 1

jie 0 0 0 0 1

raghu 0 0 0 3 0

ramakrishnan 0 0 0 1 0

sigmod 0 1 0 0 0

tian 0 0 1 0 1

wisc 0 0 0 1 0

yahoo 0 0 0 1 0

zhang 0 0 1 0 0

the inverted list each row represents a keyword and each column represents a data item

from the data sources. (see Figure 3.3). We now review how an inverted list can index a

set of instances in an association network and then briefly describe our extensions to the

inverted list.

Inverted Lists

Conceptually, an inverted list is a two-dimensional table, where the i-th row represents

indexed keyword Ki and the j-th column represents instance Ij. The cell at the i-th row and

j-th column, denoted (Ki, Ij), records the number of occurrences, called occurrence count,

of keyword Ki in the attributes of instance Ij. If the cell (Ki,Ij) is not zero, we say instance

Ij is indexed on Ki. The keywords are ordered in alphabetic order, and the instances are

ordered by their identifiers. Table 3.1 shows the inverted list for our example association

network.

In practice, an inverted list is seldom stored as a matrix. There are multiple ways to

store an inverted list, such as a sorted array, a prefix B-tree or a Patricia trie [9]. In addition,
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[138] describes techniques for compression of inverted lists. The extensions we describe next

are orthogonal to these physical implementations.

Overview of Extensions

Note that inverted lists, as described above, do not capture any structure information: in

the example inverted list, we cannot tell that “tian” occurs as p1’s name (actually, first name)

and p3’s lastName. To enable efficient answering of predicate queries and neighborhood

keyword queries, we propose to capture both text values and structural information using

an extended inverted list. We now briefly describe the several extensions we make to inverted

lists.

Our extensions are based on augmenting the text terms in the inverted list with labels

denoting the structural aspects of the data such as (but not limited to) attribute tags and

associations between data items.

1. When an attribute tag is attached to a keyword, it means that this keyword appears

as a value for that attribute; for example, “birch//title//” indexes the papers with

title that includes the word “Birch”. We assume // is a string reserved for indexing

purposes only. Any other delimiter that never occurs in the indexed keywords works

too.

2. When an association tag is attached to a keyword, it means that this keyword appears

in an associated instance; for example, “birch//authoredPaper//” indexes the people

who authored Birch papers.

3. Finally, when an attribute or association path is attached to a keyword, the path indi-

cates the attribute or association hierarchy; for example, “Tian//name//firstName//”

indexes people whose first name is “Tian”, and indicates firstName is a sub-attribute

of name.

In the rest of this chapter, we describe these extensions in detail and describe experiments

that validate the utility of our extensions.
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3.2 Indexing Structure

This section describes how we index attributes and associations along with keywords to

support predicate queries. We consider hierarchies in the next section.

3.2.1 Indexing Attributes

Consider an attribute predicate (A, {K1, . . . ,Kn}) in a predicate query. Instances satisfy

the predicate if they contain some of the keywords K1, . . . ,Kn in their A attribute. To

handle attribute predicates efficiently, our index should tell us which attributes contain a

given keyword.

There are several ways to capture attribute types in indexing. One option is to build

an index for each attribute, but as we shall show in the experiments, it can introduce a

significant overhead to the index structure. Another option is to specify the attribute name

in the cells of the inverted list. For example, the cell (“tian”, p1) in Table 3.1 could be

modified to record “name:1”. However, this method would considerably complicate query

answering. The solution we propose captures attribute names with the indexed keywords

to save both index space and lookup time.

Attribute inverted lists (ATIL): We create an attribute inverted list (see Table 3.2) as

follows. Whenever the keyword k appears in a value of the a attribute, there is a row in the

inverted list for k//a//. For each instance I, there is a column for I. The cell (k//a//, I)

records the number of occurrences of k in I’s a attributes.

To answer a predicate query with attribute predicate (A, {K1, . . . ,Kn}), we only need

to do keyword search for {K1//A//, . . . ,Kn//A//}. For example, to answer the attribute

predicate “lastName, ‘Tian’”, we transform it into a keyword query “tian//lastName//”. In

Table 3.2, the search will yield p3 but not p1.

3.2.2 Indexing Associations

Consider the association predicate (R, {K1, . . . ,Kn}). Instances satisfy the predicate if they

have associations of type R with instances that contain some of the keywords K1, . . . ,Kn

in attribute values.
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Table 3.2: The ATIL for the association network in Example 3.1.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0

birch//title// 1 0 0 0 0

jeff//nickName// 0 0 0 0 1

jie//firstName// 0 0 0 0 1

raghu//email// 0 0 0 2 0

raghu//name// 0 0 0 1 0

ramakrishnan//name// 0 0 0 1 0

sigmod//name// 0 1 0 0 0

tian//lastName// 0 0 0 0 1

tian//name// 0 0 1 0 0

wisc//email// 0 0 0 1 0

yahoo//email// 0 0 0 1 0

zhang//name// 0 0 1 0 0
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One naive solution here would be to perform a keyword search on keywords {K1, . . . ,Kn}

and find a set of instances {I1, . . . , Im} that contain these keywords. Then, for each instance

Ik, k ∈ [1,m], we find all instances o, such that o is associated with Ik with association type

R. This approach can be very expensive for two reasons. First, when m is large, iteratively

finding associated instances for each Ik can be expensive. Second, a returned instance can be

associated with one or more instances in {I1, . . . , Im}. Ranking the returned results requires

counting the number of associated instances for each result, which can be expensive. We

offer a solution that extends inverted lists to also capture association information, thereby

avoiding the expensive traversal of the association network.

Attribute-association inverted lists (AAIL): We index association information as fol-

lows. Suppose the instance I has an association r with instances I1, . . . , In in the association

network, and each of I1, . . . , In has the keyword k in one of its attribute values. The inverted

list will have a row for k//r// and a column I. The cell (k//r//, I) has the value n.

An inverted list that captures both attribute and association information is called an

attribute-association inverted list (AAIL) (see Table 3.3). Given an association predicate

(R, {K1, . . . ,Kn}), we can answer it by posing the keyword query {K1//R//, . . . ,Kn//R//}

over the AAIL. For example, when searching for “Raghu’s papers”, the query contains an

association predicate “author ‘Raghu’” and so we look up keyword “raghu//author//”.

Based on the AAIL in Table 3.3, we return instance a1.

Integrating association information in the inverted list increases the size of the index.

However, in most applications when the size of the indexed data increases, the average

number of associated instances for each instance increases only slightly or even remains

the same, so the index typically grows linearly with the size of the data. As discussed

in 3.4.4, our experiments show that adding association information into an ATIL (to obtain

AAIL) slows down answering attribute predicates only slightly, but it speeds up answering

association predicates by an order of magnitude compared with the naive method.

It is interesting to distinguish our association index from join indexes [130], where a

precomputed join R ⋊⋉ S is materialized as a separate table and two copies of the table are

maintained, one clustered on R’s key columns and the other clustered on S’s key columns.
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Table 3.3: The AAIL for the association network in Example 3.1.

a1 c1 p1 p2 p3

1996//publishedIn// 1 0 0 0 0

1996//year// 0 1 0 0 0

birch//authoredPaper// 0 0 1 1 0

birch//publishedPaper// 0 1 0 0 0

birch//title// 1 0 0 0 0

jeff//nickName// 0 0 0 0 1

jie//firstName// 0 0 0 0 1

raghu//author// 1 0 0 0 0

raghu//email// 0 0 0 2 0

raghu//name// 0 0 0 1 0

ramakrishnan//author// 1 0 0 0 0

ramakrishnan//name// 0 0 0 1 0

sigmod//name// 0 1 0 0 0

sigmod//publishedIn// 1 0 0 0 0

tian//contactAuthor// 1 0 0 0 0

tian//lastName// 0 0 0 0 1

tian//name// 0 0 1 0 0

wisc//author// 1 0 0 0 0

wisc//email// 0 0 0 1 0

yahoo//author// 1 0 0 0 0

yahoo//email// 0 0 0 1 0

zhang//contactAuthor// 1 0 0 0 0

zhang//name// 0 0 1 0 0
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procedure Index(T ) return L

//T is an association network;

//Return the AAIL stored in array L;

Initialize each value of L[][] to 0;

for each instance I in T

for each attribute a of I

for each keyword k in the values of attribute a

L[k//a//, I] + +;

for each association r of I

for each associated instance J with association r

for each distinct keyword k in the attribute values of J

L[k//r//, I] + +;

return L;

(a)

procedure Search(L,Q) return Ī

//L is an AAIL; Q is a predicate query;

//Return Ī as a set of relevant instances;

K = “”; //the keyword query

for each predicate (V, {K1, · · · ,Kn})

for i = 1, n

K += Ki//V// + “ ”;

return KeywordSearch(L,K); //KeywordSearch() does keyword search

by looking up the index L for keywords in K;

(b)

Figure 3.4: Algorithms for (a) constructing an AAIL for a given association network, and
(b) answering a predicate query using an AAIL.
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Our association index can be viewed as a union of the original data and multiple join results.

This index structure enables us to count the occurrences of keywords and the numbers of

associated instances with one scan of the index.

Finally, note that a k-ary association can be modeled as an instance that is related to

the k instances involved in the association. Our indexing method can be easily extended to

this case and we omit the details.

Figure 3.4 shows the algorithm for indexing an association network and answering a

predicate query using the AAIL.

3.3 Indexing Hierarchies

We now consider answering predicate queries in the presence of hierarchies. For example,

for the query “name ‘Tian’”, we wish to return instances p1 and p3, rather than only p1.

A simple method to incorporate hierarchies would be first to find all descendants of the

name attribute (in this example, they are firstName, lastName and nickName), and then to ex-

pand the keyword query by considering also descendant attributes (so search “tian//name//

OR tian//firstName// OR tian//lastName// OR tian//nickName//”). However, this method

requires multiple index lookups and thus can be expensive.

Our solution is based on integrating the hierarchy information into the index structure.

We begin by describing two possible solutions and then combine their features and introduce

a hybrid indexing scheme. For ease of explanation, we consider only attribute hierarchies,

but the same principle applies to association hierarchies. We assume that each attribute

has at most a single parent attribute. This covers most cases in practice and the approach

can be easily extended to multiple-inheritance cases.

3.3.1 Index with Duplication

Our first solution duplicates a row that includes an attribute name for each of its ancestors

in the hierarchy.

Attribute inverted lists with duplication (Dup-ATIL): We construct a Dup-ATIL as

follows. If the keyword k appears in the value of attribute a0, and a is an ancestor of a0 in
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Table 3.4: The Dup-ATIL for the association network in Example 3.1. The difference from
Table 3.2 is highlighted using bold font.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0

birch//title// 1 0 0 0 0

jeff//name// 0 0 0 0 1

jeff//nickName// 0 0 0 0 1

jie//firstName// 0 0 0 0 1

jie//name// 0 0 0 0 1

raghu//email// 0 0 0 2 0

raghu//name// 0 0 0 1 0

ramakrishnan//name// 0 0 0 1 0

sigmod//name// 0 1 0 0 0

tian//lastName// 0 0 0 0 1

tian//name// 0 0 1 0 1

wisc//email// 0 0 0 1 0

yahoo//email// 0 0 0 1 0

zhang//name// 0 0 1 0 0

the hierarchy (a could also be a0), then there is a row k//a//. The cell (k//a//, I) records

the number of occurrences of k in values of the a attribute and a’s sub-attributes of I. We

answer a predicate query with the Dup-ATIL in the same way as we use the ATIL.

Example 3.6. Table 3.4 shows the Dup-ATIL for our example. Consider instance p3. We

index p3 not only on “jie//firstName//”, “tian//lastName//”, and “jeff//nickName//”, but

also on “jie//name//”, “tian//name//”, and “jeff//name//”. Thus, in the inverted list,

row “tian//name//” also records one occurrence for instance p3, and there are new rows

“jie//name//” and “jeff//name//”, each recording one occurrence for instance p3.

Now consider searching a person with name “Tian”. We transform the query “name

‘Tian’” into keyword search “tian//name//” and return instances p1 and p3. �
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Table 3.5: The Hier-ATIL for the association network in Example 3.1. The difference from
Table 3.2 is highlighted using bold font.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0

birch//title// 1 0 0 0 0

jeff//name//nickName// 0 0 0 0 1

jie//name//firstName// 0 0 0 0 1

raghu//email// 0 0 0 2 0

raghu//name// 0 0 0 1 0

ramakrishnan//name// 0 0 0 1 0

sigmod//name// 0 1 0 0 0

tian//name// 0 0 1 0 0

tian//name//lastName// 0 0 0 0 1

wisc//email// 0 0 0 1 0

yahoo//email// 0 0 0 1 0

zhang//name// 0 0 1 0 0

On the one hand, a Dup-ATIL has the benefit of simple query answering, but on the

other hand, it may considerably expand the size of the index because of the duplication.

The size of the Dup-ATIL will be especially affected if the attribute hierarchy contains

long paths from the root attribute to the leaf attributes and most values in the association

network belong to leaf attributes.

3.3.2 Index with Hierarchy Path

We now introduce a second solution, which does not affect the number of rows in the inverted

list. Instead, the keyword in every row includes the entire hierarchy path.

Attribute inverted lists with hierarchies (Hier-ATIL): We construct a Hier-ATIL by

extending the attribute inverted list as follows (see Table 3.5). Let a0, . . . , an be attributes

such that for each i ∈ [0, n − 1], attribute ai is the super-attribute of ai+1, and a0 does
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not have super-attribute. We call a0// . . . //an// a hierarchy path for attribute an. For

each keyword k in the value of attribute an, there is a row for k//a0// . . . //an//. For each

instance I, there is a column for I. The cell (k//a0// . . . //an//, I) records the number of

occurrences of k in I’s an attributes.

A Hier-ATIL captures the hierarchy information using hierarchy paths, which have a

nice feature: the hierarchy path of an attribute A is a prefix of the hierarchy paths of A’s

descendant attributes. Thus, we can transform an attribute predicate into a prefix search.

Specifically, consider a query predicate (A, {K1, . . . ,Kn}). We transform it into a prefix

search: K1//A//∗, . . . ,Kn//A//∗. For example, we can transform the query predicate

“name ‘Tian’” into a prefix search “tian//name//*” and so return both p1 and p3.

Since the indexed keywords in an inverted list are ordered, we can answer a prefix query

easily. To look up prefix P∗, we first locate the first row where the keyword is P or starts

with P . We then scan the subsequent rows until we reach an indexed keyword that does

not start with P , and we accumulate the occurrence counts in these rows for each instance.

Unlike Dup-ATIL, building a Hier-ATIL does not increase the number of indexed key-

words. Although it can lengthen many of the indexed keywords, real indexing systems

typically record a keyword only by the difference from its previous keyword (for example,

given a keyword k1 and a succeeding keyword k2, where the maximal common prefix of k1

and k2 is p, an index can record k2 by the length of p and k2’s suffix that differs from k1).

Thus, building a Hier-ATIL introduces only a small overhead. However, with Hier-ATIL we

need to answer a predicate query by transforming it into a prefix search, which can be more

expensive than a keyword search. Answering a prefix search K//A// is especially expensive

when K occurs in many different attributes that are descendants of A.

It is interesting to compare our approach with the one proposed in [37] in the context

of indexing XML data, where the focus was on answering queries with path expressions.

Whereas we index a keyword followed by the hierarchy path, [37] indexes an XPath with the

keyword in the end. Our approach has two advantages in our context. First, attribute key-

words have much higher variety than attribute names and thus are more selective. Second,

in the presence of attribute hierarchies, using our index we can transform a query predicate

into a prefix search (e.g., “tian//name//*”), but using their index we need to transform it
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Table 3.6: The Hybrid-ATIL with threshold t=1 for the association network in Example 3.1.
The difference from Table 3.5 is the row for “tian//name////”.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0

birch//title// 1 0 0 0 0

jeff//name//nickName// 0 0 0 0 1

jie//name//firstName// 0 0 0 0 1

raghu//name// 0 0 0 1 0

raghu//email// 0 0 0 2 0

ramakrishnan//name// 0 0 0 1 0

sigmod//name// 0 1 0 0 0

tian//name//// 0 0 1 0 1

tian//name//lastName// 0 0 0 0 1

wisc//email// 0 0 0 1 0

yahoo//email// 0 0 0 1 0

zhang//name// 0 0 1 0 0

into a general regular-expression query (e.g., “name/*/tian//”), which can be much more

expensive to answer.

3.3.3 Hybrid Index

The two solutions we have proposed have complementary benefits: Dup-ATIL is more suit-

able for the cases where a keyword occurs in many attributes with common ancestors, and

Hier-ATIL is more suitable for the cases where a keyword occurs in only a few attributes

with common ancestors. We now describe a hybrid indexing scheme that combines the

strengths of both methods.

Hybrid attribute inverted list (Hybrid-ATIL): The goal of a Hybrid-ATIL is to build

an inverted list that can answer any prefix search (ending with “//”) by reading no more

than t rows, where t is a threshold given as input to the algorithm.
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procedure Lookup(L,P ) return S

//L is a Hybrid-ATIL; P is a prefix to look up;

//Return S, an array summarizing for each instance the occurrences of keywords

//with prefix P ;

Initialize each value of S[] to 0;

Locate the first keyword K̄ = K +′′ //′′ with prefix P ;

while P is the prefix of K̄

Update S according to the row for K̄;

if (K̄ ends with “////”)

if K = P return S;

else Skip all succeeding keywords with prefix K;

Read the next keyword K̄ = K +′′ //′′;

return S;

Figure 3.5: The algorithm for looking up a prefix in a Hybrid-ATIL.

We build the Hybrid-ATIL by starting with the Hier-ATIL and successively adding sum-

mary rows, using a strategy we shall describe shortly. The indexed keyword in a summary

row is of the form p//, where p = k//a0// . . . //al//, k is a keyword, and a0// . . . //al// is

a hierarchy path for attribute al. Rows whose indexed keywords start with p are said to

be shadowed by the summary row p//. Note that keywords in summary rows end with an

additional // to be distinguished from ordinary rows. The cell (p//, I) has the sum of the

occurrence counts of I in p//’s shadowed rows. The Hybrid-ATIL with threshold t = 1 for

the example association network is shown in Table 3.6.

To answer a prefix query of the form k//a1// . . . //am//∗, we look at all the rows with

prefix k//a1// . . . //am// except those shadowed by summary rows. Figure 3.5 shows the

algorithm for prefix lookup in a Hybrid-ATIL. The key idea is that when we encounter a

keyword of the form K////, we ignore its shadowed rows.

Example 3.7. Consider the following two queries on the example association network.
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• Q1: name “Jeff”

• Q2: name “Tian”

Query Q1 is transformed into prefix search “jeff//name//*”. In Table 3.6, only keyword

“jeff//name//nickName//” contains this prefix, so we return instance p3.

Query Q2 is transformed into prefix search “tian//name//*”. As the Hybrid-ATIL con-

tains a summary row with indexed keyword “tian//name////”, we can directly return in-

stances p1 and p3 without considering other keywords.

In both cases, we read no more than one row (recall that t = 1 for the index) to answer

a prefix search. �

Creating the Hybrid-ATIL: We begin with the Hier-ATIL and add summary rows until

none can be added. We denote by Ans(p) the number of rows we need to examine to answer

a prefix query p. We create a summary row for a prefix p if Ans(p) > t and there is no p′,

such that p is a prefix of p′ and Ans(p′) > t. If we add a summary row for p//, we remove

the p row from the inverted list if one exists.

In Table 3.5, Ans(“tian//name//′′) = 2. Therefore, with threshold t = 1, the row

“tian//name//” would be replaced by a summary row, as shown in Table 3.6. As we show

in Appendix A, we can construct the Hybrid-ATIL from the Hier-ATIL with a single pass

over the keyword entries.

The construction of the Hybrid-ATIL guarantees that Ans(p) ≤ t for any prefix p. Note

that adding summary rows can increase the size of the index. However, by choosing an

appropriate threshold t we can make a tradeoff between index size (so the prefix-lookup

time) and occurrence-accumulation time.

Note that the Information Retrieval community has proposed other types of indexes

for regular-expression matching, such as suffix tree [8], which indexes all suffixes of each

document, and multigram index [32], which creates k-gram indexes for reasonable k values

(e.g., k = 2, 3, . . . , 10). In addition, HYB [11] and KISS [80] have recently been proposed for

general prefix matching. Compared with these approaches, our index is oriented to prefix
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matching where we know the exact prefix delimiters (“//” in our case), thus indexing and

searching can be more efficient.

3.3.4 Schema-Level Synonyms

Accommodating different hierarchical structures is already an important step towards sup-

porting data heterogeneity in our indexing mechanism. We now briefly describe how our

techniques easily handle two other forms of heterogeneity.

The first form of heterogeneity is where an association in one source is an attribute in

another. For example, author can be an attribute of a Paper instance with author names as

attribute values, or an association between Paper instances and Person instances. Since our

index does not distinguish attributes and associations in the indexed keywords, it naturally

incorporates this kind of heterogeneity.

The second form of heterogeneity, term heterogeneity, is where different terms represent

the same attribute or association. For example, author and authorship can describe the same

association.

To accommodate term heterogeneity, we assume we have a synonym table for attribute

and association names. If attribute a is referred to as a1, . . . , an in different data sources,

we choose the canonical name of a as one of a1, . . . , an. We note that the synonyms are

either given to us or are derived using schema-matching techniques, and hence will typically

be approximate.

In our index, when a keyword k appears in a value of the ai attribute, there is a row

in the inverted list for k//a//. For each instance I, there is a column for I. The cell

(k//a//, I) records the number of occurrences of k in I’s a1, . . . , an attributes.

To answer a predicate query with attribute predicate (ai, {K1, . . . ,Kn}), i ∈ [1, n], we

transform it into a keyword search for {K1//a//, . . . ,Kn//a//}. In our example, if we

consider author as a canonical name for author and authorship, the attribute predicate “au-

thorship, ‘Tian’” will be transformed into “tian//author//” instead of “tian//authorship//”.
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Table 3.7: The KIL with threshold t = 1 for the association network in Example 3.1. To
save space, we only show the rows where the indexed keywords start with “birch”.

a1 c1 p1 p2 p3

birch//// 1 1 1 1 0

birch//authoredPaper// 0 0 1 1 0

birch//publishedPaper// 0 1 0 0 0

birch//title// 1 0 0 0 0

3.3.5 Neighborhood Keyword Queries

The indexing methods we described so far lend themselves almost immediately to answer-

ing neighborhood keyword queries. We build the Keyword Inverted List (KIL), which is

essentially a Hybrid-AAIL. In a KIL we summarize not only prefixes that end with hier-

archy paths, but also prefixes that correspond directly to keywords. To answer a neigh-

borhood keyword query with keywords K1, . . . ,Kn, we transform it into a prefix search for

K1//∗, . . . ,Kn//∗.

Example 3.8. Table 3.7 shows a fragment of the KIL with threshold t = 1. Given the

neighborhood keyword query “Birch”, we look up “birch//*” and return instances a1, c1, p1

and p2. �

Note that if we wish to distinguish between the relevant instances (those for which

the keywords occur in attribute values) and the associated instances (those for which the

keywords occur in associated instances), we can add two special symbols as the root of all

attributes and the root of all associations, and index accordingly.

3.4 Experimental Evaluation

We now describe a set of experiments that validate the efficiency of our indexing methods

and compare them against several alternatives. Our main result is that by indexing both

structure information and text values, we can considerably improve the performance of

answering predicate queries and neighborhood keyword queries. In addition, we examine
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the efficiency of updating the index and the scalability of our index.

3.4.1 Experimental Setup

The main data set we use is constructed from a collection of personal data on the desktop

and a few external sources. We extract associations between disparate items on the desktop

(e.g., Latex and Bibtex files, Word documents, Powerpoint presentations, emails and

contacts, and webpages in the web cache). The instances and associations are stored in an

RDF file, managed by the Jena System [76]. The RDF file contains 105,320 object instances,

300,354 attribute values, 468,402 association instances, and the size of the file is 52.4MB.

We describe additional data sets we used in our scale-up experiment in Section 3.4.4.

We considered four types of queries:

• PQAS (Predicate Queries with Attribute-clauses for Simple attributes): Predicate

queries with only attribute clauses where the attributes do not have sub-attributes;

• PQAC (Predicate Queries with Attribute-clauses for Complex attributes): Predicate

queries with only attribute clauses where the attributes do have sub-attributes;

• PQR (Predicate Queries with clauses for Relationships): Predicate queries with only

association clauses;

• NKQ (Neighborhood keyword queries): Neighborhood keyword queries where we did

not distinguish between relevant and associated instances.

We varied the number of clauses in the first three types of queries from one to five, and

each clause had a single keyword. For NKQs, we varied the number of keywords from one

to five. The keywords, attributes, and associations were randomly drawn from the data set.

For each query configuration, we randomly generated 100 queries and executed each

three times. We report the average execution time. To further refine our measurements we

also consider the index-lookup time, including the time to locate the entries in the inverted

list, the time to retrieve the occurrence counts for each returned instance, and also the time

to handle succeeding rows in case of prefix lookup.
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Figure 3.6: Efficiency of answering predicate queries. In each column, the longer bar shows
the overall query-answering time and the shorter bar shows index-lookup time.

We implemented the indexing module using the Lucene indexing tool [92], which stores

an inverted list as a sorted array on disk. We implemented our algorithm in Java, and

conducted all the experiments on a machine with four 3.2GHz and 1024KB-cache CPUs,

and 1GB memory.

3.4.2 Indexing and Searching

We tested the efficiency of the KIL, the hybrid hierarchical index (see Section 3.3.5). It took

11.6 minutes to build the KIL and its size is 15.2MB. The query-answering time of predicate

queries is shown in Figure 3.6 and that of both predicate queries and neighborhood keyword

queries is shown in Table 3.8.

We make three observations about the results. First, answering predicate queries and

neighborhood keyword queries using the KIL was very efficient: on average it took 15.2

milliseconds to answer a predicate query with no more than 5 clauses, and took 224.3 mil-

liseconds to answer a neighborhood keyword query with no more than 5 keywords. Second,
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Table 3.8: Comparison of search efficiency using the KIL, using separate indexes as proposed
in [85], and using a simple inverted list.

(ms) 1 clause 2 clauses 5 clauses

Index Query Index Query Index Query

lookup answer lookup answer lookup answer

PQAS Naive 2 22 3 53 4 129

(Predicate queries SepIL 7 9 8 11 10 15

with simple attributes) KIL 4 6 5 7 6 13

PQAC Naive 3 43 3 119 4 583

(Predicate queries SepIL 7 11 23 28 31 38

with complex attributes) KIL 4 6 8 11 9 15

PQR Naive 3 88 7 147 12 368

(Predicate queries SepIL 301 415 559 749 1397 1871

with associations) KIL 6 17 6 24 10 36

NKQ Naive 18 4174 28 5244 50 8407

(Neighborhood SepIL 365 488 717 1052 1662 2376

keyword queries) KIL 48 97 103 182 232 394

answering PQASs and PQACs (where attribute hierarchies were considered) consumed a

similar amount of time, showing the effectiveness of our hybrid indexing scheme. Third,

though answering PQRs (queries with associations) took longer than answering PQASs and

PQACs, they spent a similar amount of time in index lookup. The difference was in the

time to retrieve the answers, and there were much more of them for the PQRs than for the

other two types of queries. For the same reason, it took much longer to answer NKQs.

Comparison of methods

Next, we compare our index with several alternative approaches. We first compare the

efficiency of KIL with two other methods: Naive and SepIL. The Naive method is based

on the basic inverted list (alluded to in Section 3.1). Specifically, Naive begins by looking

up the set of instances I that contain the given keywords in attribute values and then does

the following:
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• PQAS: Select from I the instances where the keywords appear in the specified at-

tributes;

• PQAC: The same as PQAS, but also consider descendant attributes;

• PQR: Find the instances that are related to the ones in I with the specified associa-

tions;

• NKQ: Union I with all instances that are associated with those in I.

The SepIL method is an adaptation of the approach proposed in [85] to our context

(originally it was designed for complex XML queries). Specifically, it builds three separate

indexes: the inverted list indexes each attribute value on its text, the structured index

indexes each attribute value on the labels of the attribute and its ancestor attributes, and

the relationship index indexes each instance on its associated instances. SepIL begins by

looking up the inverted list for a set of attribute values A that contain the query keywords,

and meanwhile getting their owner instance set I. Then SepIL does the following:

• PQAS and PQAC: Look up the structured index for values of the specified attributes

and intersect the results with A, then return the owner instances;

• PQR: Look up the relationship index for the instances that are related to the ones in

I with the specified associations;

• NKQ: Look up the relationship index for the instances associated with the ones in I

and union the results with I.

Note that unlike our approach, Naive and SepIL return the instances without counting

keyword occurrences or the number of associated instances. Performing the count would

add a significant overhead to both of these techniques.

Table 3.8 shows the query-answering time using these three different indexes. It took 1.7

minutes to build the Naive index, whose size was 10.6MB. Query answering was inefficient
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using the Naive index, because we had to find the involved attributes and extract associ-

ated instances at run time. It was especially inefficient when we had to extract associated

instances for a large number of instances that contain the given keywords. Indeed, compared

with KIL, query-answering time on average increased by a factor of 15.9 and for 1-clause

NKQs increased by a factor of 43. We also observed that although KIL spent more time on

index lookup (because the index was 1.4 times as large and more instances were returned

in each index lookup), the overall payoff in query-answering time significantly outweighed

this additional cost.

It took 5.7 minutes to build the SepIL index. The total size of the inverted list and

the structured index was 28.1MB, and the size of the relationship index was 14.2MB. For

PQAS and PQAC queries, query-answering time was reduced on average by a factor of 6.6

compared with Naive; however, because the inverted list is large, it still took about twice

as much time as KIL. For other queries that require looking up the relationship index,

query answering took much longer than KIL (by a factor of 20.7). This is because the

index is large, and for each instance that contains the keyword we need to look up the index

and accumulate its associated instances. Even when compared with Naive, there was only

a benefit to building the relationship index for answering NKQ queries, which typically

returned a large number of instances.

We performed several other experiments to validate different aspects of our indexing

methods. For example, we considered only attributes and compared the efficiency of the

ATIL with a technique that creates a separate index for each attribute. We observed that

ATIL reduced indexing time by 63% and reduced keyword-lookup time by 33%.

Indexing hierarchies

We now compare different methods for indexing attribute hierarchies that were described

in Section 3.3:

• ATIL: expand a query by issuing a query for every descendant attribute (without

accumulating keyword occurrences for result instances);

• Dup-ATIL: duplicate keywords for ancestors in the index;
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Figure 3.7: Efficiency of looking up different types of indexes in answering predicate queries
with attribute clauses and neighborhood keyword queries (a) on shallow-hierarchy associa-
tion network, and (b) on deep-hierarchy association network.
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Table 3.9: Comparison of indexing efficiency for different types of inverted lists.

Indexing time for shallow-hierarchy Indexing time for deep-hierarchy
Index type

association network (s) association network (s)

ATIL 118 118

Dup-ATIL 125 418

Hier-ATIL 119 140

Hybrid-ATIL 125 144

• Hier-ATIL: attach the ancestor path in the index;

• Hybrid-ATIL: the hybrid index.

In the data set we experimented on, the depth of each attribute hierarchy is no more

than 3. To examine the effect of hierarchy depth on search efficiency, we also experimented

with an association network where depths of attribute hierarchies are all over 16. We call the

former a shallow-hierarchy association network and the latter a deep-hierarchy association

network. The two association networks have exactly the same data but different schemas: if

an attribute does not have any parent attribute in the shallow-hierarchy association network,

in the deep-hierarchy association network it has a parent attribute attr0, a grand-parent

attribute attr1, and so on, till the upmost ancestor attr15.

Table 3.9 shows the index-building time for these inverted lists on both association

networks. Note that a higher hierarchy depth had significant effect for the construction of

only the Dup-ATIL (increasing indexing time for a factor of 3.34 and the size of the index

for a factor of 4); building a Hier-ATIL or a Hybrid-ATIL took a similar amount of time

as building an ATIL on both association networks and the sizes of the indexes are similar.

Also note that building a Hybrid-ATIL took only slightly longer than building a Hier-ATIL,

which shows that our algorithm for adding summary rows in Hybrid-ATILs is efficient.

Figure 3.7 shows the index-lookup time (we omit the query-answering time as it adds the

same amount of time over the index-lookup time for all alternative methods). As we index
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Operation Update time (s)

Rename an attribute 2.2
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Delete a parent 2.0

(b)

Figure 3.8: Efficiency of index updates: (a) instance updates; (b) structure updates.

only attribute hierarchies, we illustrate the efficiency of our algorithm using only predicate

queries with attribute clauses and neighborhood keyword queries. We observe that (1)

Hier-ATIL performed poorly on NKQs, as prefix lookup became extremely expensive; (2)

Dup-ATIL performed poorly on the deep-hierarchy association network, as the index size

was increased a lot, and (3) Hybrid-ATIL performed better than or equal to any other

inverted lists for all types of queries on both data sets.

3.4.3 Index Updates

Our next experiment was designed to measure the efficiency of updating the KIL, both for

instance updates and for updates to the schema.

For instance updates, we randomly selected 100 instances, divided them into groups,
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and interleaved insertion and deletion in each group. We updated a group of instances

incrementally; that is, we inserted or deleted the instances in the group, and updated their

associated instances in the index. We varied the size of the group: 1, 10 and 100, and

compared the average time of updating an instance in KIL.

Figure 3.8(a) shows the time for inserting or deleting an instance in KIL. The results

for insertion-only or deletion-only updates were similar. We observed that when the group

size was increased, the update time per instance dramatically dropped. For example, when

N = 100, updating an instance took on average only 0.5 seconds. In addition, when the

size of the group was increased, the speedup of the updates slowed down.

We also observed that index updates in the SepIL method were slower by a factor of

2.25 compared to updates in KIL, but updates in Naive were considerably faster than in

both methods. This is because most of the update cost arose from the need to update

associated instances in the index. However, as previous experiments have shown, indexing

associations significantly sped up query answering at run-time and thus was worthwhile.

For structure updates, we considered four types of operations: renaming an attribute, in-

serting, updating, and deleting a parent for an attribute. For each operation, we chose three

attributes that occur with different frequencies in the data set, and reported the average

time for updates. We performed each operation by scanning the inverted list and changing

the indexed keywords appropriately. Structure updates were performed very efficiently. As

shown in Figure 3.8(b), it took 2.28 seconds on average to perform each type of structure

update.

3.4.4 Scalability

Finally, we tested the scalability of KIL with larger data sets. In the first experiment,

we created a 250MB data set by adding to the original data set four copies of itself and

then perturbing the result data set. Specifically, we chose a perturbation factor f ∈ [0, 1].

When we perturbed the keywords with factor f , we randomly selected a fraction f of the

keywords in the data set, and for those words we added one of the suffixes in {!,@,#,%}

with equal probability (these signs do not occur in the original index). Hence, when f = 0,
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Table 3.10: Index-lookup time for answering (a) the original queries and (b) suffix queries
on 250MB data sets with perturbed keywords. For the purpose of comparison, we also list
the index-lookup time on the 25MB data.

(ms) 25MB f=0 f=0.2 f=0.4 f=0.6 f=0.8

PQAS 5 25 24 23 22 24

PQAC 8 26 27 27 26 26

PQR 6 32 30 35 37 49

NKQ 103 805 628 490 318 139

(a)

(ms) f=0 f=0.2 f=0.4 f=0.6 f=0.8

PQAS 22 27 28 26 26

PQAC 24 27 28 28 27

PQR 29 43 48 49 46

NKQ 27 46 86 131 146

(b)

the keywords are the same as those in the original set; when f = 0.8, for any keyword k,

the number of its occurrences is about the same as that for k! (or k with any other suffix).

We perturbed attribute and association names in the same way.

We experimented on two sets of queries: the original queries and suffix queries, where “!”

was added to each keyword. We considered randomly generated queries with two clauses.

We now describe our experimental results on data sets with perturbed keywords. We

observed the same trend for data sets with perturbed attribute and association names. As f

was increased, the indexing time went up gradually from 55.3 minutes to 58.2 minutes, and

the size of the index went up gradually from 71.2MB to 76.4MB, all roughly 5 times as much

as for the original data set. As shown in Table 3.10, index lookup was efficient: on average it

took 30.3 milliseconds for predicate queries and 281.6 milliseconds for neighborhood keyword

queries. In addition, we make three observations.

First, when the number of answers was small, index-lookup time was more related to

the size of the index. For all predicate queries, index-lookup time was roughly 5 times as
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Table 3.11: Indexing time and index-lookup time for 10GB XML data sets. Note that some
index-lookup time is not reported as the type of queries does not apply.

(ms) Wikipedia XMark w/o asso XMark with asso

Index 4.15hr 6.64hr 12.72hr

PQAS 156 94 116

PQAC - 67 93

PQR - - 217

NKQ 1646 1838 13468

much as that for the original data set. We note that with Lucene, the index look-up time

increases linearly with the index size.

Second, when the number of answers was large, index-lookup time was more related

to the number of answers. Although the sizes of the indexes for all different data sets

were similar, the index-lookup time for ordinary NKQ queries dropped significantly when

f was increased (so the number of answers was decreased) and showed the opposite trend

for suffix queries. In particular, when f = 0.8, the number of answers for ordinary NKQ

queries and for suffix NKQ queries were similar, and also similar to that for NKQ queries on

the original data set. We indeed observed similar index-lookup time for these three cases.

This observation implies that our index scales especially well when the number of returned

answers is large.

Third, for suffix queries on the non-perturbed data set, the answers are empty. Index

lookup on average took 25 milliseconds and was still efficient.

In the second set of experiments, we considered two XML data sets, each of size 10GB.

The first data set is from the INEX Wikipedia collection [40] (with duplicates). It contained

1.4 million instances, each with only two attributes. The second data set was generated by

XMark [117]. It contained 11.4 million instances, 76.2 million attribute values, and 58.2

million association instances. We indexed the XMark data set in two ways: one indexed

only attribute values and one indexed associations in addition. We used these indexes to

answer randomly generated queries with two clauses. We reported only index-lookup time,
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since both the indexes of the 25MB personal data set and the indexes of the 10GB XML

data sets were stored on disk and read by Lucene and so were comparable. We omitted

comparison of the query-answering time as we extracted XML elements using JDOM, which

has different efficiency from extracting RDF instances using Jena.

The three indexes varied in size: the Wikipedia index was 1.13GB, the XMark index

without associations was 3.04GB, and the XMark index with associations was 4.08GB. As

shown in Table 3.11, our indexing technique scales well: on average it took 123.8 milliseconds

to look up the index for predicate queries, only 4.1 times as much as for the 250MB data.

We also observed that although indexing associations took about twice as much time as

indexing only attributes, the increase in keyword-lookup time was not significant (except

for neighborhood keyword queries, where considering associations considerably increased

the number of returned instances); however, it significantly sped up query answering in the

presence of association clauses.

3.5 Related Work

The two bodies of work most close to ours are indexing XML and on keyword queries in

relational databases.

There have been many indexing algorithms proposed for answering XML queries. They

can be categorized into three classes: indexing on structure, indexing on value, and indexing

on both. The first class (e.g., [62, 99, 33, 86, 27, 84, 71]) considers supporting schema-driven

queries, such as “list all book authors”, and does not index text values. The second class

(e.g., [5, 21, 31, 77, 133, 110, 141]) is mainly oriented to XML Twig queries [21]. It indexes

text values and at the same time encodes parent-child and ancestor-descendant relationships

by numbering the XML elements appropriately. The encoding methods are tuned for tree

models and would not apply in our context where associations between instances form a

graph.

The third class combines indexes on structure and on text. We have already compared

our approach to that of [37] (in Section 3.3). Kaushik et al. [85] and Chen et al. [28] proposed

building multiple indexes to capture different aspects of structural information and values

of XML data. If we adapt their indexing methods for our context, to answer a query we



94

need to visit several indexes in sequence, looking up an index for each result returned from

the previous index. As we show in Section 3.4.2, this process can be quite time-consuming.

ViST (Virtual Suffix Tree), proposed in [132], encodes both XML documents and XML

queries as suffix sequences and answers the queries by suffix matching. This strategy is

again more suitable for tree models and falls short in our context.

Our approach is different from the ones described above in that it does not rely on any

specific data model, and it uses one single index to capture both structure information and

text values. In this way, our method is more oriented to keyword search, can more easily

explore associations between data items, and can more efficiently answer keyword queries

with simple structure specifications.

Several works have considered keyword queries on relational databases. The DIS-

COVER [73], DBXplorer [4], and BANKS [15] systems return minimal join-networks that

contain all the keywords given in a query. These approaches require building the join-

network at run-time and so query answering can be expensive. Queries of the form “SEARCH

{instance-type} NEAR {keywords}” are proposed in [61, 25], where the distances between

elements are precomputed and indexed, so the index can be quite large and hence costly. Su

and Widom [122] proposed indexing virtual documents, generated by joining database tuples

through foreign-keys. This method does not distinguish tuples that contain the keywords

and tuples that only join with tuples containing the keywords, and does not distinguish

through which type of foreign keys (associations) a join happens. Similar ideas were con-

sidered in the context of XML data, returning the least common ancestors (LCA) for the

elements that contain the given keywords [139, 74].

In addition, SphereSearch [66] and Kite [116] studied search across heterogeneous data

by first conducting data transformation or integration. In contrast, we take a “data-

coexistence” approach and index heterogeneous data even if they are only loosely coupled.

Finally, the Information Retrieval Community has recently proposed faceted search [112],

which searches webpages by characteristics. The predicate queries we propose are different

from faceted queries in that they also allow specifications of associations between the data

items.
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3.6 Discussion

We now discuss limitations and several extensions to our indexing work.

Scalability: In our indexing mechanism, whereas considering associations in indexing can

significantly improve the efficiency in answering predicate queries with associations and

answering neighborhood keyword queries, it also increases the size of the index and in turn

increases index-lookup time. Our experiments show that when the number of associations

is linear in the number of instances, which is true for most real-world data sets, our indexing

method scales well and the increase in index-lookup time is paid off at query answering.

However, when the number of associations is non-linear (e.g., square) in the number of

instances, increasing the number of instances can quickly blow up the index and the benefit

brought by indexing associations can diminish. Thus, our indexing method does not scale

well for data sets that contain fully-connected association networks.

Heterogeneity: Whereas our index has started incorporating heterogeneity by indexing

hierarchies and synonyms, there are still several forms of heterogeneity that are not captured

by our index.

First, our current method can handle term heterogeneity by indexing synonyms. How-

ever, in many applications it is hard to establish exact schema mappings and be certain

about attribute or association synonyms. Instead, it is more likely we consider two prop-

erties are synonyms with only a certain probability (e.g., the probability that permanent-

address and location are synonyms is 80%). We want our index to be able to encode this

probability.

Second, it is often the case that multiple text values are semantically close. For example,

“sublet’ is similar to “short-term rental”, and “polished pewter” is close to “metallic silver”.

We want our index to correlate such values so query answering can take all into considera-

tion. The challenge is that some of the values are phrases rather than single keywords.

Third, as discussed in Section 2.6, in reference reconciliation it is possible that we gener-

ate results with probabilities, such as saying instances ia and ib refer to the same real-world

entity with probability 80%. We want our index to incorporate this probability too.

One initial thought of handling such heterogeneity in the index is to multiply the occur-
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rence counts with certain probability number. For example, if we believe keywords k1 and

k2 are similar with probability 70%, and k1 occurs 10 times in the attributes of instance

ins, then we can index ins on k2 with occurrence count 10*70%=7. As another example,

if we believe ia and ib refer to the same real-world entity with probability 80%, and key-

word k occurs 10 times in the attributes of ia, then we can index ib on K with occurrence

count 10*80%=8. However, how to handle non-integer occurrence counts and how to avoid

blowing up the size of the index require further study.

3.7 Summary

We described a novel indexing method that is designed to support flexible querying over

dataspaces. The querying mechanism allows users to specify structure when they can, but

also to fall back on keywords otherwise. Answers to keyword queries also include objects

associated with the ones that contain the keywords. Our methods extend inverted lists to

capture structure when it is present, including attributes of instances, relationships between

instances, synonyms on schema elements, and hierarchies of schema elements. We validated

our techniques with a set of experiments and showed that incorporating structure into

inverted lists can considerably speed up query answering.
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Chapter 4

RESOLVING QUERY-LEVEL HETEROGENEITY II: ANSWERING

STRUCTURED QUERIES ON UNSTRUCTURED DATA

In a dataspace the data vary from unstructured data (e.g., documents and webpages),

semi-structured data (e.g., XML data and RDF data), to structured data (e.g., relational

databases), and well-defined mappings may not exist between disparate schemas. On the

other hand, as we have explained in Chapter 3, a dataspace system should allow a spectrum

of search strategies, ranging from simple keyword search to expressive but sophisticated

querying (e.g., SQL queries and XQuery queries). No matter which type of queries users

pose, they would like the queries to apply to all the content in the dataspace, and retrieve

information from both structured and unstructured data. Resolving heterogeneity at the

query level requires providing a uniform search interface to the user such that they can

search the database without being aware of the heterogeneity of the underlying data.

As shown in Figure 4.1, querying each kind of data in isolation has been the main subject

of study for the fields of Databases and Information Retrieval. Recently the database

community has studied the problem of answering keyword queries on structured data such

as relational data or XML data [73, 4, 15, 139, 74]. The only combination that has not

been fully explored is answering structured queries on unstructured data. Information

extraction techniques [42, 23, 67] attempt to extract structure from unstructured data such

that structured queries can be applied. However, such techniques rely on the existence of

some underlying structure, so are limited especially in heterogeneous environments.

This chapter explores an approach in which we carefully construct a keyword query

from a given structured query, and submit the query to the underlying engine (e.g., a web-

search engine) for querying unstructured data. We start by formally defining the problem

and introducing our approach in Section 4.1. Section 4.2 and 4.3 describe our algorithm

in selecting keywords from a given query. Section 4.4 presents experimental results and
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Figure 4.1: Searching and querying a dataspace. The left side of the graph shows the
various models of queries and the right side shows the various models of data. The lines in
the middle show the possible combination of data and query models and the communities
that work on them.

Section 4.5 discusses related work. Finally, Section 4.6 discusses extensions to our approach

and Section 4.7 summarizes this chapter.

4.1 Problem Definition and Overview of Our Approach

We study how to answer structured queries on unstructured data by extracting keywords

from the given structured query, such that submitting a query with the keywords on the

unstructured data repository obtains the most relevant answers. This technique brings two

benefits. First, when the user poses a structured query on a dataspace, the system will be

able to retrieve relevant information from unstructured data sources to supplement results

from structured data. Second, if the schema the user uses to compose the query is different

from those of the data sources and has not been seen beforehand, as an alternative to doing

online schema mappings, the system can answer the extracted keyword query over the

structured data sources by applying techniques for answering keyword search on databases.

Our goal is to obtain reasonably precise answers even without domain knowledge, and

improve the precision if knowledge of the schema and the data is available. We begin this

section by formally defining our problem. We then give an example showing the challenges

and introduce our approach.
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4.1.1 Problem Definition

We define the keyword extraction problem as follows. Given a structured query (in SQL,

XQuery, etc.), we extract a set of keywords from the query. These keywords are used to

construct a keyword query that returns information potentially relevant to the structured

query. A keyword search on a large volume of unstructured data often returns many results;

thus, we measure the quality of the answers using top-k precision—the percentage of relevant

results in the top-k results. We consider queries that do not contain disjunctions, comparison

predicates (e.g., 6=, <) or aggregation. Such queries are common in dataspace applications

such as PIM.

The following example shows some of the challenges we face.

Example 4.1. Consider a simple SQL query that asks for papers on Dataspaces published

in 2005.

SELECT title

FROM paper

WHERE title LIKE ‘%Dataspaces%’ AND year = ‘2005’

We have many options in keyword extraction. The following list gives a few:

1. Use the whole query: “select title from paper where title LIKE ‘dataspaces’ and year

= ‘2005’ ”.

2. Use the terms in the query excluding SQL syntactic symbols (e.g., select, from, where):

“paper title +dataspaces year +2005”. (Most search engines adopt the keyword-search

syntax that requires the keyword following a “+” sign to occur in the returned docu-

ments or webpages.)

3. Use only the text values: “+dataspaces +2005”.

4. Use a subset of terms in the query: “+dataspaces +2005 paper title”.

5. Use another subset of terms in the query: “+dataspaces +2005 paper”.
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Figure 4.2: Framework of our approach to keyword extraction.

A human would most probably choose the last keyword set, which best summarizes the

objects we are looking for. Indeed, at the time of the experiment, Google, Yahoo, and

Windows Live all obtained the best results on the last keyword set (Google obtained 0.6 top-

10 precision), and the top hits all mentioned the dataspaces paper authored by Franklin et al.

in 2005 (two of the search engines returned exactly the paper as the first hit). In contrast,

for the first two keyword sets, none of the three search engines returned relevant webpages in

the top-10 results. For the third and fourth keyword sets, although some of the top-10 results

were relevant, the top-10 precision was quite low (Google obtained 0.2 top-10 precision on

both keyword sets). �

To explain the above results, let us consider the possible effects of a keyword. On the

one hand, it may narrow down the search space by requiring the returned documents to

contain the keyword. On the other hand, it may distract the search engine by bringing in

irrelevant documents or webpages that by chance contain the keyword. Ideally, we should

choose keywords that significantly narrow down the search space without distracting the

search engine. Next, we introduce our algorithm for keyword extraction.
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4.1.2 Overview

As depicted in Figure 4.2, the key element in our solution is to construct a query graph that

captures the essence of the structured query, such as the object instances mentioned in the

query, the attributes of these instances, and the associations between these instances. With

this query graph, we can ignore syntactic aspects of the query and distinguish the query

elements that convey different concepts. The keyword set is selected from the node and

edge labels of the graph.

Our algorithm selects attribute values and schema elements that appear in the query

and uses them as keywords to the search engine. Since these values or structure terms

also appear as node labels and edge labels in the query graph, we also refer to them as

labels. When selecting the labels, we wish to include only necessary ones, so keyword search

returns exactly the query results and excludes irrelevant documents. We base our selection

on the informativeness and representativeness of a label: the former measures the amount of

information provided by the label, and the latter is the complement of the distraction that

can be introduced by the label. Our keyword-extraction method is based on an important

observation, that the informativeness of a label is dependent on the informativeness of the

already selected labels; for example, once we have already selected keywords “dataspaces”,

“Alon Halevy”, “Mike Franklin” and “2005”, the keyword “paper” does not add much extra

information. Given a query, we use its query graph to model the effect of a selected label

on the informativeness of the rest of the labels. By applying a greedy algorithm, we select

the labels with the highest informativeness and representativeness.

4.2 Constructing Query Graphs

To create a keyword query from a structured query Q, we first construct Q’s query graph

and then extract keywords from it. Intuitively, the query graph captures the essence of the

query and already removes irrelevant syntactic symbols. In this section, we first define the

query graph and then describe keyword extraction.
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4.2.1 Query Graph

Recall that we model data from disparate data sources as a network of instances and asso-

ciations (see Section 2.1.1); the same hold for queries. We can view a query as a subgraph

pattern describing the queried instances with their attributes and directly or indirectly

associated instances. We now formally define query graph.

Definition 4.2. (Query Graph) A query graph GQ = (V,E) is an undirected graph de-

scribing the instances and associations mentioned in a query.

• Each instance node in V represents an instance mentioned in the query. The label

of the node is the name of the instance class. If some attributes of the instance are

queried, the node is in addition marked with “?”.

• Each association edge in E represents an association mentioned in the query. The

label of the edge is the association name. An association edge connects two instance

nodes that are involved in the association.

• Each value node in V represents a ground value mentioned in the query. The label of

the node is the value.

• Each attribute edge in E represents an attribute of an instance. The label of the edge

is the attribute name. An attribute edge connects the value node and the node of the

owner instance.

• Each question node in V represents an attribute being queried. The label of the node

is “?”. �

As an example, Figure 4.3 shows the query graph for Example 4.1. The graph contains

one instance node — paper, two value nodes — “Dataspaces” and “2005”, and one question

node. The nodes are connected by three attribute edges — two “title” edges and a “year”

edge.
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Figure 4.3: The query graph for the query in Example 4.1.

4.2.2 Query-graph Construction

Our goal is to construct a query graph from a structured query even if we do not know

the schema of the query beforehand. We now describe the algorithm for SQL queries. The

same intuition can be applied to XML queries and other structured queries.

Intuitively, attributes in a SELECT-clause correspond to question nodes. In the WHERE-

clause, select predicates (of the form attr = value or attr LIKE value) correspond to value

nodes, and join predicates correspond to association edges. The tricky part comes from

tables in a FROM-clause: they can correspond to either instance nodes or association edges.

We construct a query graph for a SQL query in two steps. In the first step, we construct

a preliminary graph by considering all tables in the query as object instances. In the second

step, we compact the graph by updating certain instances to association edges. We now

describe the algorithm in detail.

Step 1. Building preliminary graph: The first step builds the preliminary query graph as

follows:

• For each table in the FROM-clause, there is an instance node labeled with the table

name.

• For each attribute in the SELECT-clause, there is a question node connected with the

corresponding instance node. The edge between the question node and the instance

node is an attribute edge labeled with the attribute name.

• For each select predicate in the WHERE-clause, there is a value node labeled with the
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given value, connected with the corresponding instance node. The edge between the

value node and the instance node is an attribute edge labeled with the attribute name.

• For each join predicate in the WHERE-clause, there is an association edge connecting the

two corresponding instance nodes, labeled with the two attribute names. We consider

common attribute names such as “ID” and “key” as stopwords and omit them.

Step 2. Compacting the graph: The second step compacts the preliminary graph by removing

unnecessary instance nodes. Suppose a sequence of instance nodes N0, . . . ,Nt forms a chain;

that is, each of Ni, i ∈ [1, t − 1], has only two neighbors Ni−1 and Ni+1. We remove

N1, . . . , Nt−1 and connect N0 and Nt with an association edge, labeled with all labels of the

nodes and edges on the path from N0 to Nt. Note that if there are multiple nodes with the

same label, we either remove all of them or leave all as instance nodes to keep consistency.

The above algorithm for graph construction assumes no knowledge of the schema ac-

cording to which the query is composed. However, in the presence of such knowledge, we

can refine the compacting step. For example, if we know that all attributes of a table T

are foreign keys to other tables, we consider T as describing associations and shortcut T ’s

neighbors with an association edge.

Example 4.3. Consider the following SQL query:

SELECT p1.name

FROM Paper AS a1, Paper AS a2, Cite, Person AS p1, Person AS p2,

Author AS b1, Author AS b2

WHERE b1.pid = p1.id AND b1.aid = a1.id

AND b2.pid = p2.id AND b2.aid = a2.id

AND Cite.pid = a1.id AND Cite.cid = a2.id

AND p2.name LIKE ‘%Halevy%’ AND a2.title LIKE ‘%Semex%’

In the first step, we construct a graph as shown in Figure 4.4(a). Note that the associ-

ation edges do not have labels because all the involved attributes are various forms of “id”.

In the second step, we remove the cite node and the two author nodes, obtaining the graph
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Figure 4.4: Constructing the query graph for the SQL query in Example 4.3: (a) the
preliminary graph constructed in the first step; (b) the compact graph constructed in the
second step
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Figure 4.5: The query graph with i-scores and r-scores for the query in Example 4.1: (a)
the initial (i-score, r-score) pairs; (b) the information flow representing the effect of the
“Dataspaces” label; (c) the information flow representing the effect of the “Paper” label.

shown in Figure 4.4(b). We do not remove the paper nodes because there exists a paper node

with value-node neighbors. �

4.3 Extracting Keywords

When we select keywords from the structured query, we wish to include only necessary

keywords rather than adding all relevant ones. This principle is based on two observations.

First, a keyword often introduces distraction, so unnecessary keywords often lower the

search quality by returning irrelevant documents. Second, real-world documents are often

crisp in describing instances. For example, rather than saying “a paper authored by a person
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with name Halevy”, we often say “Halevy’s paper”. Involving “authored by”, “person”

and “name” in the keyword set does not add much more information. We base our label

selection on judging the informativeness and representativeness of labels. We first introduce

measures for these two characteristics and then describe our algorithm.

4.3.1 Informativeness and representativeness

Intuitively, informativeness measures the amount of information provided by a label term.

For example, attribute values are more informative than structure terms. Representative-

ness roughly corresponds to the probability that searching the given term returns documents

or webpages in the queried domain. For example, the term “paper” is more representative

than the term “title” for the publication domain. We use i-score to measure informativeness

and r-score to measure representativeness. Given a node label or edge label l, we denote its

i-score as il, and r-score as rl. Both il and rl range from 0 to 1. Note that the represen-

tativeness of label l is the complement of l’s distractiveness, denoted as dl, so dl = 1 − rl.

Figure 4.5(a) shows the initial (i-score,r-score) pair for each label (we will discuss shortly

how we initialize these scores).

We observe that the informativeness of a label also depends on the already selected

keywords. For example, consider searching for a paper instance. The term “paper” is

informative if we know nothing else about the paper, but its informativeness decreases if we

know the paper is about “dataspaces”, and further decreases if we also know the paper is

by “Halevy”. In other words, in a query graph, once we select a label for the keyword set,

the informativeness of other labels is reduced.

We model the effect of a selected label s on the i-scores of other labels as an information

flow, which has the following three characteristics:

• At the source node or edge, the flow has volume rs. The reason is that the effect

of s is limited to the search results that are related to the queried domain, and this

percentage is rs (by definition).

• The information flow first goes to the neighbor edges or nodes (not including the one

from which the flow comes). If s is a label of an instance node, the flow value is
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divided among the neighbor edges. Specifically, if n is the number of different labels

of the neighbor edges, then the flow volume on each edge is rs/n. The division follows

the intuition that the more distinct edges are there, the more information each edge

label provides even in presence of the s label, and thus the less effect s has on these

labels.

• After a flow reaches a label, its volume decreases by half. It then continues flowing to

the nodes or edges at the next hop and is divided again, until reaching value nodes

or question nodes. In other words, s’s effect dwindles exponentially in the number of

hops. Note that the flow is only affected by the r-score of the source node, but not

the r-scores of other nodes that it reaches.

When we add a new label to the keyword set, we compute the effect of the label on the

rest of the labels and update their i-scores. Once a keyword set is fixed, the i-scores of the

rest of the labels are fixed, independent of the order we select the keywords. Figure 4.6

gives the formal algorithm for i-score update.

Example 4.4. Consider the query graph in Figure 4.5(a). Figure 4.5(b) shows the effect

of the value label “Dataspaces” on the i-scores of the rest of the nodes, and Figure 4.5(c)

shows the effect of the instance label “Paper”. Note that in (c) we divide 0.6 by 2 rather

than by 3, because the three edges are labeled by only two distinct labels. �

4.3.2 Selecting labels

When we select node or edge labels, we wish to choose those that provide more information

than distraction; that is, i > d = 1− r, so i+ r > 1. We select labels in a greedy fashion: in

each step we choose the label with the highest i+ r and terminate the process when there

are no more labels with i+ r > 1. Specifically, we proceed in three steps.

1. We choose all labels of value nodes. After adding each label to the keyword set, we

update the i-scores of the rest of the nodes.

2. If there are labels satisfying i + r > 1, we choose the one with the largest i + r. We

add the label to the keyword set and update the i-scores of the rest of the nodes.
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procedure UpdateIScore(G, S, I, r)

//G is the input query graph;

//S is the node or edge whose label is just added to the keyword set;

//I is the array of i-scores for nodes or edges in G; r is the r-score of S’s label;

queue = {S}; // queue contains all nodes or edges we need to consider;

src[S] = null; // src records the flow source for each node or edge;

vol[S] = r ∗ 2; // vol records the volume of the flow for each node or edge;

while (queue 6= ∅)

T = pop(queue);

if (T is an edge) out = 1;

else out = #(distinct labels for T’s neighbor edges excluding src(T ));

for each (T ’s neighbor node or edge L in G)

if (L 6= src(T ))

src[L] = T ;

vol[L] = vol[T ]/out/2;

I[L]-=vol[L];

if (L 6∈ queue) push(queue, L);

Figure 4.6: Algorithm for i-score update.

Figure 4.7: Extracting keywords from query graph in Figure 4.5(a): (a) the i-scores of the
labels after selecting the labels “Dataspaces” and “2005”; (b) the i-scores of the labels after
selecting the label “Paper”.
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procedure LabelSelection(G, I, R) return K

//G is the input query graph; I is the array of i-scores for labels in G;

//R is the array of r-scores for labels in G; K is the selected keyword set;

K = ∅;

for each (value node V in G)

Insert V ’s label to K;

UpdateIScore(G, V, I,R[V ]);

while (true)

Select the node or edge S whose label has the maximal (I(S) +R(S));

if (I(S) +R(S) <= 1) break;

Insert S’s label to K;

UpdateIScore(G, S, I,R[S]);

return K;

Figure 4.8: Algorithm for label selection.

3. We iterate step 2 until no more labels satisfy i+ r > 1.

Figure 4.8 gives the algorithm for label selection.

Example 4.5. Consider the query graph in Figure 4.5(a). We select labels in two steps. In

the first step, we select the labels of all value nodes, “Dataspaces” and “2005”. The updated

i-scores are shown in Figure 4.7(a). We then select label Paper, and the updated i-scores

are shown in Figure 4.7(b). After this step no more labels satisfy the condition i+ r > 1 so

the algorithm terminates. The result keyword set is thus “Dataspaces 2005 paper”. �

4.3.3 Initializing i-scores and r-scores

We now discuss how to initialize the i-scores and r-scores. When we have no domain

knowledge, we assign default values for different types of labels. We observe the web data

for the representativeness of different types of nodes and assign r-scores accordingly. For
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i-scores, we consider values and the class name of the queried instance as more informative

and set the i-scores to 1, and consider other labels less informative. We will discuss the

default score setting in our experiments in Section 4.4.

There are several ways to obtain more meaningful r-scores in the presence of domain

knowledge. Here we suggest a few. The first method is to do keyword search on the labels.

Specifically, for a label l, we search l using the unstructured data set on which we will

perform keyword search. We manually examine the top-k (e.g., k = 10) results and count

how many are related to the queried domain. The percentage λ is considered as the r-score

for the l label.

Another approach is to do Naive-Bayes learning on a corpus of schemas and structured

data in the spirit of [93]. As an example, we discuss how to compute the r-scores of instance

names. We divide the schemas into a set of domains, each containing a set of schemas.

Suppose the corpus contains domains D1, . . . ,Dl, schemas S1, . . . , Sm, and class names

C1, . . . , Cn. We say Sj ∈ Di if the schema Sj belongs to the domain Di, and we say

Ck ∈ Sj if the class name Ck occurs in the schema Sj. We now apply Naive Bayes learning

to calculate the probability that the label C of an instance node represents a class in the

queried domain D:

P (D|C) =
P (C|D) · P (D)

P (C)

=

|{Sj |Sj∈D,C∈Sj}|
|{Sj |Sj∈D}| ·

|{Sj |Sj∈D}|
m

∑l
i=1

(

|{Sj |Sj∈Di,C∈Sj}|
|{Sj |Sj∈Di}|

·
|{Sj |Sj∈Di}|

m

)

=
|{Sj |Sj ∈ D,C ∈ Sj}|

∑l
i=1 |{Sj |Sj ∈ Di, C ∈ Sj}|

=
|{Sj |Sj ∈ D,C ∈ Sj}|
∑m

i=1 |{Sj |C ∈ Sj}|

The value of P (D|C) can be considered as the r-score of the C label. Similarly, we can

compute the r-scores for attribute names and association names. Finally, given an attribute

a, to decide the r-score of its value labels, we randomly sample a number of values of the a

attribute from the structured data and calculate the probability that the value belongs to

the queried domain D. We use the average probability as the r-score.
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Note that the second approach learns the scores from the corpus, and so performs well

only if the corpus and the unstructured data follow the same pattern. Although this training

phase is expensive, it is a one-time process and can significantly improve search performance.

4.4 Experimental Evaluation

This section describes a set of experiments that begin to validate our keyword-extraction

algorithm. Our goal is to show that our algorithm performs well even without domain

knowledge and that search quality improves when domain knowledge exists.

4.4.1 Experimental Setup

We used the web data as the unstructured data in our experiment. We chose web data for

two reasons. First, web data are about anything, so for any queries we ask, we can expect a

large number of relevant webpages. Second, we can submit the extracted keyword queries to

the Google search engine, which typically provides high-quality search results for keyword

queries.

We composed structured queries over six different schemas, selected from the UW XML

repository [129] and the Niagara XML repository [102], including movie, geography, com-

pany profiles, bibliography, DBLP, and car profiles. These schemas vary in complexity, such

as the number of elements and attributes, and the number of children of each element.

When we selected queries, we varied two parameters in the selected queries: #values

and length. The former is the number of attribute values in the query, indicating the

amount of value information given by the query. The latter is the longest path from a

queried instance (the instance whose attributes are queried) to other instances in the query

graph, corresponding to the complexity of the structure presented in the query. Finally,

we randomly selected text values from the XML data for our queries. After generating the

keyword set from the input queries, we used the Google Web API to search the web.

We measured the quality of our extracted keywords by top-k precision, which computes

the percentage of the top k hits that provide information relevant to the query. We analyzed

the results using top-2 and top-10 precision.
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Figure 4.9: Top-2 and top-10 precision for queries over different schemas without applying
domain knowledge.

We set the default values for i-scores and r-scores as follows (we used the same setting

for all domains).

• i-scores: 1 for value labels and labels of queried instances, and 0.8 for other labels.

• r-scores: 0.8 for text-value labels and labels of associations between instances of the

same type, 0.6 for instance labels, 0.4 for association labels, 0.2 for attribute labels,

and 0 for number-value labels.

4.4.2 Experimental Results

We validated our algorithm on queries over the six schemas. Figure 4.9 shows the query-

answering accuracy. We observed that our algorithm performed well in all domains. With

our default settings for i-scores and r-scores, the top-2 and top-10 precisions in different

domains were similar. The average top-2 precision was 0.68 and the average top-10 precision

was 0.59.

We next compared QueryGraph with several other approaches that select terms di-

rectly from the query.
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Figure 4.10: Top-10 precision for queries with length 0 in (a) the movie domain and (b)
the geography domain, and with length 1 in (c) the movie domain, and (d) the geography
domain. In (a) and (b) the ValueTable line and the QueryGraph line overlap, as the
two methods extracted the same keywords.
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Figure 4.11: Top-10 precision of queries with one attribute value in (a) the movie domain
and (b) the geography domain, and with two attribute values in (c) the movie domain and
(d) the geography domain.

• All: Include all terms except syntactic symbols.

• Value: Include only attribute values.

• ValueQuery: Include attribute values and all table and attribute names in the

SELECT-clause.

• ValueTable: Include attribute values and all table names in the FROM-clause.

We report the results on two domains: movie and geography. We observed similar trends

on other domains.
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Figure 4.12: Top-10 precision for queries over different schemas without applying domain
knowledge (QueryGraph) and with applying domain knowledge (QueryGraph DK).

Varying the number of values: We first consider the effect of #values on keyword

extraction. We considered queries with length 0 or 1 and varied #values from 0 to 2 when

it applies. Figure 4.10 shows the top-10 precision.

We had two observations. First, in most cases QueryGraph obtained higher top-

10 precision than the other approaches. It shows that including appropriate structure

terms obtained much better results than searching only the text values. Second, when the

number of attribute values increases, most approaches obtained better search results, but

All performed even worse because it includes distractive keywords.

Varying query length: We now examine the effect of structure complexity on search

performance. We considered queries with 1 or 2 attribute values, and varied the length

from 1 to 3. Figure 4.11 shows the results. We observed that our algorithm again beat

other methods in most cases. As the length grew, the top-10 precision dropped. This is not

a surprise as complex query structure complicates the meaning of the query.
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4.4.3 Applying Domain Knowledge

We finally examined how the domain knowledge helps in keyword extraction. For each

structure term occurring in one of the six schemas, we searched for it on the web, examined

how many top-10 results were relevant to the domain of the data set that the term belongs

to, and set the r-score of the term accordingly. When we set the r-scores in this way, the

average top-2 precision was 0.92 and the average top-10 precision was 0.81. Figure 4.12

shows a comparison of top-10 precisions with and without domain knowledge on various

domains. The top-10 precisions were increased by 39% on average. It shows that our

algorithm can further improve the search quality by applying domain knowledge.

4.5 Related Work

The Database community has recently considered how to answer keyword queries on rela-

tional data [73, 4, 15] and XML data [139, 74]. In this chapter, we consider the reverse

direction, answering structured queries on unstructured data.

There are two bodies of research related to our work: the information-extraction ap-

proaches and the query-transformation approaches. The former approach extracts informa-

tion from unstructured data and answers queries on the extracted data. Most information-

extraction work [42, 56, 119, 120, 121, 95, 50, 12] uses supervised learning, which is hard to

scale to data that involve a large number of domains and apply to the case where the query

schema is unknown beforehand. Recently, extracting structure from the web was proposed

in [50, 23, 67]. However, the extraction is typically restricted to certain domains, and no

evidence has shown that the technique can smoothly scale to data in a large number of

domains.

To the best of our knowledge, there is only one work, SCORE [113], that considers

transforming structured queries into keyword search. SCORE extracts keywords from

query results on structured data and uses them to submit keyword queries that retrieve

supplementary information. Our approach extracts keywords from the query itself. It is

generic in that we aim to provide reasonable results even without the presence of struc-

tured data and domain knowledge; however, the technique used in SCORE can serve as a
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supplement to our approach.

4.6 Discussion

Although our experimental results already show that our algorithm obtains good results in

various domains, there are multiple extensions we can make to our algorithm.

Improving search quality: Currently we obtained an average 0.68 top-2 precision and an

0.59 top-10 precision without domain knowledge, and an average 0.92 top-2 precision and

an 0.81 top-10 precision by applying domain knowledge. The results are not 100% accurate

partly because our algorithm may not be able to generate the best query, and partly because

answering a keyword query on unstructured data is not 100% accurate either.

One possible improvement can be obtained by studying how to learn domain knowledge

from existing structured and unstructured data, and how to apply domain knowledge to

achieve better search results. There are also other ways in which we can improve the keyword

query we generate. So far we extract keywords from the structured query. Ideally, we should

be able to use the keywords that can generate the best results, even if the keywords do not

occur in the structured query itself. There are two approaches to include keywords outside

the structured query for improving the search results.

First, we can refine our extracted keyword set by considering the schema or maybe

even a corpus of schemas. For example, we can replace an extracted keyword with a more

domain-specific keyword in the corpus, such as replacing “paper” with “publication”; we

can also add keywords selected from the corpus to further narrow down the search space.

Second, we can use existing structured data to supplement the selected keyword set with

values that are relevant to the given query, as proposed in SCORE [113].

Query-graph construction: In our algorithm the query graph plays a key role in keyword

extraction; however, we construct the query graph from the structured query based on a set

of heuristics and the resulting graph may not be accurate in capturing the real instances

and associations described in the query. We would like to study the effect of inaccurate

query graphs on the quality of the extracted keyword query and do experiments to quantify

the robustness of our algorithm in terms of the accuracy of the query graph.
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Ranking: Our current mechanism can answer structured queries on both structured and

unstructured data. However, the results from structured and unstructured data sources are

ranked separately. We would like to develop methods for ranking answers that are obtained

from structured and unstructured data sources all together.

Comparing results of structured and unstructured queries: One interesting ques-

tion one would ask is the follows: for a structured query and an unstructured query that

express the same information needs, can we obtain better results on structured queries,

which typically require more efforts for composing the query? Answering this question re-

quires comparison of results on both structured and unstructured data. Our algorithm is

mainly related to comparison on unstructured data. To obtain fair comparison results, we

should experiment on structured and unstructured queries that are independently specified.

Our experimental setting, described in Section 4.4, fixed the structured queries and gener-

ated unstructured queries by applying our algorithm, thus cannot serve as a comparison.

Also, we cannot conduct comparison by fixing keyword queries, such as keyword queries

over the TREC benchmark [127], and then guessing the corresponding structured queries

for evaluation, because those guessed queries make an implicit assumption on the under-

lying query schema, which can highly influence the query-answering accuracy. A possible

approach is to select from the query log structured and unstructured queries that ask for

the same desired instances, and compare the query-answering results.

4.7 Summary

In this chapter we described an approach for extracting keyword queries from structured

queries. The extracted keyword queries can be posed over a collection of unstructured

data in order to obtain additional data that may be relevant to the structured query. The

ability to widen queries in this way is an important capability in querying dataspaces that

include heterogeneous collections of structured and unstructured data. Our experimental

results show that our algorithm obtains good results for answering structured queries on

unstructured data in various domains.
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Chapter 5

RESOLVING SCHEMA-LEVEL HETEROGENEITY:

PROBABILISTIC SCHEMA MAPPING

The key to resolving heterogeneity at the schema level (see Figure 5.1) is to specify

schema mappings between data sources. These mappings describe the relationship between

the contents of the different sources and are used to reformulate a query posed over one

source (or a mediated schema) into queries over the sources that are deemed relevant.

However, in a dataspace system we may not be able to provide all the schema mappings up

front. This can be because the heterogeneity is at a large scale, because the users are not

skilled enough, or because the data sources are evolving over time. Thus, providing best-

effort querying even if we have only inaccurate mappings is crucial in building a dataspace

system.

In this chapter, we propose probabilistic schema mappings, analyze their formal foun-

dations, and study query answering in their presence. This chapter begins by illustrating

probabilistic schema mapping with an example and presenting our results (Section 5.1).

Then, Section 5.2 formally defines probabilistic schema mapping. Section 5.3 studies how

to answer queries in their presence and Section 5.4 considers the effect of representations

of probabilistic mappings on query answering. Section 5.5 discusses the extensions to more

powerful mapping languages. Finally, Section 5.6 discusses related work, Section 5.7 dis-

cusses possible extensions, and Section 5.8 summarizes this chapter.

5.1 Overview of Our Results

Traditional data integration systems require generating schema mappings between hetero-

geneous data sources up front. Semi-automatic schema-mapping tools are often employed

in such systems to generate candidate mappings. Refining the candidate mappings into a

precise mapping requires database expertise and domain knowledge, and can be quite labor

intensive. Thus, it would be beneficial if we can answer queries even in the presence of im-
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Figure 5.1: Heterogeneity at the schema level in a dataspace.
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Possible Mapping Probability

{(pname, name), (email-addr, email),
m1 =

(current-addr, mailing-addr), (permanent-addr, home-address)}
0.5

{(pname, name), (email-addr, email),
m2 =

(permanent-addr, mailing-addr), (current-addr, home-address)}
0.4

{(pname, name), (email-addr, mailing-addr),
m3 =

(current-addr, home-addr)}
0.1

(a)

pname email-addr current-addr permanent-addr

Alice alice@ Mountain View Sunnyvale

Bob bob@ Sunnyvale Sunnyvale

(b)

Tuple Prob

(’Sunnyvale’) 0.9

(’Mountain View’) 0.5

(’alice@’) 0.1

(’bob@’) 0.1

(c)

Figure 5.2: Example 5.1: (a) a probabilistic schema mapping between S and T ; (b) a source
instance DS ; (c) the answers of Q over DS with respect to the probabilistic mapping.

precise mappings. For this purpose, we propose probabilistic schema mappings, with which

we can answer a query by returning a set of tuples where each tuple is associated with a

probability indicating how likely the tuple is an answer. Before the formal discussion, we

illustrate the main ideas with an example.

Example 5.1. Consider a data source S, which describes a person by her email address,

current address, and permanent address, and a data target T , which describes a person by

her name, email, mailing address, home address and office address:

S=(pname, email-addr, current-addr, permanent-addr)
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T=(name, email, mailing-addr, home-addr, office-addr)

A semi-automatic schema-mapping tool may generate three candidate mappings between

S and T , assigning each a probability. Whereas the three mappings all map pname to name,

they map other attributes in the source and the target differently. Figure 5.2(a) describes

the three mappings using sets of attribute correspondences. For example, mapping m1 maps

pname to name, email-addr to email, current-addr to mailing-addr, and permanent-addr to

home-addr. Because of the uncertainty of which mapping is correct, we consider all of these

mappings in query answering.

Suppose the system receives a query Q on the target schema, asking for people’s mailing

addresses:

Q: SELECT mailing-addr FROM T

Using the possible mappings, we can reformulate Q into different queries:

Q1: SELECT current-addr FROM S

Q2: SELECT permanent-addr FROM S

Q3: SELECT email-addr FROM S

To return all possible answers, the system sends Q1, Q2 and Q3 to the data source, and

then computes the probability of each returned tuple. Suppose the data source contains a

table DS as shown in Figure 5.2(b). The system will retrieve four answer tuples, each with

a probability, as shown in Figure 5.2(c). If the data source supports aggregation queries

(e.g., SUM), the system can also generate a single aggregation query based on Q1, Q2 and Q3

to compute the probability of each returned tuple directly, and send the query to the data

source. �

Formally, we define a probabilistic schema mapping as a set of possible (ordinary) map-

pings between a source schema and a target schema, where each possible mapping has an

associated probability (Section 5.2). We begin by considering a simple class of mappings,

where each mapping describes a set of correspondences between the attributes of a source

table and the attributes of a target table. We introduce two possible semantics of prob-

abilistic mappings. In the first, called by-table semantics, we assume there exists a single
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correct mapping between the source and the target, but we don’t know which one it is. In

the second, called by-tuple semantics, the correct mapping may depend on the particular

tuple in the source to which it is applied. In both cases, the semantics of query answers are

a generalization of certain answers [2] for data integration systems.

We first study query answering with respect to probabilistic mappings (Section 5.3). We

consider select-project-join queries, a core set of SQL queries, and we consider probabilistic

mappings in both by-table and by-tuple semantics. We show that the data complexity

of answering queries in the presence of probabilistic mappings is in PTIME for by-table

semantics and #P-complete for by-tuple semantics. In addition, we identify a large subclass

of real-world queries for which we can still obtain all the by-tuple answers in PTIME.

Next, we study whether we can compress the representations of probabilistic mappings

to improve query answering (Section 5.4). Since a probabilistic schema mapping essentially

enumerates a probability distribution by listing every combination of events in the probabil-

ity space, its size can be quite large. In practice, we can often encode the same probability

distribution much more concisely. We identify two concise representations of probabilistic

mappings for which query answering can be done in PTIME in the size of the mapping.

We also examine the possibility of representing a probabilistic mapping as a Bayes Net, but

show that query answering may still be exponential in the size of a Bayes Net representation

of a mapping.

Finally, we consider several more powerful mapping languages, such as complex map-

pings, where the correspondences are between sets of attributes, and conditional mappings,

where the mapping is conditioned on a property of the tuple to which it is applied (Sec-

tion 5.5). We show that our complexity results on query answering carry over to probabilistic

mappings for these powerful mapping languages.

5.2 Definition

In this section we formally define the semantics of probabilistic schema mappings and the

query answering problems we consider. Our discussion is in the context of the relational

data model. A schema contains a finite set of relations. Each relation contains a finite set of

attributes and is denoted by R = 〈r1, . . . , rn〉. An instance DR of R is a finite set of tuples,
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where each tuple associates a value with each attribute in the schema.

We consider select-project-join (SPJ) queries in SQL. Note that answering such queries

is in PTIME in the size of the data.

5.2.1 Schema Mappings

We begin by reviewing non-probabilistic schema mappings. The goal of a schema mapping

is to specify the semantic relationships between a source schema and a target schema. We

refer to the source schema as S̄, and a relation in S̄ as S = 〈s1, . . . , sm〉. Similarly, we refer

to the target schema as T̄ , and a relation in T̄ as T = 〈t1, . . . , tn〉.

The common formalism for schema mappings, GLAV, is based on expressions of the

form

m : ∀x(φ(x) → ∃yψ(x,y)).

In the expression, φ is the body of a conjunctive query over S̄ and ψ is the body of a

conjunctive query over T̄ . A pair of instances DS and DT satisfies a GLAV mapping m if

for every assignment of x in DS that satisfies φ there exists an assignment of y in DT that

satisfies ψ.

We consider a limited form of GLAV mappings where each side of the mapping involves

only projection queries on a single table. These mappings have also been referred to as

schema matching in the literature [109]. Specifically, we consider GLAV mappings where

(1) φ (resp. ψ) is an atomic formula over S (resp. T ), (2) the GLAV mapping does not

include constants, and (3) each variable occurs at most once on each side of the mapping.

We consider this class of mappings because they already expose many of the novel issues

involved in probabilistic mappings and because they are quite common in practice. We also

note that many of the concepts we define apply to a broader class of mappings, which we

will discuss in detail in Section 5.5.

Given these restrictions, we can define our mappings in terms of attribute correspon-

dences. An attribute correspondence is of the form cij = (si, tj), where si is a source

attribute in the schema S and tj is a target attribute in the schema T . Intuitively, cij

specifies that there is a relationship between si and tj. In practice, a correspondence also
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involves a function that transforms the value of si to the value of tj . For example, the

correspondence (c-degree, temperature) can be specified as temperature=c-degree∗1.8 + 32,

describing a transformation from Celsius to Fahrenheit. These functions are irrelevant to

our discussion, and therefore we omit them. Formally, we define relation mappings and

schema mappings as follows.

Definition 5.2 (Schema Mapping). Let S̄ and T̄ be relational schemas. A relation mapping

M is a triple (S, T,m), where S is a relation in S̄, T is a relation in T̄ , and m is a set of

attribute correspondences between S and T .

When each source and target attribute occurs in at most one correspondence in m, we

call M a one-to-one relation mapping.

A schema mapping M is a set of one-to-one relation mappings between relations in S̄

and in T̄ , where every relation in either S̄ or T̄ appears at most once. �

Example 5.3. Consider the mappings in Example 5.1. We can view m1 as a GLAV

mapping:

∀n, e, c, p(S(n, e, c, p) → ∃o(T (n, e, c, p, o)))

The database in Figure 5.2(b) (repeated in Figure 5.3(a)) and the database in Figure 5.3(b)

satisfy m1. �

5.2.2 Probabilistic Schema Mappings

Intuitively, a probabilistic schema mapping describes a probability distribution of a set of

possible schema mappings between a source schema and a target schema.

Definition 5.4 (Probabilistic Mapping). Let S̄ and T̄ be relational schemas. A probabilistic

mapping (p-mapping), pM , is a triple (S, T,m), where S ∈ S̄, T ∈ T̄ , and m is a set

{(m1,Pr(m1)), . . . , (ml,Pr (ml))}, such that

• for i ∈ [1, l], mi is a one-to-one mapping between S and T , and for every i, j ∈ [1, l],

i 6= j ⇒ mi 6= mj.

• Pr(mi) ∈ [0, 1] and
∑l

i=1 Pr(mi) = 1.
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pname email-addr permanent-addr current-addr

Alice alice@ Mountain View Sunnyvale

Bob bob@ Sunnyvale Sunnyvale

(a)

name email mailing-addr home-addr office-addr

Alice alice@ Mountain View Sunnyvale office

Bob bob@ Sunnyvale Sunnyvale office

(b)

name email mailing-addr home-addr office-addr

Alice alice@ Sunnyvale Mountain View office

Bob email bob@ Sunnyvale office

(c)

Tuple Prob

(’Sunnyvale’) 0.9

(’Mountain View’) 0.5

(’alice@’) 0.1

(’bob@’) 0.1

(d)

Tuple Prob

(’Sunnyvale’) 0.94

(’Mountain View’) 0.5

(’alice@’) 0.1

(’bob@’) 0.1

(e)

Figure 5.3: Example 5.11: (a) a source instance DS ; (b) a target instance that is by-table
consistent with DS ; (c) a target instance that is by-tuple consistent withDS ; (d) Qtable(DS);
(e) Qtuple(DS).
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A schema p-mapping, pM , is a set of p-mappings between relations in S̄ and in T̄ , where

every relation in either S̄ or T̄ appears in at most one p-mapping. �

Note that we assume the possible mappings in a p-mapping are independent. We re-

fer to a non-probabilistic mapping as an ordinary mapping. A schema p-mapping may

contain both p-mappings and ordinary mappings. Example 5.1 shows a p-mapping (see

Figure 5.2(a)) that contains three possible mappings.

5.2.3 Semantics of Probabilistic Mappings

Intuitively, a probabilistic schema mapping models the uncertainty about which of the

mappings in pM is the correct one. When a schema matching system produces a set of

candidate matches, there are two ways to interpret the uncertainty: (1) a single mapping

in pM is the correct one and it applies to all the data in S, or (2) multiple mappings are

correct and each suitable for a subset of tuples in S, though it is not known which mapping

is the right one for a specific tuple. Example 5.1 illustrates the first interpretation. For

the same example, the second interpretation is equally valid: some people may choose to

use their current address as mailing address while others use their permanent address as

mailing address; thus, for different tuples we may apply different mappings, so the correct

mapping depends on the particular tuple.

This chapter analyzes query answering under both interpretations. We refer to the first

interpretation as the by-table semantics and to the second one as the by-tuple semantics of

probabilistic mappings. We are not trying to argue for one interpretation over the other.

The needs of the application should dictate the appropriate semantics. Furthermore, our

complexity results, which will show advantages to by-table semantics, should not be taken

as an argument in the favor of by-table semantics.

We next define the semantics of p-mappings in detail and the definitions for schema

p-mappings are the obvious extensions. The semantics of p-mappings is defined as a nat-

ural extension of that of ordinary mappings, which we review now. A mapping defines a

relationship between instances of S and instances of T that are consistent with the mapping.

Definition 5.5 (Consistent Target Instance). Let M = (S, T,m) be a relation mapping and
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DS be an instance of S.

An instance DT of T is said to be consistent with DS and M , if for each tuple ts ∈ DS,

there exists a tuple tt ∈ DT , such that for every attribute correspondence (as, at) ∈ m, the

value of as in ts is the same as the value of at in tt. �

For a relation mapping M and a source instance DS , there can be an infinite number of

target instances that are consistent with DS and M . We denote by TarM (DS) the set of

all such target instances. The set of answers to a query Q is the intersection of the answers

on all instances in TarM (DS). The following definition is from [2].

Definition 5.6 (Certain Answer). Let M = (S, T,m) be a relation mapping. Let Q be a

query over T and let DS be an instance of S.

A tuple t is said to be a certain answer of Q with respect to DS and M , if for every

instance DT ∈ TarM (DS), t ∈ Q(DT ). �

By-table semantics: We now generalize these notions to the probabilistic setting, begin-

ning with the by-table semantics. Intuitively, a p-mapping pM describes a set of possible

worlds, each with a possible mapping m ∈ pM . In by-table semantics, a source table can

fall in one of the possible worlds; that is, the possible mapping associated with that possible

world applies to the whole source table. Following this intuition, we define target instances

that are consistent with the source instance.

Definition 5.7 (By-table Consistent Instance). Let pM = (S, T,m) be a p-mapping and

DS be an instance of S.

An instance DT of T is said to be by-table consistent with DS and pM , if there exists

a mapping m ∈ m such that DS and DT satisfy m. �

Given a source instance DS and a possible mapping m ∈ m, there can be an infinite

number of target instances that are consistent with DS and m. We denote by Tarm(DS)

the set of all such instances.

In the probabilistic context, we assign a probability to every answer. Intuitively, we

consider the certain answers with respect to each possible mapping in isolation. The prob-
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ability of an answer t is the sum of the probabilities of the mappings for which t is deemed

to be a certain answer. We define by-table answers as follows:

Definition 5.8 (By-table Answer). Let pM = (S, T,m) be a p-mapping. Let Q be a query

over T and let DS be an instance of S.

Let t be a tuple. Let m̄(t) be the subset of m, such that for each m ∈ m̄(t) and for each

DT ∈ Tarm(DS), t ∈ Q(DT ).

Let p =
∑

m∈m̄(t) Pr(m). If p > 0, then we say (t, p) is a by-table answer of Q with

respect to DS and pM . �

By-tuple semantics: If we follow the possible-world notions, in by-tuple semantics, dif-

ferent tuples in a source table can fall in different possible worlds; that is, different possible

mappings associated with those possible worlds can apply to the different source tuples.

Formally, the key difference in the definition of by-tuple semantics from that of by-table

semantics is that a consistent target instance is defined by a mapping sequence that assigns

a (possibly different) mapping in m to each tuple in DS . (Without losing generality, in order

to compare between such sequences, we assign some order to the tuples in the instance).

Definition 5.9 (By-tuple Consistent Instance). Let pM = (S, T,m) be a p-mapping and

let DS be an instance of S with d tuples.

An instance DT of T is said to be by-tuple consistent with DS and pM , if there is a

sequence 〈m1, . . . ,md〉 such that for every 1 ≤ i ≤ d,

• mi ∈ m, and

• for the ith tuple of DS, ti, there exists a target tuple t′i ∈ DT such that for each

attribute correspondence (as, at) ∈ m
i, the value of as in ti is the same as the value of

at in t′i . �

Given a mapping sequence seq = 〈m1, . . . ,md〉, we denote by Tarseq(DS) the set of all

target instances that are consistent with DS and seq . Note that if DT is by-table consistent

with DS and m, then DT is also by-tuple consistent with DS and a mapping sequence in

which each mapping is m.
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We can think of every sequence of mappings seq = 〈m1, . . . ,md〉 as a separate event

whose probability is Pr(seq) = Πd
i=1Pr(mi). (In Section 5.5 we relax this independence

assumption and introduce conditional mappings.) If there are l mappings in pM , then there

are ld sequences of length d, and their probabilities add up to 1. We denote by seqd(pM)

the set of mapping sequences of length d generated from pM .

Definition 5.10 (By-tuple Answer). Let pM = (S, T,m) be a p-mapping. Let Q be a query

over T and DS be an instance of S with d tuples.

Let t be a tuple. Let seq(t) be the subset of seqd(pM), such that for each seq ∈ seq(t)

and for each DT ∈ Tar seq(DS), t ∈ Q(DT ).

Let p =
∑

seq∈seq(t) Pr(seq). If p > 0, we call (t, p) a by-tuple answer of Q with respect

to DS and pM . �

The set of by-table answers for Q with respect to DS is denoted by Qtable(DS) and the

set of by-tuple answers for Q with respect to DS is denoted by Qtuple(DS).

Example 5.11. Consider the p-mapping pM , the source instance DS, and the query Q in

the motivating example.

In by-table semantics, Figure 5.3(b) shows a target instance that is consistent with DS

(repeated in Figure 5.3(a)) and possible mapping m1. Figure 5.3(d) shows the by-table

answers of Q with respect to DS and pM . As an example, for tuple t =(‘Sunnyvale’), we

have m̄(t) = {m1,m2}, so the possible tuple (‘Sunnyvale’, 0.9) is an answer.

In by-tuple semantics, Figure 5.3(c) shows a target instance that is by-tuple consistent

with DS and the mapping sequence < m2,m3 >. Figure 5.3(e) shows the by-tuple answers

of Q with respect to DS and pM . �

5.3 Complexity of Query Answering

This section considers query answering in the presence of probabilistic mappings. We de-

scribe algorithms for query answering and study the complexity of query answering in terms

of the size of the data (data complexity) and the size of the mapping (mapping complexity).

We also consider cases in which we are not interested in the actual probability of an answer,

just whether or not a tuple is a possible answer.
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We show that when the schema is fixed, returning all by-table answers is in PTIME for

both complexity measures, whereas returning all by-tuple answers in general is #P-complete

with respect to the data complexity. Recall that #P is the complexity class of some hard

counting problems (e.g., counting the number of variable assignments that satisfy a boolean

formula). It is believed that a #P-complete problem cannot be solved in polynomial time,

unless P = NP . We show that computing the probabilities is the culprit here: even deciding

the probability of a single answer tuple under by-tuple semantics is already #P-complete,

whereas computing all by-tuple answers without returning the probabilities is in PTIME.

Finally, we identify a large subclass of common queries where returning all by-tuple answers

with their probabilities is still in PTIME.

5.3.1 By-table Query Answering

In the case of by-table semantics, answering queries is conceptually simple. Given a p-

mapping pM = (S, T,m) and an SPJ query Q, we can compute the certain answers of Q

under each of the mappings m ∈ m. We attach the probability Pr(m) to every certain

answer under m. If a tuple is an answer to Q under multiple mappings in m, then we add

up the probabilities of the different mappings.

Algorithm ByTable takes as input an SPJ queryQ that mentions the relations T1, . . . , Tl

in the FROM clause. Assume that we have the p-mapping pMi associated with the table Ti.

The algorithm proceeds as follows.

Step 1: We generate the possible reformulations of Q (a reformulation query computes

all certain answers when executed on the source data) by considering every combination of

the form (m1, . . . ,ml), where mi is one of the possible mappings in pMi. Denote the set

of reformulations by Q′
1, . . . , Q

′
k. The probability of a reformulation Q′ = (m1, . . . ,ml) is

Πl
i=1Pr(m

i).

Step 2: For each reformulation Q′, retrieve each of the unique answers from the sources.

For each answer obtained by Q′
1 ∪ . . . ∪ Q′

k, its probability is computed by summing the

probabilities of the Q′’s in which it is returned.

Importantly, note that it is possible to express both steps as a SQL query with grouping
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Tuple Prob

(’Sunnyvale’) 0.94

(’Mountain View’) 0.5

(’alice@’) 0.1

(’bob@’) 0.1

(a)

Tuple Prob

(’Sunnyvale’) 0.8

(’Mountain View’) 0.8

(b)

Figure 5.4: Example 5.14: (a) Qtuple
1 (D) and (b) Qtuple

2 (D).

and aggregation. Therefore, if the underlying sources support SQL, we can leverage their

optimizations to compute the answers.

With our restricted form of schema mapping, the algorithm takes time polynomial in

the size of the data and the mappings. We thus have the following complexity result. We

give full proofs for results in this chapter in Appendix B.2.

Theorem 5.12. Let pM be a schema p-mapping and let Q be an SPJ query.

Answering Q with respect to pM in by-table semantics is in PTIME in the size of the

data and the mapping. �

GLAV mappings: It is rather straightforward to extend the above results to arbitrary

GLAV mappings. We define general p-mappings to be triples of the form pGM = (S̄, T̄ ,gm),

where gm is a set {(gmi, P r(gmi)) | i ∈ [1, n]}, such that for each i ∈ [1, n], gmi is a

general GLAV mapping. The definition of by-table semantics for such mappings is a simple

generalization of Definition 5.8. The following result holds for general p-mappings.

Theorem 5.13. Let pGM be a general p-mapping between a source schema S̄ and a target

schema T̄ . Let DS be an instance of S̄. Let Q be an SPJ query with only equality conditions

over T̄ . The problem of computing Qtable(DS) with respect to pGM is in PTIME in the size

of the data and the mapping. �
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5.3.2 By-tuple Query Answering

To extend the by-table query-answering strategy to by-tuple semantics, we would need to

compute the certain answers for every mapping sequence generated by pM . However, the

number of such mapping sequences is exponential in the size of the input data. The following

example shows that for certain queries this exponential time complexity is not avoidable.

Example 5.14. Suppose that in addition to the tables in Example 5.1, we also have U(city)

in the source and V(hightech) in the target. The p-mapping for V contains two possible

mappings: ({(city, hightech)}, .8) and (∅, .2).

Consider the following query Q, which decides if there are any people living in a high-tech

city.

Q: SELECT ‘true’

FROM T, V

WHERE T.mailing-addr = V.hightech

One may conjecture that we can answer the query by first executing the following two sub-

queries Q1 and Q2, then joining the answers of Q1 and Q2 and summing up the probabilities.

Q1: SELECT mailing-addr FROM T

Q2: SELECT hightech FROM V

Now consider the source instance D, where DS is shown in Figure 5.2(a), and DU has

two tuples (‘Mountain View’) and (‘Sunnyvale’). Figure 5.4(a) and (b) show Qtuple
1 (D) and

Qtuple
2 (D). If we join the results of Q1 and Q2, we obtain for the true tuple the following

probability: 0.94 ∗ 0.8 + 0.5 ∗ 0.8 = 1.152. However, this is incorrect. By enumerating all

consistent target tables, we in fact compute 0.864 as the probability. The reason for this

error is that on some target instance that is by-tuple consistent with the source instance,

the answers to both Q1 and Q2 contain tuple (‘Sunnyvale’) and tuple (‘Mountain View’).

Thus, generating the tuple (‘Sunnyvale’) as an answer for both Q1 and Q2 and generating

the tuple (‘Mountain View’) for both queries are not independent events, so simply adding

up their probabilities leads to incorrect results.
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Indeed, we cannot answer Q by dividing it into several sub-queries and then joining the

results in some way, but have to answer the query by enumerating all by-tuple consistent

target instances. �

In fact, we show that in general, answering SPJ queries in by-tuple semantics with

respect to schema p-mappings is hard.

Theorem 5.15. Let Q be an SPJ query and let pM be a schema p-mapping. The problem

of finding the probability for a by-tuple answer to Q with respect to pM is #P-complete with

respect to data complexity and is in PTIME with respect to mapping complexity. �

The lower bound in Theorem 5.15 is proved by reducing the problem of counting the

number of variable assignments that satisfy a bipartite monotone 2DNF boolean formula

to the problem of finding the answers to Q. We give the full proof of this theorem in

Appendix B.1.

In fact, the reason for the high complexity is exactly that we are asking for the probability

of the answer. The following theorem shows that if we only want to know the possible by-

tuple answers, we can do so in polynomial time.

Theorem 5.16. Given an SPJ query and a schema p-mapping, returning all by-tuple an-

swers without probabilities is in PTIME with respect to data complexity. �

The key to proving the PTIME complexity is that we can find all by-tuple answer tuples

(without knowing the probability) by answering the query on the mirror target of the source

data. Formally, let DS be the source data and pM be the schema p-mapping. The mirror

target of DS with respect to pM is defined as follows. If R is not involved in any mapping,

the mirror target contains R itself; if R is the target of pM = (S, T,m) ∈ pM , the mirror

target contains a relation R′ where for each source tuple tS of S and each m ∈ m, there

is a tuple tT in R′ that (1) is consistent with tS and m and contains null value for each

attribute that is not involved in m, (2) contains an id column with the value of the id column

in tS (we assume the existence of identifier attribute id for S and in practice we can use

S’s key attributes in place of id), and (3) contains a mapping column with the identifier

of m. Meanwhile, we slightly modify a query Q into a mirror query Qm with respect to
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pM as follows: Qm is the same as Q except that for each relation R that is the target

of a p-mapping in pM and occurs multiple times in Q’s FROM clause, and for any of R’s

two aliases R1 and R2 in the FROM clause, Q′ contains in addition the following predicates:

(R1.id <> R2.id OR R1.mapping=R2.mapping).

Lemma 5.17. Let pM be a schema p-mapping. Let Q be an SPJ query and Qm be Q’s

mirror query with respect to pM . Let DS be the source database and DT be the mirror target

of DS with respect to pM .

Then, t ∈ Qtuple(DS) if and only if t ∈ Qm(DT ) and t does not contain null value. �

The size of the mirror target is polynomial in the size of the data and the p-mapping.

The PTIME complexity bound follows from the fact that answering the mirror query on

the mirror target takes only polynomial time.

GLAV mappings: Extending by-tuple semantics to arbitrary GLAV mappings is much

trickier than by-table semantics. It would involve considering mapping sequences whose

length is the product of the number of tuples in each source table, and the results are much

less intuitive. Hence, we postpone by-tuple semantics to future work.

5.3.3 Two Restricted Cases

In this section we identify two restricted but common classes of queries for which by-tuple

query answering takes polynomial time. We conjecture that they are the only cases where

it is possible to answer a query in polynomial time.

In our discussion we refer to subgoals of a query. The subgoals are tables that occur in

the FROM clause of a query. Hence, even if the same table occurs twice in the FROM clause,

each occurrence is a different subgoal.

Queries with a single p-mapping subgoal

The first class of queries we consider are those that include only a single subgoal being

the target of a p-mapping. Relations in the other subgoals are either involved in ordinary

mappings or do not require a mapping. Hence, if we only have uncertainty with respect

to one part of the domain, our queries will typically fall in this class. We call such queries

non-p-join queries. The query Q in the motivating example is an example non-p-join query.
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Definition 5.18 (non-p-join queries). Let pM be a schema p-mapping and let Q be an SPJ

query.

If at most one subgoal in the body of Q is the target of a p-mapping in pM , then we say

Q is a non-p-join query with respect to pM . �

For a non-p-join query Q, the by-tuple answers of Q can be generated from the by-

table answers of Q over a set of databases, each containing a single tuple in the source

table. Specifically, let pM = (S, T,m) be the single p-mapping whose target is a relation

in Q, and let DS be an instance of S with d tuples. Consider the set of tuple databases

T(DS) = {D1, . . . ,Dd}, where for each i ∈ [1, d], Di is an instance of S and contains only

the i-th tuple in DS . The following lemma shows that Qtuple(DS) can be derived from

Qtable(D1), . . . , Q
table(Dd).

Lemma 5.19. Let pM be a schema p-mapping between S̄ and T̄ . Let Q be a non-p-join

query over T̄ and let DS be an instance of S̄. Let (t, Pr(t)) be a by-tuple answer with respect

to DS and pM . Let T̄ (t) be the subset of T(DS) such that for each D ∈ T̄ (t), t ∈ Qtable(D).

The following two conditions hold:

1. T̄ (t) 6= ∅;

2. Pr(t) = 1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p). �

In practice, answering the query for each tuple database can be expensive. We next

describe Algorithm NonPJoin, which computes the answers for all tuple databases in one

step. The key of the algorithm is to distinguish answers generated by different source tuples.

To do this, we assume there is an identifier attribute id for the source relation whose values

are concatenations of values of the key columns. We now describe the algorithm in detail.

Algorithm NonPJoin takes as input a non-p-join query Q, a schema p-mapping pM ,

and a source instance DS , and proceeds in three steps to compute all by-tuple answers.

Step 1: Rewrite Q to Q′ such that it returns T .id in addition. Revise the p-mapping such

that each possible mapping contains the correspondence between S.id and T .id.
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Step 2: Invoke ByTable with Q′, pM and DS . Note that each generated result tuple

contains the id column in addition to the attributes returned by Q.

Step 3: Project the answers returned in Step 2 on Q’s returned attributes. Suppose pro-

jecting t1, . . . , tn obtains the answer tuple t, then the probability of t is 1−Πn
i=1(1−Pr(ti)).

Example 5.20. Consider rewriting Q in the motivating example, repeated as follows:

Q: SELECT mailing-addr FROM T

Step 1 rewrites Q into query Q′ by adding the id column:

Q’: SELECT id, mailing-addr FROM T

In Step 2, ByTable may generate the following SQL query to compute by-table answers

for Q′:

Qa: SELECT id, mailing-addr, SUM(pr)

FROM (

SELECT DISTINCT id, current-addr AS mailing-addr, 0.5 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, permanent-addr AS mailing-addr, 0.4 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, email-addr AS mailing-addr, 0.1 AS pr

FROM S)

GROUP BY id, mailing-addr

Step 3 then generates the results using the following query.

Qu: SELECT mailing-addr, NOR(pr) AS pr

FROM Qa

GROUP BY mailing-addr

where for a set of probabilities pr1, . . . , prn, NOR computes 1 − Πn
i=1pri. �
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An analysis of Algorithm NonPJoin leads to the following complexity result for non-p-

join queries.

Theorem 5.21. Let pM be a schema p-mapping and let Q be a non-p-join query with

respect to pM .

Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the

data and the mapping. �

Projected p-join queries

We now show that query answering can be done in polynomial time for a class of queries,

called projected p-join queries, that include multiple subgoals involved in p-mappings. In

such a query, we say that a join predicate is a p-join predicate with respect to a schema

p-mapping pM , if at least one of the involved relations is the target of a p-mapping in pM .

We define projected p-join queries as follows.

Definition 5.22 (projected p-join query). Let pM be a schema p-mapping and Q be an

SPJ query over the target of pM . If the following conditions hold, we say Q is a projected

p-join query with respect to pM :

• at least two subgoals in the body of Q are targets of p-mappings in pM .

• for every p-join predicate, the join attribute (or an equivalent attribute implied by the

predicates in Q) is returned in the SELECT clause. �

Example 5.23. Consider the schema p-mapping in Example 5.14. A slight revision of Q,

shown as follows, is a non-p-join query.

Q’: SELECT V.hightech

FROM T, V

WHERE T.mailing-addr = V.hightech

�
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Note that in practice, when joining data from multiple tables in a data integration

scenario, we typically project the join attributes, thereby leading to projected p-join queries.

The key to answering a projected-p-join query Q is to divide Q into multiple subqueries,

each of which is a non-p-join query, and compute the answer to Q from the answers to

the subqueries. We proceed by considering partitions of the subgoals in Q. We say that

a partitioning J̄ is a refinement of a partitioning J̄ ′, denoted J̄ � J̄ ′, if for each partition

J ∈ J̄ , there is a partition J ′ ∈ J̄ ′, such that J ⊆ J ′. We consider the following partitioning

of Q, the generation of which will be described in detail in the algorithm.

Definition 5.24 (Maximal P-Join Partitioning). Let pM be a schema p-mapping. Let Q

be an SPJ query and J̄ be a partitioning of the subgoals in Q.

We say that J̄ is a p-join partitioning of Q, if (1) each partition J ∈ J̄ contains at most

one subgoal that is the target of a p-mapping in pM , and (2) if neither subgoal in a join

predicate is involved in p-mappings in pM , the two subgoals belong to the same partition.

We say that J̄ is a maximal p-join partitioning of Q, if there does not exist a p-join

partitioning J̄ ′, such that J̄ � J̄ ′. �

For each partition J ∈ J̄ , we can define a query QJ as follows. The FROM clause includes

the subgoals in J . The SELECT clause includes J ’s attributes that occur in (1) Q’s SELECT

clause or (2) Q’s join predicates that join subgoals in J with subgoals in other partitions.

The WHERE clause includes Q’s predicates that contain only subgoals in J . When J is a

partition in a maximal p-join partitioning of Q, we say that QJ is a p-join component of Q.

The following is the main lemma underlying our algorithm. It shows that we can compute

the answers of Q from the answers to its p-join components.

Lemma 5.25. Let pM be a schema p-mapping. Let Q be a projected p-join query with

respect to pM and let J̄ be a maximal p-join partitioning of Q. Let QJ1, . . . , QJn be the

p-join components of Q with respect to J̄ .

For any instance DS of the source schema of pM and result tuple t ∈ Qtuple(DS), the

following two conditions hold:

1. For each i ∈ [1, n], there exists a single tuple ti ∈ Qtuple
Ji (DS), such that t1, . . . , tn

generate t when joined together.
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2. Let t1, . . . , tn be the above tuples. Then Pr(t) = Πn
i=1Pr(ti). �

Lemma 5.25 leads naturally to the query-rewriting algorithm ProjectedPJoin, which

takes as input a projected-p-join query Q, a schema p-mapping pM , and a source instance

DS , outputs all by-tuple answers, and proceeds in three steps.

Step 1: Generate maximum p-join partitions J1, . . . , Jn as follows. First, initialize each

partition to contain one subgoal in Q. Then, for each join predicate with subgoals S1 and

S2 that are not involved in p-mappings in pM , merge the partitions that S1 and S2 belong

to. Finally, for each partition that contains no subgoal involved in pM , merge it with

another partition.

Step 2: For each p-join partition Ji, i ∈ [1, n], generate the p-join component QJi and invoke

Algorithm NonPJoin with QJi, pM and DS to compute answers for QJi.

Step 3: Join the results of QJ1, . . . , QJn. If an answer tuple t is obtained by joining t1, . . . , tn,

then the probability of t is computed by Πn
i=1Pr(ti).

We illustrate the algorithm using the following example.

Example 5.26. Consider query Q′ in Example 5.23. Its two p-join components are Q1 and

Q2 shown in Example 5.14. Suppose we compute Q1 with query Qu (shown in Example 5.20)

and compute Q2 with query Q′
u. We can compute by-tuple answers of Q′ as follows:

SELECT Qu’.hightech, Qu.pr*Qu’.pr

FROM Qu, Qu’

WHERE Qu.mailing-addr = Qu’.hightect

�

Since the number of p-join components is bounded by the number of subgoals in a query,

and for each of them we invoke Algorithm NonPJoin, query answering for projected p-join

queries takes polynomial time.

Theorem 5.27. Let pM be a schema p-mapping and let Q be a projected-p-join query with

respect to pM .
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Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the

data and the mapping. �

Other SPJ queries

A natural question is whether the two classes of queries we have identified are the only

ones for which query answering is in PTIME for by-tuple semantics. As Example 5.14

shows, if Q contains multiple subgoals that are involved in a schema p-mapping, but Q

is not a projected-p-join query, then Condition 1 in Lemma 5.25 does not hold and query

answering needs to proceed by enumerating all mapping sequences.

We believe that the complexity of the border case, where a query joins two relations

involved in p-mappings but does not return the join attribute, is #P-hard, but currently it

remains an open problem.

5.4 Representation of Probabilistic Mappings

Thus far, a p-mapping was represented by listing each of its possible mappings, and the

complexity of query answering was polynomial in the size of that representation. Such a

representation can be quite lengthy since it essentially enumerates a probability distribu-

tion by listing every combination of events in the probability space. Hence, an interesting

question is whether there are more concise representations of p-mappings and whether our

algorithms can leverage them.

We consider three representations that can reduce the size of the p-mapping exponen-

tially. In Section 5.4.1 we consider a representation in which the attributes of the source

and target tables are partitioned into groups and p-mappings are specified for each group

separately. We show that query answering can be done in time polynomial in the size of the

representation. In Section 5.4.2 we consider probabilistic correspondences, where we specify

the marginal probability of each attribute correspondence. However, we show that such a

representation can only be leveraged in limited cases. Finally, we consider Bayes Nets, the

most common method for concisely representing probability distributions, in Section 5.4.3,

and show that even though some p-mappings can be represented by them, query answering

does not necessarily benefit from the representation.
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Mapping Prob

{(a,a’), (b,b’), (c,c’)} 0.72

{(a,b’), (c,c’)} 0.18

{(a,a’), (b,b’)} 0.08

{(a,b’)} 0.02

(a)

Mapping Prob

{(a,a’), (b,b’)} 0.8

{(a,b’)} 0.2

(b)

Mapping Prob

{(c,c’)} 0.9

∅ 0.1

(c)

Figure 5.5: Example 5.29: the p-mapping in (a) is equivalent to the 2-group p-mapping in
(b) and (c).

5.4.1 Group Probabilistic Mapping

In practice, the uncertainty we have about a p-mapping can often be represented as a few

localized choices, especially when schema mappings are created by semi-automatic meth-

ods. To represent such p-mappings more concisely, we can partition the source and target

attributes and specify p-mappings for each partition.

Definition 5.28 (Group P-Mapping). An n-group p-mapping gpM is a triple (S, T, pM ),

where

• S is a source relation schema and S1, . . . , Sn is a set of disjoint subsets of attributes

in S;

• T is a target relation schema and T1, . . . , Tn is a set of disjoint subsets of attributes

in T ;

• pM is a set of p-mappings {pM1, . . . , pMn}, where for each 1 ≤ i ≤ n, pMi is a

p-mapping between Si and Ti. �

The semantics of an n-group p-mapping gpM = (S, T, pM) is a p-mapping that includes

the Cartesian product of the mappings in each of the pMi’s. The probability of the mapping

composed of m1 ∈ pM1, . . . ,mn ∈ pMn is Πn
i=1Pr(mi).
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Example 5.29. Figure 5.5(a) shows p-mapping pM between the schemas S(a, b, c) and

T (a′, b′, c′). Figure 5.5(b) and (c) show two independent mappings that together form a

2-group p-mapping equivalent to pM . �

Note that a group p-mapping can be considerably more compact than an equivalent

p-mapping. Specifically, if each pMi includes li mappings, then a group p-mapping can

describe Πn
i=1li possible mappings with

∑n
i=1 li sub-mappings. The important feature of

n-group p-mappings is that query answering can be done in time polynomial in their size.

Theorem 5.30. Let gpM be a schema group p-mapping and let Q be an SPJ query. The

mapping complexity of answering Q with respect to gpM in both by-table semantics and

by-tuple semantics is in PTIME. �

Note that as n grows, fewer p-mappings can be represented with n-group p-mappings.

Formally, suppose we denote by Mn
ST the set of all n-group p-mappings between S and T ,

then:

Proposition 5.31. For each n ≥ 1, Mn+1
ST ⊂ Mn

ST . �

We typically expect that when possible, a mapping would be given as a group p-mapping.

The following theorem shows that we can find the best group p-mapping for a given p-

mapping in polynomial time.

Theorem 5.32. Given a p-mapping pM , we can find in polynomial time in the size of pM

the maximal n and an n-group p-mapping gpM , such that gpM is equivalent to pM . �

5.4.2 Probabilistic Correspondences

The second representation we consider, probabilistic correspondences, represents a p-mapping

with the marginal probabilities of attribute correspondences. This representation is the most

compact one as its size is proportional to the product of the schema sizes of S and T .

Definition 5.33 (Probabilistic Correspondences). A probabilistic correspondence mapping

(p-correspondence) is a triple pC = (S, T, c), where S = 〈s1, . . . , sm〉 is a source relation

schema, T = 〈t1, . . . , tn〉 is a target relation schema, and



144

Mapping Prob

{(a,a’), (b,b’), (c,c’)} 0.8

{(a,b’), (c,c’)} 0.1

{(a,b’)} 0.1

(a)

Corr Prob

{(a,a’)} 0.8

{(a,b’)} 0.2

{(b,b’)} 0.8

{(c,c’)} 0.9

(b)

Figure 5.6: Example 5.34: the p-mapping in (a) corresponds to the p-correspondence in
(b).

• c is a set {(cij ,Pr(cij))|i ∈ [1,m], j ∈ [1, n]}, where cij = (si, tj) is an attribute

correspondence, and Pr(cij) ∈ [0, 1];

• for each i ∈ [1,m],
∑n

j=1 Pr(cij) ≤ 1;

• for each j ∈ [1, n],
∑m

i=1 Pr(cij) ≤ 1. �

Note that for a source attribute si, we allow
∑n

j=1 Pr(cij) < 1. This is because in some

of the possible mappings, si may not be mapped to any target attribute. The same is true

for target attributes.

From each p-mapping, we can infer a p-correspondence by calculating the marginal prob-

abilities of each attribute correspondence. Specifically, for a p-mapping pM = (S, T,m),

we denote by pC(pM) the p-correspondence where each marginal probability is computed

as follows:

Pr(cij) =
∑

cij∈m,m∈m

Pr(m)

However, as the following example shows, the relationship between p-mappings and p-

correspondences is many-to-one.

Example 5.34. The p-correspondence in Figure 5.6(b) is the one computed for both the

p-mapping in Figure 5.6(a) and the p-mapping in Figure 5.5(a). �
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Given the many-to-one relationship, the question is when it is possible to compute the

correct answer to a query based only on the p-correspondence. That is, we are looking for

a class of queries Q̄, called p-mapping independent queries, such that for every Q ∈ Q̄ and

every database instance DS , if pC(pM1) = pC(pM2), then the answer of Q with respect to

pM1 and DS is the same as the answer of Q with respect to pM2 and DS . Unfortunately,

this property holds for a very restricted class of queries, defined as follows:

Definition 5.35 (Single-Attribute Query). Let pC = (S, T, c) be a p-correspondence. An

SPJ query Q is said to be a single-attribute query with respect to pC if T has one single

attribute occurring in the SELECT and WHERE clauses of Q. This attribute of T is said to be

a critical attribute. �

Theorem 5.36. Let pC be a schema p-correspondence, and Q be an SPJ query. Then,

Q is p-mapping independent with respect to pC if and only if for each pC ⊆ pC, Q is a

single-attribute query with respect to pC. �

Example 5.37. Continuing with Example 5.34, consider the p-correspondence pC in Fig-

ure 5.6(b) and the following two queries Q1 and Q2. Query Q1 is mapping independent with

respect to pC, but Q2 is not.

Q1: SELECT T.a FROM T,U WHERE T.a=U.a’

Q2: SELECT T.a, T.c FROM T

�

Theorem 5.36 simplifies query answering for p-mapping independent queries. Wherever

we needed to consider every possible mapping in previous algorithms, we consider only every

attribute correspondence for the critical attribute.

Corollary 5.38. Let pC be a schema p-correspondence, and Q be a p-mapping independent

SPJ query with respect to pC. The mapping complexity of answering Q with respect to pC

in both by-table semantics and by-tuple semantics is in PTIME. �

The result in Theorem 5.36 can be generalized to cases where we know the p-mapping

is an n-group p-mapping. Specifically, as long as Q includes at most a single attribute in
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each of the groups in the n-group p-mapping, query answering can still be done with the

correspondence mapping. We omit the details of this generalization.

5.4.3 Bayes Nets

Bayes Nets are a powerful mechanism for concisely representing probability distributions

and reasoning about probabilistic events [104]. The following example shows how Bayes

Nets can be used in our context.

Example 5.39. Consider two schemas S = (s1, . . . , sn, s
′
1, . . . , s

′
n) and T = (t1, . . . , tn).

Consider the p-mapping pM = (S, T,m), which describes the following probability distribu-

tion: if s1 maps to t1 then it is more likely that {s2, . . . , sn} maps to {t2, . . . , tn}, whereas

if s′1 maps to t1 then it is more likely that {s′2, . . . , s
′
n} maps to {t2, . . . , tn}.

We can represent the p-mapping using a Bayes Net as follows. Let c be an integer

constant. Then,

1. Pr((s1, t1)) = Pr((s′1, t1)) = 1/2;

2. for each i ∈ [1, n], Pr((si, ti)|(s1, t1)) = 1 − 1
c

and Pr((s′i, ti)|(s1, t1)) = 1
c
;

3. for each i ∈ [1, n], Pr((si, ti)|(s
′
1, t1)) = 1

c
and Pr((s′i, ti)|(s

′
1, t1)) = 1 − 1

c
.

Since the p-mapping contains 2n possible mappings, the original representation would

take space O(2n); however, the Bayes-Net representation takes only space O(n). �

Although the Bayes-Net representation can reduce the size exponentially for some p-

mappings, this conciseness may not help reduce the complexity of query answering. We

formalize this result in the following theorem.

Theorem 5.40. There exists a schema p-mapping pM and a query Q, such that answering

Q with respect to pM in by-table semantics takes exponential time in the size of pM ’s

Bayes-Net representation. �
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5.5 Broader Classes of Mappings

In this section we briefly show how our results can be extended to capture two common

practical extensions to our mapping language.

Complex mappings: Complex mappings map a set of attributes in the source to a set of

attributes in the target. For example, we can map the attribute address to the concatenation

of street, city, and state.

Formally, a set correspondence between S and T is a relationship between a subset of

attributes in S and a subset of attributes in T . Here, the function associated with the

relationship specifies a single value for each of the target attributes given a value for each of

the source attributes. Again, the actual functions are irrelevant to our discussion. A complex

mapping is a triple (S, T, cm), where cm is a set of set correspondences, such that each

attribute in S or T is involved in at most one set correspondence. A probabilistic complex

mapping is of the form pCM = {(cmi, P r(cmi)) | i ∈ [1, n]}, where
∑n

i=1 Pr(cmi) = 1.

Theorem 5.41. Let pCM be a schema probabilistic complex mapping between schemas S̄

and T̄ . Let DS be an instance of S̄. Let Q be an SPJ query over T̄ . The data complexity and

mapping complexity of computing Qtable(DS) with respect to pCM are PTIME. The data

complexity of computing Qtuple(DS) with respect to pCM is #P-complete. The mapping

complexity of computing Qtuple(DS) with respect to pCM is in PTIME. �

Conditional mappings: In practice, our uncertainty is often conditioned. For example,

we may want to state that daytime-phone maps to work-phone with probability 60% if age

≤ 65, and maps to home-phone with probability 90% if age > 65.

We define a conditional p-mapping as a set cpM = {(pM1, C1), . . . , (pMn, Cn)}, where

pM1, . . . , pMn are p-mappings, and C1, . . . , Cn are pairwise disjoint conditions. Intuitively,

for each i ∈ [1, n], pMi describes the probability distribution of possible mappings when

condition Ci holds. Conditional mappings make more sense for by-tuple semantics. The

following theorem shows that our results carry over to such mappings.

Theorem 5.42. Let cpM be a schema conditional p-mapping between S̄ and T̄ . Let DS be

an instance of S̄. Let Q be an SPJ query over T̄ . The problem of computing Qtuple(DS)
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with respect to cpM is in PTIME in the size of the mapping and #P-complete in the size

of the data. �

5.6 Related Work

We are not aware of any previous work studying the semantics and properties of probabilistic

schema mappings. Gal [58] used the top-K schema mappings obtained by a semi-automatic

mapper to improve the precision of the top mapping, but did not address any of the issues

we consider. Florescu et al. [54] were the first to advocate the use of probabilities in

data integration. Their work used probabilities to model (1) a mediated schema with

overlapping classes (e.g., DatabasePapers and AIPapers), (2) source descriptions stating

the probability of a tuple being present in a source, and (3) overlap between data sources.

While these are important aspects of many domains and should be incorporated into a

data integration system, our focus here is different. De Rougement and Vieilleribiere [39]

considered approximate data exchange in that they relaxed the constraints on the target

schema, which is a different approach from ours.

There has been a flurry of activity around probabilistic and uncertain databases lately [14,

118, 29, 7]. Our intention is that a data integration system will be based on a probabilistic

data model, and we leverage concepts from that work as much as possible. We also believe

that uncertainty and lineage are closely related, in the spirit of [14], and that relationship

will play a key role in data integration. We leave exploring this topic to future work.

5.7 Discussion

We now discuss several extensions to our study of probabilistic schema mapping.

Top-k query answering: Answering queries in the presence of probabilistic schema map-

pings in by-tuple semantics is #-P complete, and so is quite expensive. In practice, users

often want to see only the answers with the top-k probabilities and are satisfied even if the

probabilities of these tuples are not returned. Rather than first computing all answers and

then returning the top-k answer tuples, we can improve the efficiency by performing only

the necessary query reformulations and executions at every step and halt when the top-k
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answers are found.

Generating probabilities: To employ probabilistic mappings in resolving heterogeneity

at the schema level, we must have a good method of generating probabilities for the map-

pings. This is possible as techniques for semi-automatic schema mapping are often based on

Machine Learning techniques that at their core compute the confidence of correspondences

they generate. However, such confidence is meant more as a ranking mechanism than true

probabilities between candidates and is associated with attribute correspondences rather

than candidate mappings. We plan to study how to generate from them probabilities for

candidate mappings by pursuing maximum entropy.

Reasoning uncertainties: Another direction we would like to explore is to reason about

the uncertainty on schema mappings between data sources and its effect on query answering.

By analyzing the probabilities of the candidate mappings, we would like to find the critical

parts (i.e., attribute correspondences) where it is most beneficial to expand more resources

(human or otherwise) to improve schema mapping.

Probabilistic data integration: One of our future goals is to build a data integration

system that supports uncertainty about mappings, data extracted from sources, and the

exact meaning of keyword queries. Studying the theoretical underpinning of probabilistic

mappings is the first step towards building such a system. In addition, we need to extend the

current work in the community on probabilistic databases [118] to study how to efficiently

answer queries in the presence of uncertainties in schemas and in data, and study how to

translate a keyword query into structured queries by exploiting evidence obtained from the

existing data and users’ search and querying patterns.

5.8 Summary

In this chapter we introduced probabilistic schema mappings, with which we are able to

answer queries on heterogeneous data sources even if we have only a set of candidate map-

pings that may not be precise. We presented query answering algorithms for by-table and

by-tuple semantics and studied the complexity of query answering. We also considered con-

cise encoding of probabilistic mappings, with which we are able to improve the efficiency
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of query answering. Finally, we extended our definition to more powerful schema mapping

languages and showed the extensibility of our approach.
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Chapter 6

AN APPLICATION: THE SEMEX

PERSONAL INFORMATION MANAGEMENT SYSTEM

The explosion of information available in digital form has made search a hot research

topic for the Information Management Community. Whereas most of the research on search

is focused on the WWW, individual computer users have developed their own vast collections

of data on their desktops, and these collections are in critical need of good search and

querying tools. The problem is exacerbated by the proliferation of varied electronic devices

(laptops, PDAs, cell phones) that are at our disposal, which often hold subsets or variations

of our data. In fact, several recent venues have noted Personal Information Management

(PIM) as an area of growing interest to the data management community [1, 87, 30, 79].

Personal information contains data created and managed by different applications, with

extension to organizational data and even Web data that the user often accesses. Whereas

personal data can be highly heterogeneous, typical users are not skilled enough to pro-

vide semantic mappings; thus, personal information management is an example scenario

of dataspaces. To offer users a flexible platform for personal information management, we

built the Semex System (short for Semantic Explorer). Semex provides a logical view of

one’s personal information and leverages this logical view for best-effort browsing, search

and querying across disparate data sources.

This chapter begins by describing the browsing and search services provided by Semex.

Section 6.2 describes the architecture of Semex. Finally, Section 6.3 discusses related work

and Section 6.4 summarizes this chapter.

6.1 Browsing and Querying in Semex

The key idea of Semex is to provide a logical view of meaningful objects and the relations

between them to support associative browsing of one’s personal information. For example, a

user can go from an email to the information on the sender, then browse the publications of
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Figure 6.1: A sample screenshot of the Semex interface. The browsing trace in the middle
pane answers the query elaborated in Example 6.1.
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the sender, and then browse the cited papers. This logical view essentially is an association

network, observing a default domain model (formally defined in Chapter 2) that describes the

personal information domain. Semex creates such a view by automatically populating object

and association instances from the unstructured information on one’s desktop (e.g., Latex

and Bibtex files, Word documents, Powerpoint presentations, emails and contacts, and

webpages in the web cache) and also disparate structured information (e.g., spreadsheets,

relational databases, and XML data).

The first and most obvious benefit of such an association network is the ability to

find information in one’s personal data. Semex offers its users an interface that combines

intuitive browsing and a range of query facilities (see Figure 6.1). We next describe the

browsing and search services provided by Semex in detail.

Browsing: Semex lists all classes of instances extracted from the personal data (see left

pane of Figure 6.1). When the user poses a query (or selects one class from the list),

Semex classifies the returned objects into their classes. The user can select a particular

object instance to see detailed information, including its attribute values (see right pane

of Figure 6.1) and its associated instances, which have been grouped by associations (see

middle pane of Figure 6.1). The user can then browse the data by following association

links, much like web browsing.

Keyword search: The easiest way to search the personal data is by keyword search. Semex

supports neighborhood keyword search (the formal definition was given in Chapter 3), a

search mechanism that is more intelligent than simple keyword search. For example, when

searching for the keyword “schema matching”, Semex returns not only the instances rep-

resenting papers and presentations that contain “schema matching” in the text, but also

instances representing people working on this area, conferences and journals that have pub-

lished papers on this topic, etc. In addition, Semex goes to the Web and returns webpages

that are relevant to the keyword search.

Predicate query: As a more complex search mechanism, the user can use the interface to

compose a predicate query (the formal definition was given in Chapter 3), which combines

keywords and structural requirements (see top middle of Figure 6.1). A predicate query
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describes a desired instance by a set of predicates, each of which describes either an attribute

value or an associated instance. For example, the user can specify a predicate query asking

for Gordon Bell’s MyLifeBits paper published in ACM Multimedia.

Paper (title ‘MyLifeBits’),

(author ‘Gordon Bell’),

(publishedIn ‘ACM Multimedia’)

Semex returns all instances in the association network that satisfy all or some of the predi-

cates in the query. In addition, Semex searches unstructured data in the personal informa-

tion space and searches the Web to return text documents and webpages that are relevant

to the query.

Triple query: Semex also supports a more sophisticated query interface, through which the

user can create triple queries (the interface is not shown in Figure 6.1 to avoid clutter).

A triple query is a conjunctive query over triplets, each triplet describing an association

between a pair of objects or an attribute of an object. It is more powerful than a predicate

query in that it can describe a chain of associations, where the length of the chain is larger

than one. Semex searches over personal data and the Web to answer triple queries. The

following example triple query asks for a paper that is cited together with Gordon Bell’s

paper in one of the user’s papers (suppose the user is named ‘Alice’):

select $a3

where ($a1 cites $a2) AND

($a1 cites $a3) AND

($a1 author $p1) AND

($p1 name ‘Alice’) AND

($a2 author $p2) AND

($p2 name ‘Gordon Bell’)

In Chapter 3 we described the index that supports efficiently answering neighborhood

keyword queries and predicate queries. The techniques we described in Chapter 4 can be

used to answer predicate queries and triple queries on unstructured texts and the Web.
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Ranking: Now consider the ranking of the returned instances. Semex provides three op-

tions for ranking: by relevance score, by importance score, and by timeline (see top right of

Figure 6.1). By default, the returned instances are ranked by their relevance to the query,

computed in a way close to the TF/IDF measure [114]. The relevance score is based on

the number of times the keywords occur in the attributes of the instance or the number of

associated instances that contain the keywords. A user can choose to rank the returned in-

stances according to how important they are in the personal information space. We compute

the importance score in a way similar to the PageRank algorithm [20], considering nodes as

pages and associations as links between pages. The difference is that we weigh associations

differently based on their types (e.g., authorOf is weighted more than mentionedIn). These

weights can be assigned manually by domain experts or learned from training data. Finally,

a user can also choose to rank certain instances such as Articles and Emails by their latest

modification time.

Finding association chains: In daily life a user often tries to remember how she gets to

know a person, an article, etc. Semex attempts to answer such questions by finding the

association chains between the instance of interest and the instance representing the user

herself. An example association chain is as follows: a person is mentioned in an email that

is sent to the user. Note that the shortest path between two instances is not necessarily

the desired one; instead, the path that reflects the first time or the most recent time that

the two instances interact can be more interesting. We define earliest lineage as the initial

association chain in terms of chronological order, and latest lineage as the most recent

association chain. For example, consider the association chain from a Person instance to

the instance representing the user. The earliest lineage may indicate that the user gets to

know the person by citing one of her papers, and the latest lineage may show that the latest

contact between the user and the person is through an email.

Ranking and finding association chains are not focus of this dissertation and we skip the

technical details.

Finally, we illustrate the above browsing and search facilities using an example.

Example 6.1. Suppose the user wants to search for all the publications authored by Gordon
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Bell in the user’s personal data. She first types the keyword “Gordon Bell”. Semex returns

a set of persons, messages, and documents related to Gordon Bell. When the user selects a

particular Person object, Semex presents all objects associated with this object, categorized

into papers authored by him, messages sent to him, etc. The user can simply browse the

category AuthorOfArticles to find Gordon Bell’s publications.

As an example of a more complex search, suppose the user is trying to find a specific

reference to insert in a paper. She does not remember the title or authors of the paper, but

does remember that she used this reference in a previous paper that also cited a paper by

Gordon Bell. Having found the papers by Gordon Bell, she can find which ones were cited

in her papers by following the CitedBy association. Then, she can determine which was the

previous paper of hers that cited both, and follow the Cites association to find the reference

in question. Figure 6.1 indeed shows such a browsing trace. Finally, a more sophisticated

user may choose not to follow this browsing chain but formulate a triple query as the one

shown in the previous example. �

6.2 System Architecture

Figure 6.2 depicts the components of the Semex system. Semex has three modules: the

domain management module plays the central role by providing and managing the domain

model; the data collection module is responsible for data extraction, integration, cleaning

and indexing; the query processing module analyzes data for search and browsing. We now

briefly explain each of these modules.

Domain management module

The domain management module provides the domain model for the other two modules.

Currently Semex provides a default domain model to the users; ideally, the domain model

manager should offer several ways of manually personalizing it. For example, the user can

extend the domain model by example. The user begins by recording a specific pattern of

browsing through instances in Semex. The browsing pattern can, in itself, already define

a new class or association in the domain model. Alternatively, the user may refine, modify

or generalize the pattern or combine it with other patterns to create the desired class.
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Figure 6.2: Semex architecture.
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Ultimately, we would like the system to identify interesting clusters of information, and

propose extensions based on them.

Data collection module

Semex provides access to data stored in multiple applications and sources, such as

emails and address book contacts, pages in the user’s web cache, documents (e.g., Latex

and Bibtex, PDF, Word, and Powerpoint) in the user’s personal or shared file directory,

and data in more structured sources (e.g., spreadsheets and databases).

Semex starts data collection by using a set of object-and-association extractors. The

extracted objects are processed by the reference reconciliator such that multiple references

to the same real-world object are reconciled (Chapter 2). Reconciliation results are stored in

the association database. Instances in the association database enable more data extraction

(such as the association mentionedIn) and facilitate the integrator to integrate external data

sources. Finally, the indexer indexes object instances in the association database for fast

lookup of the keywords (Chapter 3).

We now describe the different components in detail.

Data extractor: The key architectural premise in Semex is that it should support a variety

of mechanisms for obtaining object and association instances. We describe the main ones

as follows.

1. Simple: In many cases, objects and associations are already stored conveniently in the

data sources and they only need to be extracted according to the domain model. For

example, a contact list already contains several important attributes of persons.

2. Extracted: A rich set of objects and associations can be extracted by analyzing specific

file formats. For example, authors and titles can be extracted from Word documents

and Powerpoint presentations. In more complex cases, Semex needs to examine data

sources of multiple types. For example, citations can be computed from Latex and

Bibtex files.

3. Computed: Finally, new associations can be computed from existing ones, such as

one’s co-authors.
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In each of these cases, associations are obtained by some code. The architecture of

Semex enables adding new extractors in a plug-and-play fashion; thus, users are able to

incorporate association extractors as they see fit. Ideally, the system should also provide

an interface for manually creating and revising instances and associations.

Reference reconciliation: Since the data we manage in PIM is very heterogeneous and we

need to support multiple sources of associations, it is crucial that the data instances mesh

together seamlessly. This leads to one of the key technical challenges in PIM: reference

reconciliation. As seen in the right pane of Figure 6.1, the same real-world individual can

be referred to using many different attribute values. To truly follow chains of associations

and find all the information about a particular individual (or publication, conference, etc.),

Semex needs to be able to reconcile the many references to the same real-world object.

Chapter 2 described our reference reconciliation algorithm.

Association database: The result of the reconciliation algorithm is a high-quality reference

list of a set of objects (e.g., people, publications). Semex stores the objects and associa-

tions in a separate database, referred to as the association database. Except for enabling

seamless querying and browsing, Semex also leverages this database to extract additional

associations. For example, we can search for occurrences of person names in email bodies,

spreadsheets, Word and PDF files, and so on, to create associations such as MentionedIn.

Indexer: The indexer indexes instances and associations in the association database. The

index captures both the text values and the structural aspects of the data, such that it can

efficiently support queries that combine keywords and structural requirements. In Chapter 3

we described our indexing techniques in detail.

Data integrator: As the users often need to access organizational data and the Web data,

they can choose to integrate the external data into the personal information space. Integrat-

ing external data requires reformulating the external schema into the domain model. The

extracted instances and associations can help in this process. For example, if it is detected

that a column in a spreadsheet includes person names in the association database, it is often

the case that the rest of the values in the column also represent person names. Since typical

users may not be skilled enough to help in generating mappings, we may need to rely on
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the candidate mappings generated by automatic schema mapping tools. In Chapter 5, we

introduced the concept of probabilistic schema mapping to facilitate the use of candidate

mappings that may not be precise.

Query processing module

Semex offers its users an interface that combines intuitive browsing and a variety of

query facilities, ranging from simple keyword search to sophisticated triple query (see Sec-

tion 6.1). The browser component supports associative browsing by exploring the asso-

ciative network. The searcher component answers keyword search, predicate queries, and

triple queries on both structured data and unstructured data in the personal information

space and on the Web. The data analyzer performs offline analysis of the association net-

work, such as computing earliest lineage and latest lineage for the instances to support

finding association chains, and applying PageRank to compute the importance score of the

instances to support ranking. Further, the data analyzer can trigger certain notifications

and alarms when an event occurs; for example, when a user opens a webpage, Semex will

list all instances that occur both on the webpage and in the association database, so the

user can easily find her acquaintances on the webpage.

Semex is implemented in Java. The association database is stored as RDF data and

queried using the Jena RDF Engine [76]. The indexing component is implemented by

extending the Lucene Indexing Tool [92].

6.3 Related Work

A number of PIM projects [83, 49, 60, 48, 55, 57, 75, 100, 82, 13] studied how to effectively

organize and search personal information. They all attempt to go beyond the traditional

hierarchical directory model and present a unified user interface for personal data. We now

survey several main ones and discuss where their data models fall short.

The Stuff I’ve Seen (SIS) project [49] and the Google Desktop Search toolkit [63] consider

personal information as a collection of documents with indexes on the text of the documents.

They index all types of information (in files, emails, webpages, etc.) as unstructured data

and emphasize access through a unique full-text keyword search, which is independent of
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the applications that store the data.

MyLifeBits [60] views personal data as a network of documents. Nodes in the graph

represent documents and annotation meta-data; edges represent the annotate relationship.

MyLifeBits focuses on integrating text and multimedia objects, allowing to annotate a file

by another file, or by manually adding text annotation or audio annotation.

Placeless Documents [48] models personal information as overlapping collections of doc-

uments. It annotates documents with property/value pairs and groups documents into

overlapping collections according to the property value. It also enables annotation with

executable code as active properties. The Haystack project [107] once explored the same

intuition and modeled data as dynamic hierarchies of documents. The hierarchy is called

dynamic because users can use the properties in an arbitrary order to narrow down the

search space (in contrast to following a fixed order in the traditional directory model).

The LifeStreams project [55] views personal information as a sequence of documents. It

organizes documents in chronological order and allows the user to view the documents from

different viewpoints in terms of time.

Although the above PIM systems all organize personal information in a way different

from traditional directory hierarchies and provide a uniform access to all of one’s personal

information, they are different from Semex in the following aspects. First, Semex provides

a logical view on one’s personal data and supports a spectrum of search facilities ranging

from keyword search to structured queries; however, none of these PIM systems provides

search and browsing through such a logical view. In fact, among these PIM systems, only

MyLifeBits manages to explicitly capture associations; even so, it does not distinguish dif-

ferent classes of instances or different types of associations and so only captures associations

at a coarse granularity. Second, Semex models personal information at the instance level

whereas the above PIM projects all consider information at the document level. As a

result, it is hard for these systems to seamlessly integrate data in a semantically mean-

ingful way. Third, Semex automatically populates the association network by extracting

instances and associations from personal data; in contrast, the above PIM systems more

heavily rely on manual work (for example, in MyLifeBits manual annotations are required

and in LifeStreams properties are mainly set by hand).
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The Haystack project [83] models personal information as objects and associations be-

tween objects, and has successfully demonstrated how this model enables personalized infor-

mation presentation. Associations in Haystack can be automatically extracted from certain

fields of documents, set up by observing the user’s behaviors such as browsing trails, or

added manually by the user [108]. However, Haystack mainly focuses on visualization of

the information, rather than providing better search and querying services.

Finally, the Information Retrieval Community and the Human Computer Interaction

Community have conducted research that study how people organize personal files [94,

88, 10, 52], emails [134], and web information (bookmarks) [106, 3, 124, 123]. Boardman

and Sasse [19] compared the long-term organization behavior for the above three types of

information. The design of our PIM system conforms to these research results.

6.4 Summary and Overarching PIM Themes

This chapter described Semex, a system that offers best-effort search, querying and brows-

ing of personal information. The first key idea in Semex is to automatically construct an

association network consisting of instances and associations from the information on one’s

desktop. The immediate benefit of this association network is to enable browsing personal

information by association in the spirit of the Memex vision [22]. In addition, this database

can support tasks such as coordination between multiple personal devices and context-aware

behaviors. The second key idea in Semex is that the association network can be used as

an anchor for importing external information sources, thereby offering seamless search and

querying across different types of personal data, with extension to organizational data and

Web data.

Beyond the specific technical challenges, our experience with Semex has highlighted

several higher-level themes that we believe will pervade many of the challenges in PIM.

First, many of the challenges arise because PIM manages long-lived and evolving data. In

contrast, most data management is used to model database states that capture snapshots

of the world. The evolution occurs at the instance level as well as the schema level. So far,

the evolution has manifested itself in challenges to querying, reference reconciliation and

schema mapping. The second theme is to find the right granularity for modeling personal
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data. It is often possible to model the data at a very fine level. However, since PIM tools

are geared toward users who are not necessarily technically savvy, it is important to keep

the models as simple as possible. As we continue to investigate this tradeoff, we may find

an interesting middle point between the models traditionally used for structured data and

those for unstructured data. Third, when designing PIM systems it is important to think

from the perspective of the user and her interactions with data in her daily routine, rather

than from the perspective of the database. We need to build systems to support users in

their own habitat, rather than trying to fit their activities into traditional data management.

Finally, there has been a lot of interest in systems that combine structured and unstructured

data in a seamless fashion. We believe that PIM is an excellent application to drive the

development of such systems, raising challenges concerning storing, modeling and querying

hybrid data.
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

In many applications we need to manage dataspaces, which contain heterogeneous data

and partially unstructured data. Semantic mappings between the data sources may not exist

either because users are not skilled enough to provide the mappings, or because the scale

of the data makes it impossible to specify precise mappings. This dissertation studied how

we can provide best-effort browsing, search and querying on dataspaces when the system

evolves, even if we do not have mappings or have only imprecise mappings between the

data sources. This is the first step towards pay-as-you-go data management: provide some

services from the outset and improve the semantic mappings on an as-needed basis.

This chapter recaps the key contributions of this dissertation and discusses directions

for future research.

7.1 Key Contributions

This dissertation has studied how to resolve heterogeneity at three levels in a dataspace

system: the instance level, the schema level, and the query level. In particular, with the

technical contributions this dissertation has made, we are able to build a dataspace system

with the following functionalities.

• The system can reconcile references that refer to the same real-world entity and thus

mesh the instances from various data sources seamlessly (Chapter 2). This is achieved

by exploiting the association network extracted from the data sources. Specifically,

we consider associated instances in comparison of object instances, propagate infor-

mation from one reconciliation decision to another, and enrich references at the time

of reconciliation.

• The system can index heterogeneous data to efficiently answer queries that combine
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keywords and structural specification (Chapter 3). The index is based on extending

inverted lists to capture both text values and structure of the data when it is present.

In particular, we augment each keyword in the index by concatenating it with an

attribute or association label to indicate the attribute that the keyword belongs to or

the association that the keyword is involved in.

• The system can answer structured queries on unstructured data and hence support

seamless search and querying on both structured and unstructured data (Chapter 4).

We proposed answering structured queries on unstructured data by first translating a

given structured query into a keyword query and then answering the keyword query

over unstructured data. The key to this translation is building a query graph to

capture the essence of the query and find the node or edge labels that best summarize

the query graph.

• The system can employ probabilistic schema mappings to answer queries even when

perfect mappings do not exist (Chapter 5). We have studied various aspects of query

answering with respect to probabilistic schema mappings, including the complexity

of query answering, the effect of different representations of probabilistic mappings

on query answering, and the effect of more complex mapping languages on query

answering.

Whereas our technical contributions apply to dataspace applications in general, we have

grounded them to a particular system, the Semex Personal Information Management Sys-

tem. Semex provides a logical view of one’s personal information on the desktop, on

personal electronic devices, and on the Intranet or the Web. Semex leverages this logical

view to allow associative browsing of one’s personal data, and provides seamless search and

querying over all types of personal data.

7.2 Future Work

This dissertation is the first step towards the pay-as-you-go dataspace management. There

are still many open problems to solve in building dataspace systems and we next list a few.
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Reuse of Human Attention: One of the key properties of a dataspace is that semantic

integration evolves over time and only where needed. For reducing the burden of mapping

creation, we would like to weave data integration into the fabric of people’s daily searching

and browsing and leverage experiences from previous integration tasks. Thus, one important

direction is to apply Machine Learning techniques to study the reuse of human attention

from several aspects: how to leverage existing structured data to improve the extraction of

structure from text (e.g., based on existing person instances, discover new person instances

occurring in a table or a list of a web page), how to record previously composed queries and

the refinement on these queries to better understand the source structure, how to leverage

operations on the data (e.g., cutting and pasting values from one column in a spreadsheet

into a different column in a different spreadsheet) to discover relationships between data,

and how to find the hot spots where specification of structure can bring the most benefits.

Probabilistic Data Integration: When we manage a large number of data sources,

especially a dataspace at the web scale, semantic mappings will be approximate at best:

not only is it hard to create exact mappings and maintain them, but it is not even clear

what a correct mapping would mean in many cases. To model all domains of possible

interest to users and to provide access to data about anything, the dataspace platform needs

to handle uncertainty at its core. Specifically, we need to handle uncertainty from several

sources: 1) uncertainty about mappings between disparate schemas, 2) uncertainty about

the structure extracted from unstructured texts (typically using automatic techniques),

and 3) uncertainty about the structural information encoded in a query (often appearing

as keyword queries).

We envision a system that supports probabilistic data integration. First, based on the

work on probabilistic schema mapping (Chapter 5) and recent work in the community on

probabilistic databases [118], we can investigate the foundation of generating probabilistic

answers to queries and design algorithms that efficiently compute top-K answers in presence

of uncertainties in schemas and in data. Second, we can extend our work on indexing

mechanism (Chapter 3) to incorporate heterogeneity in form of probabilistic matching and

fuzzy values and study the ranking schemes for queries where keywords meet approximate
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structure. Finally, it is interesting to study how to quantify probabilities from schema

matchings generated by semi-automatic tools and how to use these probabilities as feedback

to obtain better matching results.

Universal Search: Keyword search has the property that it is more forgiving than a query,

based on similarity and providing ranked results to end users. It is especially suitable in a

dataspace environment, as users typically do not know all the disparate underlying structure.

A dataspace platform should enable a user to specify a keyword query and retrieve data

from all relevant data sources and iteratively refine the query to a structured query when

appropriate.

Towards providing a universal search service, it is interesting to study the following

immediate problems: 1) query routing: given a keyword query, detect the user’s intention

and find the sources that are most relevant to the query; 2) query reformulation: given

a keyword query and a relevant structured source, reformulate the query according to the

schema of the source; 3) result ranking: given a set of answers obtained from both structured

and unstructured sources, rank them according to multiple criteria such as the relevance

of the answers, the details of the information, and the authority of the sources; 4) query

refinement: given a keyword query or a reformulated structured query, help the user refine

it to obtain better query results.

Information Redundancy: With new data sources quickly added to a dataspace, some

of which might duplicate or derive from existing ones, query answering often returns over-

whelming volume of data that are hard for users to digest. Whereas a good ranking method

can bring up the most relevant results first, it would still be beneficial to detect overlaps in

results and return only distinct ones. To obtain this goal, the dataspace platform should be

able to model the relationships between data participants, such as one is a view or replica

of another, one overlaps with another with a particular percentage, or one covers a certain

percentage of existing information in a specific domain [54]. It is interesting to examine how

to formalize such relationships between data sources, how to leverage them to provide dis-

tinct search results, how to use them to optimize query answering on multiple sources, and

how to retrieve relevant data sources and allow users to inquire about their completeness,
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correctness, and freshness.
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Appendix A

ALGORITHM OF BUILDING A HYBRID-ATIL

In this appendix, we consider how to build a hybrid-ATIL from a Hier-ATIL. The key

in the algorithm is to identify the prefixes for which we need to add summary rows. We

now describe an algorithm that finds such prefixes with a single scan of the keywords in the

Hier-ATIL.

As shown in Figure A.1, our algorithm has two main components. The first component,

the procedure Scan, takes a Hier-ATIL and a threshold t as input, and generates the

Hybrid-ATIL by adding summary rows to the given Hier-ATIL. Scan maintains a stack of

prefixes, where if the top prefix in the stack is of the form a1// . . . //an//, then the i-th

(i ∈ [1, n]) element in the stack is of the form a1// . . . //ai//; in other words, except the

last prefix, each prefix is a prefix of its subsequent prefix and has only one less “//” than

the subsequent prefix. In addition, Scan maintains a counter array that records for each

prefix in the stack the number of its occurrences in the already scanned keywords.

Scan proceeds by scanning the indexed keywords in the Hier-ATIL. When it reaches

a keyword k, if k starts with the prefix at the top of the stack, it pushes into the stack

each prefix of k that ends with “//” but is not in the stack yet; otherwise, Scan pops up

prefixes in the stack that are not prefixes of k, and invokes procedure Judge for each popped

prefix to decide whether a summary row should be added to the inverted list. Finally, after

scanning all keywords in the Hier-ATIL, Scan pops up all prefixes in the stack and invokes

Judge for each of them to decide whether a summary row needs to be added.

Another component, the procedure Judge, pops up a prefix p from the stack and decides

if a summary row should be added for p. If the counter for p (i.e., the number of indexed

keywords with prefix p) is above the threshold t, Judge adds a summary row for p and

increases the counter for the current top prefix in the stack by 1. Otherwise, Judge does

not add a summary row but instead increases the counter for the current top prefix in the
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procedure Scan(L, t)

//L is the Hier-ATIL of an association network and t is the threshold;

Initialize stack with a single element “”;

Initialize each element of array counter[] to 0;

//counter summarizes the occurrences of each prefix;

for each (keyword k in L)

while (top(stack) is not a prefix of k)

Judge(stack, counter, t);

while (there is a prefix pre of k ending with “//” and having one more “//” than top(stack))

Push pre into stack;

counter[pre] = 0;

counter[k] = 1;

while (top(stack)<> “”)

Judge(stack, counter, t);

procedure Judge(stack, counter, t)

str0 = pop(stack);

str = top(stack);

if (counter[str0] > t)

Add a summary row for str0//;

Remove the row with keyword str0;

counter[str]++;

else

counter[str]+=counter[str0];

Figure A.1: The algorithm for building a hybrid-ATIL.
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stack by the counter for p.

We now illustrate the algorithm with an example.

Example A.1. Consider building the Hybrid-ATIL with t = 2 for a Hier-ATIL with the

following indexed keywords:

• “tian//desc//”,

• “tian//desc//name//firstName//”,

• “tian//desc//name//lastName//”,

• “tian//desc//name//nickName//”,

• “tian//email//”.

After reading the first keyword, Scan pushes into the stack prefixes “tian//” and

“tian//desc//”. Since the second keyword starts with “tian//desc//”, Scan then pushes

into the stack prefixes “tian//desc//name//” and “tian//desc//name//firstName//”. Fig-

ure A.2(a) shows the stack and the counter array after processing the first two keywords.

When Scan reaches keyword “tian//desc//name//lastName//”, which does not

start with the prefix at the top of the stack (“tian//desc//name//firstName//”), it

invokes procedure Judge. Since the counter for “tian//desc//name//firstName//”

is 1, not above the threshold, Judge does not need to add a summary row

for “tian//desc//name//firstName//” and so only increases the counter for

“tian//desc//name//” by the counter for “tian//desc//name//firstName//”. It handles

the keyword “tian//desc//name//nickName//” in a similar way. Figure A.2(b)(c) shows

the stack and the counter array after processing these two keywords respectively.

When Scan reads keyword “tian//email//”, it needs to pop up prefixes

“tian//desc//name//nickName//”, “tian//desc//name//” and “tian//desc//”. When

Judge pops up “tian//desc//name//”, it finds that its counter is 3, above the thresh-

old. Judge then adds a summary row for “tian//desc//name//”, and increases the

counter of “tian//desc//” by 1. After popping up “tian//desc//”, Judge increases
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stack counter

tian//desc//name//firstName// 1

tian//desc//name// 0

tian//desc// 1

tian// 0

(a)

tian//desc//name//lastName// 1

tian//desc//name// 1

tian//desc// 1

tian// 0

(b)

tian//desc//name//nickName// 1

tian//desc//name// 2

tian//desc// 1

tian// 0

(c)

tian//desc//name// 3

tian//desc// 1

tian// 0

(d)

tian//desc// 2

tian// 0

(e)

tian// 2

(f)

Figure A.2: The stack and counter array after (a) processing keyword “tian//desc//”
and “tian//desc//name//firstName//”; (b) processing keyword “tian//desc//name// last-
Name//”; (c) processing keyword “tian//desc// name//nickName//”; (d) popping up prefix
“tian// desc//name//nickName//”; (e) popping up prefix “tian//desc//name//”; (f) pop-
ping up prefix “tian//desc//”. The difference of each sub-graph from the former one is
highlighted using the italic font.
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the counter for “tian//” by the counter for “tian//disc//”. Note that Judge updates

the counters for “tian//desc//” and “tian//” differently, because it adds a summary

row for “tian//desc//name//” but not for “tian//desc//”. Figure A.2(d)(e)(f) shows

the stack and the counter array after popping up “tian//desc//name//nickName//”,

“tian//desc//name//” and “tian//desc” respectively.

Finally, after processing all keywords, Judge is again invoked and it adds a summary

row for prefix “tian//”. �



185

Appendix B

PROOFS FROM CHAPTER 5

B.1 Proof for Theorem 5.15

Theorem 5.15. Let Q be an SPJ query and let pM be a schema p-mapping.

The problem of finding the probability for a by-tuple answer to Q with respect to pM

is #P-complete with respect to data complexity and is in PTIME with respect to mapping

complexity. �

Proof. We prove the theorem by proving three lemmas, stating that (1) the problem is in

PTIME in the size of the mapping; (2) the problem is in #P in the size of the data; (3) the

problem is #P-hard in the size of the data.

Lemma B.1. Let Q be an SPJ query and let pM be a schema p-mapping.

The problem of finding the probability for a by-tuple answer to Q with respect to pM is

in PTIME in the size of the mapping. �

Proof. We can generate all answers in three steps. Let T1, . . . , Tl be the relations mentioned

in Q’s FROM clause. Let pMi be the p-mapping associated with table Ti. Let di be the

number of tuples in the source table of pMi.

1. For each seq1 ∈ seqd1(pM1), . . . , seq
l ∈ seqdl(pMl), generate a target instance that is

consistent with the source instance and pM as follows. For each i ∈ [1, l], the target

relation Ti contains di tuples, where the j-th tuple (1) is consistent with the j-th

source tuple and the j-th mapping mj in seqi, and (2) contains null as the value of

each attribute that is not involved in mj.

2. For each target instance, answer Q on the instance. Consider only the answer tuples

that do not contain the null value and assign probability Πl
i=1Pr(seq

i) to the tuple.
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3. For each distinct answer tuple, sum up its probabilities.

According to the definition of by-tuple answers, the algorithm generates all by-tuple

answers. We now prove it takes polynomial time in the size of the mapping. Assume each

p-mapping pMi contains li mappings. Then, the number of instances generated in step 1 is

Πl
i=1l

di

i , polynomial in the size of pM . In addition, the size of each generated target instance

is linear in the size of the source instance. So the algorithm takes polynomial time in the

size of the mapping.

Lemma B.2. Let Q be an SPJ query and let pM be a schema p-mapping.

The problem of finding the probability for a by-tuple answer to Q with respect to pM is

in #P in the size of the data. �

Proof. We prove the claim by reducing the problem to answering queries on disjunctive

probabilistic databases, which is proved to be in #P [111]. Before we describe the reduction,

we first introduce probabilistic databases.

Definition B.3 (Probabilistic Database). A probabilistic database (p-database) pD over

a schema R̄ is a set {(D1, P r(D1)), . . . , (Dn, P r(Dn))}, such that

• for i ∈ [1, n], Di is an instance of R̄, and for i 6= j,Di 6= Dj ;

• Pr(Di) ∈ [0, 1] and
∑n

i=1 Pr(Di) = 1. �

Answers to queries over p-databases have probabilities associated with them. Specifi-

cally, let Q be a query over pD, and let t be a tuple. We denote by D̄(t) the subset of pD

such that for each D ∈ D̄(t), t ∈ Q(D). Let p =
∑

D∈D(t) Pr(D). If p > 0, we call (t, p) a

possible tuple in the answer of Q on pD.

Given a SPJ query Q and a p-database pD, we denote by Q(pD) the set of all possible

tuples in the answer of Q on pD. Computing Q(pD) takes polynomial time in the size of

pD.

We next define a compact representation of p-databases, called disjunctive p-database,

over which query answering is #P-complete in the size of the representation.
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Definition B.4 (Disjunctive P-Database). Let R be a relation schema where there exists a

set of attributes that together form the key of the relation. Let pD∨
R be a set of tuples of R,

each has a probability.

We say that pD∨
R is a disjunctive p-database if for each key value that occurs in pD∨

R,

the probabilities of the tuples with this key value sum up to 1. �

In a disjunctive p-database, we consider tuples with the same key value as disjoint.

Formally, let key1, . . . , keyn be the set of all distinct key values in pD∨
R. For each i ∈ [1, n],

we denote by di the number of tuples whose key value is key i. Then, pD∨
R defines a set of

Πn
i=1di possible databases. Each possible database (D,Pr(D)) contains n tuples t1, . . . , tn,

such that (1) for each i ∈ [1, n], the key value of ti is keyi; and (2) Pr(D) = Πn
i=1Pr(ti).

We now describe the reduction. We reduce the problem of query answering with respect

to probabilistic mappings to the problem of query answering on disjunctive p-databases.

The reduction proceeds as follows.

For each relation T that occurs in Q and is involved in a p-mapping pM = (S, T,m),

generate the target instance as follows. The target instance is a disjunctive p-database with

attributes in T and a key column that is the key of the relation. For the i-th tuple ts in S

and each m ∈ m, generate a target tuple tt, such that (1) for each attribute correspondence

(as, at) ∈ m, the value of at is the same as the value of as in ts; (2) for each attribute at

in T that is not involved in any attribute correspondence in m, the value of at is null; and

(3) the value of the key attribute is i. The probability of the tuple is Pr(m). Let n be

the number of tuples in T and l be the number of mappings in pM . Generating the target

instance takes time O(l · n), polynomial in the size of the data and the mapping.

Let DS be a source instance and pDT be the generated target instance. We now prove

Qtuple(DS) = Q(pD∨
T ), where we assume Q(pDT ) does not return answers containing null

values. We prove by showing that for each possible database DT of pD∨
T , there exists a

mapping sequence seq, such that Pr(DT ) = Pr(seq) and the set of tuples in Q(DT ) is the

same as the set of certain answers with respect to seq, and vice versa.

I. Suppose DT contains tuples t1, . . . , tn, where ti, i ∈ [1, n], has i as the value of key.

Then, ti is consistent with the i-th source tuple in S and some mapping in m. Let mi
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be this mapping. We then have a mapping sequence < m1, . . . ,mn >. Here, Pr(DT ) =

Πn
i=1Pr(ti) = Πn

i=1Pr(m
i) = Pr(seq).

Because DT is consistent with DS and seq, the certain answer a must also be an answer

tuple in Q(DT ). We now prove for each tuple a ∈ Q(DT ) and database D′
T that is consistent

with DS and seq, a ∈ Q(D′
T ) (so a is a certain answer with respect to seq). Suppose the

i-th tuple ti ∈ DT is involved in generating a. Because Q(pD∨
T ) does not return null values,

ti’s attributes that are not involved in mi do not contribute to generating a. Tuple t′i has

the same value with ti on all attributes that are involved in mi. Thus, we can also generate

a with t′i and a ∈ Q(D′
T ).

II. Consider a mapping sequence < m1, . . . ,mn >. Consider the possible database DT

where the i-th tuple has i as the value of key and is consistent with mi and the i-th source

tuple. Obviously, Pr(seq) = Pr(DT ). We can prove tuples in Q(DT ) are certain answers

with respect to seq in the same way as in I.

Lemma B.5. Consider the following query

Q: SELECT ‘true’

FROM T, J, T’

WHERE T.a = J.a AND J.b = T’.b

Answering Q with respect to pM is #P-hard in the size of the data. �

Proof. We prove the lemma by reducing the bipartite monotone 2-DNF problem to the above

problem.

Consider a bipartite monotone 2-DNF problem where variables can be partitioned into

X = {x1, . . . , xm} and Y = {y1, . . . , yn}, and ϕ = C1 ∨ · · · ∨ Cl, where each clause Ci has

the form xj ∧ yk, xj ∈ X, yk ∈ Y . We construct the following query-answering problem.

P-mapping: Let pM be a schema p-mapping containing pM and pM ′. Let pM =

(S, T,m) be a p-mapping where S =< a >, T =< a′ > and

m = {({(a, a′)}, .5), (∅, .5)}.
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Let pM ′ = (S′, T ′,m′) be a p-mapping where S′ =< b >, T ′ =< b′ > and

m′ = {({(b, b′)}, .5), (∅, .5)}.

Source data: The source relation S contains m tuples: x1, . . . , xm. The source relation S′

contains n tuples: y1, . . . , yn. The relation J contains l tuples. For each clause Ci = xj ∧yk,

there is a tuple (xj , yk) in J .

Obviously the construction takes polynomial time. We now prove the answer to the query

is tuple true with probability #ϕ
2m+n , where #ϕ is the number of variable assignments that

satisfy ϕ. We prove by showing that for each variable assignment vx1, . . . , vxm, vy1, . . . , vyn

that satisfies ϕ, there exists a mapping sequence seq such that true is a certain answer with

respect to seq and the source instance, and vice versa.

For each variable assignment vx1, . . . , vxm, vy1, . . . , vyn that satisfies ϕ, there must exist

j and k such that vxj =true, vyk =true, and there exists Ci = xj ∧yk in ϕ. We construct the

mapping sequence for pM such that for each j ∈ [1,m], if vxj =true, mj = ({(a, a′)}, .5),

and if vxk =false, mj = (∅, .5). We construct the mapping sequence for pM ′ such that for

each k ∈ [1, n], if vyk =true, m′k = ({(b, b′)}, .5), and if vyk =false, m′k = (∅, .5). Any target

instance that is consistent with the source instance and {seq, seq′} contains xj in T and yk

in T ′. Since Ci ∈ ϕ, J contains tuple (xj , yk) and so true is a certain answer.

For each mapping sequence seq for pM and seq′ for pM ′, if true is a certain answer, there

must exist j ∈ [1,m] and k ∈ [1, n], such that xj is in any target instance that is consistent

with S and seq, yk is in any target instance that is consistent with S′ and seq′, and there

exists a tuple (xj , yk) in J . Thus, mj ∈ seq must be ({(a, a′)}, .5) and m′k ∈ seq′ must be

({(b, b′)}, .5). We construct the assignments vx1, . . . , vxm, vy1, . . . , vyn as follows. For each

j ∈ [1,m], if we have mj = ({(a, a′)}, .5) in seq, xj =true; otherwise, xj =false. For each

k ∈ [1, n], if mk = ({(b, b′)}, .5) in seq, yk =true; otherwise, yk =false. Obviously, the values

of xj and yk are true, ϕ contains a term xj ∧ yk, and so ϕ is satisfied.

Counting the number of variable assignments that satisfy a bipartite monotone 2DNF

boolean formula is #P-complete. Thus, answering query Q is #P-hard.

Note that in Lemma B.5 Q contains two joins. Indeed, as stated in the following con-

jecture, we suspect that even for a query that contains a single join, query answering is also
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#P-complete. The proof is still an open problem.

Conjecture B.6. Let pM be a schema p-mapping containing pM and pM ′. Let pM =

(S, T,m) be a p-mapping where S =< a, b >, T =< c > and

m = {({(a, c)}, .5), ({(b, c)}, .5)}.

Let pM ′ = (S′, T ′,m′) be a p-mapping where S′ =< d >, T ′ =< e > and

m′ = {({(d, e)}, .5), (∅, .5)}.

Consider the following query

Q: SELECT ‘true’

FROM T1, T2

WHERE T1.c=T2.e

Answering Q with respect to pM is #P-hard in the size of the data.

B.2 Proofs for Other Results in Chapter 5

Theorem 5.12. Let pM be a schema p-mapping and let Q be an SPJ query.

Answering Q with respect to pM in by-table semantics is in PTIME in the size of the

data and the mapping. �

Proof. It is trivial that Algorithm ByTable computes all by-table answers. We now con-

sider its time complexity by examining the time complexity of each step.

Step 1: Assume for each target relation Ti, i ∈ [1, l], the involved p-mapping contains ni

possible mappings. Then, the number of reformulated queries is Πl
i=1ni, polynomial in the

size of the mapping.

Given the restricted class of mappings we consider, we can reformulate the query as

follows. For each of Ti’s attributes t, if there exists an attribute correspondence (S.s, T.t) in

mi, we replace t everywhere with s; otherwise, the reformulated query returns empty result.
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Let |Q| be the size of Q. Thus, reformulating a query takes time O(|Q|), and the size of the

reformulated query does not exceed the size of Q.

Therefore, Step 1 takes time O(Πl
i=1ni · |Q|), which is polynomial in the size of the

p-mapping and does not depend on the size of the data.

Step 2: Answering each reformulated query takes polynomial time in the size of the data

and the number of answer tuples is polynomial in the size of the data. Because there are

polynomial number of answer tuples and each occurs in the answers of no more than Πl
i=1ni

queries, summing up the probabilities for each answer tuple takes time O(Πl
i=1ni). Thus,

Step 2 takes polynomial time in the size of the mapping and the data.

Theorem 5.13. Let pGM be a general p-mapping between a source schema S̄ and a target

schema T̄ . Let DS be an instance of S̄. Let Q be an SPJ query with only equality conditions

over T̄ .

The problem of computing Qtable(DS) with respect to pGM is in PTIME in the size of

the data and the mapping. �

Proof. We proceed in two steps to return all by-table answers. In the first step, for each

gmi, i ∈ [1, n], we answer Q according to gmi on DS . The certain answer with regard to

gmi has probability Pr(gmi). SPJ queries with only equality conditions are conjunctive

queries. According to [2], we can return all certain answers in polynomial time in the size

of the data, and the number of certain answers is polynomial in the size of the data. Thus,

the first step takes polynomial time in the size of the data and the mapping.

In the second step, we sum up the probabilities of each answer tuple. Because there

are a polynomial number of answer tuples and each occurs in the answers of no more than

n reformulated queries, this step takes polynomial time in the size of the data and the

mapping.

Lemma 5.17. Let pM be a schema p-mapping. Let Q be an SPJ query and Qm be Q’s

mirror query with respect to pM . Let DS be the source database and DT be the mirror

target of DS with respect to pM .

Then, t ∈ Qtuple(DS) if and only if t ∈ Qm(DT ) and t does not contain null value. �



192

Proof. If: We prove t ∈ Qtuple(DS) by showing that we can construct a mapping sequence

seq such that for each target instance D′
T that is consistent with DS and seq, t ∈ Q(D′

T ).

Assume query Q (and so Qm) contains n subgoals (i.e., occurrences of tables in the FROM

clause). Assume we obtain t by joining n tuples t1, . . . , tn ∈ DT , each in the relation of a

subgoal. Consider a relation R that occurs in Q. Assume tk1
, . . . , tkl

, (k1, . . . , kl ∈ [1, n])

are tuples of R (for different subgoals). Let pM ∈ pM be the p-mapping where R is the

target and let S be the source relation of pM . For each j ∈ [1, l], we denote the id value of

tkj
by tkj

.id, and the mapping value of tkj
by tkj

.mapping. Then, tkj
is consistent with the

tkj
.id-th source tuple in S and the mapping tkj

.mapping.

We construct the mapping sequence of R for seq as follows: (1) for each j ∈ [1, l], the

mapping for the tkj
.id-th tuple is tkj

.mapping; (2) the rest of the mappings are arbitrary

mappings in pM . To ensure the construction is valid, we need to prove that all tuples with

the same id value have the same mapping value. Indeed, for every j, h ∈ [1, l], j 6= h, because

tkj
and tkh

satisfy the predicate (R1.id <> R2.id OR R1.mapping=R2.mapping) in Qm, if

tkj
.id=tkh

.id then tkj
.mapping=tkh

.mapping.

We now prove for each target instanceD′
T that is consistent with DS and seq, t ∈ Q(D′

T ).

For each ti, i ∈ [1, n], we denote by t′i the tuple in D′
T that is consistent with the ti.id-th

source tuple and the ti.mapping mapping. We denote by R(ti), i ∈ [1, n], the subgoal that

ti belongs to. By the definition of mirror target and also because t does not contain null

value, for each attribute of R(ti) that is involved in Q, ti has non-null value, and so they

are involved in the mapping ti.mapping. Thus, t′i has the same value for these attributes.

So t can be obtained by joining t′1, . . . , t
′
n and t ∈ Q(D′

T ).

Only if: t ∈ Qtuple(DS), so there exists a mapping sequence seq, such that for each D′
T

that is consistent with DS and seq, t ∈ Q(D′
T ). Consider such a D′

T . Assume t is obtained

by joining tuples t1, . . . , tn ∈ D′
T , and for each i ∈ [1, n], ti is a tuple of subgoal Ri. Assume

ti is consistent with source tuple si and mi. We denote by t′i the instance in DT whose id

value refers to si and mapping value refers to mi. Let Āi be the set of attributes of the

subgoal Ri that are involved in the query. Since t is a “certain answer”, all attributes in Āi

must be involved in mi. Thus, ti and t′i have the same value for these attributes, and all

predicates in Q hold on t′1, . . . , t
′
n.
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Because D′
T is consistent with DS , for every pair of tuples ti and tj, i, j ∈ [1, n], of

the same relation, ti and tj are either consistent with different source tuples in DS , or are

consistent with the same source tuple and the same possible mapping. Thus, predicate R1.id

<> R2.id OR R1.mapping=R2.mapping in the mirror query must hold on t′i and t′j . Thus,

t ∈ Qm(DT ).

Theorem 5.16: Given an SPJ query and a schema p-mapping, returning all by-tuple

answers without probabilities is in PTIME with respect to data complexity. �

Proof. According to the previous lemma, we can generate all by-tuple answers by answering

the mirror query on the mirror target. The size of the mirror target is polynomial in the

size of the data and the size of the p-mapping, so answering the mirror query on the mirror

target takes polynomial time.

Lemma 5.19. Let pM be a schema p-mapping between S̄ and T̄ . Let Q be a non-p-join

query over T̄ and let DS be an instance of S̄. Let (t, Pr(t)) be a by-tuple answer with

respect to DS and pM . Let T̄ (t) be the subset of T(DS) such that for each D ∈ T̄ (t),

t ∈ Qtable(D). The following two conditions hold:

1. T̄ (t) 6= ∅;

2. Pr(t) = 1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p). �

Proof. We first prove (1). Let T be the relation in Q that is the target of a p-mapping and

let pM be the p-mapping. Let seq be the mapping sequence for pM with respect to which t

is a by-tuple answer. Because Q is a non-p-join query, there is no self join over T . So there

must exist a target tuple, denoted by tt, that is involved in generating t. Assume this target

tuple is consistent with the i-th source tuple and a possible mapping m ∈ pM . We now

consider the i-th tuple database Di in T(DS). There is a target database that is consistent

with Di and m, and the database also contains the tuple tt. Thus, t is a by-table answer

with respect to Di and m, so Di ∈ T̄ (t) and T̄ (t) 6= ∅.
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We next prove (2). We denote by m̄(Di) the set of mappings in m, such that for each

m ∈ m̄(Di), t is a certain answer with respect to Di and m. For the by-table answer (t, pi)

with respect to Di, obviously pi =
∑

m∈m̄(Di)
Pr(m).

Let d be the number of tuples in DS . Now consider a sequence seq =< m1, . . . ,md >.

As far as there exists i ∈ [1, d], such that mi ∈ m̄(Di), t is a certain answer with

respect to DS and seq . The probability of all sequences that satisfy the above con-

dition is 1 − Πd
i=1(1 −

∑

m∈m̄(Di)
Pr(m)) = 1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p). Thus,

Pr(t) = 1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p).

Theorem 5.21. Let pM be a schema p-mapping and let Q be a non-p-join query with

respect to pM .

Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the

data and the mapping. �

Proof. We first prove Algorithm NonPJoin generates all by-tuple answers. According to

Lemma 5.19, we should first answer Q on each tuple database, and then compute the proba-

bilities for each answer tuple. In Algorithm NonPJoin, since we introduce the id attribute

and return its values, Step 2 indeed generates by-tuple answers for all tuple databases.

Finally, Step 3 computes the probability according to (2) in the lemma.

We next prove Algorithm NonPJoin takes polynomial time in the size of the data and

the size of the mapping. Step 1 goes through each possible mapping to add one more

correspondence and thus takes linear time in the size of the mapping. In addition, the

size of the revised mapping is linear in the size of the original mapping. Since Algorithm

ByTable takes polynomial time in the size of the data and the mapping, so does Step 2 in

Algorithm NonPJoin; in addition, the size of the result is polynomial in the size of the data

and the mapping. Step 3 of the algorithm goes over each result tuple generated from Step

2, doing the projection and computing the probabilities according to the formula, so takes

linear time in the size of the result generated from Step 2, and so takes also polynomial

time in the size of the data and the mapping.

Lemma 5.25. Let pM be a schema p-mapping. Let Q be a projected p-join query with
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respect to pM and let J̄ be a maximal p-join partitioning of Q. Let QJ1, . . . , QJn be the

p-join components of Q with respect to J̄ .

For any instance DS of the source schema of pM and result tuple t ∈ Qtuple(DS), the

following two conditions hold:

1. For each i ∈ [1, n], there exists a single tuple ti ∈ Qtuple
Ji (DS), such that t1, . . . , tn

generate t when joined together.

2. Let t1, . . . , tn be the above tuples. Then Pr(t) = Πn
i=1Pr(ti). �

Proof. We first prove (1). The existence of the tuple is obvious. We now prove there

exists a single such tuple for each i ∈ [1, n]. A join component returns all attributes that

occur in Q and the join attributes that join partitions. The definition of maximal p-join

partitioning guarantees for every two partitions, they are joined only on attributes that

belong to relations involved in p-mappings. A projected-p-join query returns all such join

attributes, so all attributes returned by the join component are also returned by Q. Thus,

every two different tuples in the result of the join component lead to different query results.

We now prove (2). Since a partition in a join component contains at most one subgoal

that is the target of a p-mapping in pM , each p-join component is a non-p-join query. For

each i ∈ [1, n], let seqi be the mapping sequences with respect to which ti is a by-tuple

answer. Obviously, Pr(ti) =
∑

seq∈seqi
Pr(seq).

Consider choosing a set of mapping sequences S̄ = {seq1, . . . , seqn}, where seq i ∈ seqi

for each i ∈ [1, n]. Obviously, t is a certain answer with respect to S̄. Because choosing

different mapping sequences for different p-mappings are independent, the probability of S̄

is Πn
i=1Pr(seq i). Thus, we have

Pr(t) =
∑

seq1∈seq1,...,seqn∈seqn

Πn
i=1Pr(seq i)

= Πn
i=1

∑

seqi∈seqi

Pr(seq i)

= Πn
i=1Pr(ti)

This proves the claim.
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Theorem 5.27. Let pM be a schema p-mapping and let Q be a projected-p-join query

with respect to pM .

Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the

data and the mapping. �

Proof. We first prove Algorithm ProjectedPJoin generates all by-tuple answers for

projected-p-join queries. First, it is trivial to verify that the partitioning generated by

step 1 satisfies the two conditions of a p-join partitioning and is maximal. Then, step 2 and

step 3 compute the probability for each by-tuple answer according to Lemma 5.25.

We next prove it takes polynomial time in the size of the mapping and in the size of

the data. Step 1 takes time polynomial in the size of the query, and is independent of the

size of the mapping and the data. The number of p-join components is linear in the size of

the query and each is smaller than the original query. Since Algorithm NonPJoin takes

polynomial time in the size of the data and the size of the mapping, Step 2 takes polynomial

time in the size of the mapping and the size of the data too, and the size of each result is

polynomial in size of the data and the mapping. Finally, joining the results from Step 2

takes polynomial time in the size of the results, and so also polynomial in the size of the

data and the mapping.

Theorem 5.30. Let gpM be a schema group p-mapping and let Q be an SPJ query. The

mapping complexity of answering Q with respect to gpM in both by-table semantics and

by-tuple semantics is in PTIME. �

Proof. We first consider by-table semantics and then consider by-tuple semantics. For each

semantics, we prove the theorem by first describing the query-answering algorithm, then

proving the algorithm generates the correct answer, and next analyzing the complexity of

the algorithm.

By-table semantics: I. First, we describe the algorithm that we answer query Q with

respect to the group p-mapping gpM . Assume Q’s FROM clause contains relations T1, . . . , Tl.

For each i ∈ [1, l], assume Ti is involved in group p-mapping gpMi, which contains gi groups
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(if Ti is not involved in any group p-mapping, we assume it is involved in an identity p-

mapping that corresponds each attribute with itself). The algorithm proceeds in five steps.

Step 1. We first partition all target attributes for T1, . . . , Tl as follows. First, initialize each

partition to contain attributes in one group (there are
∑l

i=1 gi groups). Then, for each pair

of attributes a1 and a2 that occur in the same predicate in Q, we merge the two groups

that t1 and t2 belong to. We call the result partitioning an independence partitioning with

respect to Q and gpM .

Step 2. For each partition p in an independence partitioning, if p contains attributes that

occur in Q, we generate a sub-query of Q as follows. (1) The SELECT clause contains all

variables in Q that are included in p, and an id column for each relation that is involved in

p (we assume each tuple contains an identifier column id; in practice, we can use the key

attribute of the tuple in place of id); (2) The FROM clause contains all relations that are

involved in p; and (3) The WHERE clause contains only predicates that involve attributes in

p. The query is called the independence query of p and is denoted by Q(p).

Step 3. For each partition p, let pM1, . . . , pMn be the p-mappings for the group of attributes

involved in p. For each m1 ∈ pM1, . . . ,m
n ∈ pMn, rewrite Q(p) regarding m1, . . . ,mn and

answer the rewritten query on the source data. For each returned tuple, assign Πn
i=1m

i as

the probability and add n columns mapping1, . . . , mappingn, where the column mappingi, i ∈

[1, n], has the identifier for mi as the value. Union all result tuples.

Step 4. Join the results of the sub-queries on the id attributes. Assume the result tuple t is

obtained by joining t1, . . . , tk, then Pr(t) = Πk
i=1Pr(tk).

Step 5. For tuples that have the same values, assuming to be tuple t, for attributes on Q’s

returned attributes but different values for the mapping attributes, sum up their probabilities

as the probability for the result tuple t.

II. We now prove the algorithm returns the correct by-table answers. For each result

answer tuple a, we should add up the probabilities of the possible mappings with respect

to which a is generated. This is done in Step 5. So we only need to show that given a

specific combination of mappings, the first four steps generate the same answer tuples as

with normal p-mappings. The partitioning in Step 1 guarantees that different independence

queries involve different p-mappings and so Step 2 and 3 generate the correct answer for



198

each independence query. Step 4 joins results of the sub-queries on the id attributes; thus,

for each source tuple, the first four steps generate the same answer tuple as with normal

p-mappings. This proves the claim.

III. We next analyze the time complexity of the algorithm. The first two steps take

polynomial time in the size of the mapping and the number of sub-queries generated by Step

2 is polynomial in the size of the mapping. Step 3 answers each sub-query in polynomial

time in the size of the mapping and the result is polynomial in the size of the mapping.

Step 4 joins a set of results from Step 3, where the number of the results and the size of

each result is polynomial in the size of the mapping, so it takes polynomial time in the size

of the mapping too and the size of the generated result is also polynomial in the size of the

mapping. Finally, Step 5 takes polynomial time in the size of the result generated in Step

4 and so takes polynomial time in the size of the mapping. This proves the claim.

By-tuple semantics: First, we describe the algorithm that we answer queryQ with respect

to the group p-mapping gpM . The algorithm proceeds in five steps and the first two steps

are the same as in by-table semantics.

Step 3. For each partition p, let pM1, . . . , pMn be the p-mappings for the group of attributes

involved in p. For each mapping sequence seq over pM1, . . . , pMn, answer Q(p) with respect

to seq in by-tuple semantics. For each returned tuple, assign Pr(seq) as the probability and

add a column seq with an identifier of seq as the value.

Step 4. Join the results of the sub-queries on the id attributes. Assume the result tuple t is

obtained by joining t1, . . . , tk, then Pr(t) = Πk
i=1Pr(tk).

Step 5. Let t1, . . . , tn be the tuples that have the same values, tuple t, for attributes on Q’s

returned attributes but different values for the seq attributes, sum up their probabilities as

the probability for the result tuple t.

We can verify the correctness of the algorithm and analyze the time complexity in the

same way as in by-table semantics.

Proposition 5.31. For each n ≥ 1, Mn+1
ST ⊂ Mn

ST . �

Proof. We first prove for each n ≥ 1, Mn+1
ST ⊆ Mn

ST , and then prove there exists an instance

in Mn
ST that does not have an equivalent instance in Mn+1

ST .
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(1) We prove Mn+1
ST ⊆ Mn

ST by showing for each (n+ 1)-group p-mapping we can find

a n-group p-mapping equivalent to it. Consider an instance gpM = (S, T, pM ) ∈ Mn+1
ST ,

where pM = {pM1, . . . , pMn+1}. We show how we can construct an instance gpM ′ ∈ Mn
ST

that is equivalent to gpM . Consider merging pM1 = (S1, T1,m1) and pM2 = (S2, T2,m2)

and generating a probabilistic mapping pM1−2 = (S1 ∪ S2, T1 ∪ T2,m1−2), where m1−2

includes the Cartesian product of the mappings in m1 and m2. Consider the n-group p-

mapping gpM ′ = (S, T, pM ′), where pM ′ = {pM1−2, pM3, . . . , pMn+1}. Then, gpM and

gpM ′ describe the same mapping.

(2) We now show how we can construct an instance in Mn
ST that does not have an equiv-

alent instance in Mn+1
ST . If S and T contain less than n attributes, Mn

ST = ∅ and the claim

holds. Otherwise, we partition attributes in S and T into {{s1}, . . . , {sn−1}, {sn, . . . , sm}}

and {{t1}, . . . , {tn−1}, {tn, . . . , tl}}. Without losing generality, we assume m ≤ l. For each

i ∈ [1, n − 1], we define

mi = {({(si, ti)}, 0.8), (∅, 0.2)}.

In addition, we define

mn = {({(sn, tn)},
1

(m− n+ 1)
), . . . , ({(sm, tn)},

1

(m− n+ 1)
)}.

We cannot further partition S into n + 1 subsets such that attributes in different subsets

correspond to different attributes in T . Thus, we cannot find a (n + 1)-group p-mapping

equivalent to it.

Theorem 5.32. Given a p-mapping pM = (S, T,m), we can find in polynomial time in the

size of pM the maximal n and an n-group p-mapping gpM , such that gpM is equivalent to

pM . �

Proof. We prove the theorem by first presenting an algorithm that finds the maximal n and

the equivalent n-group p-mapping gpM , then proving the correctness of the algorithm, and

next analyzing its time complexity.

I. We first present the algorithm that takes a p-mapping pM = (S, T,m), finds the

maximal n and the n-group p-mapping that is equivalent to pM .
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Step 1. First, partition attributes in S and T . Initialize the partitions such that each

contains a single attribute in S or T . Then for each attribute correspondence (s, t) occurring

in a possible mapping, if s and t are in different partitions, merge the two partitions. Let

P = {p1, . . . , pn} be the result partitioning.

Step 2. For each partition pi, i ∈ [1, n], and each m ∈ m, select the correspondences in m

that involve only attributes in pi, use them to construct a sub-mapping, and assign Pr(m)

to the sub-mapping. We compute the marginal probability of each sub-mapping.

Step 3. For each partition pi, i ∈ [1, n], examine if its possible mappings are independent of

the possible mappings for the rest of the partitions. Specifically, for each partition pj , j > i,

if there exists a possible mapping m for pi and a possible mapping m′ for pj, such that

Pr(m|m′) 6= Pr(m), merge pi into pj. For the new partition pj , update its possible sub-

mappings and their marginal probabilities. Step 3 generates a set of partitions, each with

a set of sub-mappings and their probabilities.

Step 4. Each partition generated in Step 3 is associated with a p-mapping. The set of all

p-mappings forms the group p-mapping gpM that is equivalent to pM .

II. We now prove the correctness of the algorithm. It is easy to prove gpM is equivalent to

pM . Assume gpM is an n-group p-mapping. We next prove n is maximal. Consider another

group p-mapping gpM ′. We now prove for each p-mapping in gpM ′, it either contains all

attributes in a partition generated in Step 3 or contains none of them. According to the

definition of group p-mapping, each p-mapping in gpM ′ must contain either all attributes

or none of the attributes in a partition in P. In addition, every two partitions in P that are

merged in Step 3 are not independent and have to be in the same p-mapping in gpM ′ too.

This proves the claim.

III. We next consider the time complexity of the algorithm. Let m be the number of

mappings in pM , and a be the minimum number of attributes in R and in S. Step 1

considers each attribute correspondence in each possible mapping. A mapping contains no

more than a attribute correspondences, so Step 1 takes time O(ma). Step 2 considers each

possible mapping for each partition to generate sub-mappings. The number of partitions

cannot exceed a, so Step 2 also takes time O(ma). Step 3 considers each pair of partitions.

and takes time O(ma2). Finally, Step 4 outputs the results and takes time O(ma). Overall,
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the algorithm takes time O(ma2), which is polynomial in the size of the full-distribution

instance.

Theorem 5.36. Let pC be a schema p-correspondence, and Q be an SPJ query. Then,

Q is p-mapping independent with respect to pC if and only if for each pC ⊆ pC, Q is a

single-attribute query with respect to pC. �

Proof. We prove for the case when there is a single p-correspondence in pC and it is easy

to generalize our proof to the case when there are multiple p-correspondences in pC.

If: Let pM1 and pM2 be two p-mappings over S and T where pC(pM1) = pC(pM2). Let

DS be a database of schema S. Consider a query Q over T . Let tj be the only attribute

involved in query Q. We prove Q(DS) is the same with respect to pM1 and pM2 in both

by-table and by-tuple semantics.

We first consider by-table semantics. Assume S has n attributes s1, . . . , sn. We partition

all possible mappings in pM1 into m̄0, . . . , m̄n, such that for any m ∈ m̄i, i ∈ [1, n], m maps

attribute si to tj, and for any m ∈ m̄0, m does not map any attribute in S to tj. Thus, for

each i ∈ [1, n], P r(m̄i) = Pr(cij).

Consider a tuple t. Assume t is an answer tuple with respect to a subset of possible

mappings m̄ ⊆ m. Because Q contains only attribute tj, for each i ∈ [0, n], either m̄i ⊆ m̄

or m̄i ∩ m̄ = ∅. Let m̄k1
, . . . , m̄kl

, k1, . . . , kl ∈ [0, n], be the subsets of m̄ such that m̄kj
⊆ m̄

for any j ∈ [1, l]. We have

Pr(t) =

l
∑

i=1

Pr(m̄ki
) =

l
∑

i=1

Pr(ckij).

Now consider pM2. We partition its possible mappings in the same way and obtain

m̄′
0, . . . , m̄

′
n. Since Q contains only attribute tj, for each i ∈ [0, n], the result of Q with

respect to m′ ∈ m̄′
i is the same as the result with respect to m ∈ m̄i. Therefore, the

probability of t with respect to pM2 is

Pr(t)′ =

l
∑

i=1

Pr(m̄′
ki

) =

l
∑

i=1

Pr(ckij).

Thus, Pr(t) = Pr(t)′ and this proves the claim.
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We can prove the claim for by-tuple semantics in a similar way where we partition

mapping sequences. We omit the proof here.

Only if: We prove by showing that for every query Q that contains more than one attribute

in a relation being involved in a p-correspondence, there exist p-mappings pM1 and pM2

and source instance DS , such that Q(DS) obtains different results with respect to pM1 and

pM2.

Assume query Q contains attributes a′ and b′ of T . Consider two p-mappings pM1 and

pM2, where

pM1 = {({(a, a′), (b, b′)}, .5), ({(a, a′)}, .3), ({(b, b′)}, .2)}

pM2 = {({(a, a′), (b, b′)}, .6), ({(a, a′)}, .2), ({(b, b′)}, .1), (∅, .1)}

One can verify that pC(pM1) = pC(pM2).

Consider a database DS , such that for each tuple of the source relation in pM1 and

pM2, the values for attributes a and b satisfy the predicates in Q. Since only when the

possible mapping {(a, a′), (b, b′)} is applied can we generate valid answer tuples, but the

possible mapping {(a, a′), (b, b′)} has different probabilities in pM1 and pM2, Q(DS) obtains

different results with respect to pM1 and pM2 in both semantics.

Corollary 5.38. Let pC be a schema p-correspondence, and Q be a p-mapping independent

SPJ query with respect to pC. The mapping complexity of answering Q with respect to pC

in both by-table semantics and by-tuple semantics is in PTIME. �

Proof. By-table: We revise algorithm By-Table, which takes polynomial time in the size

of the schema p-mapping, to compute answers with respect to schema p-correspondences.

At the place where we consider a possible mapping in the algorithm, we revise to consider

a possible attribute correspondence. Obviously the revised algorithm generates the correct

by-table answers and takes polynomial time in the size of the mapping.

By-tuple: We revise the algorithm in the proof of Theorem 5.15, which takes polynomial

time in the size of the schema p-mapping, to compute answers with respect to schema p-

correspondences. Everywhere we consider a possible mapping in the algorithm, we revise
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to consider a possible attribute correspondence. Obviously the revised algorithm generates

the correct by-tuple answers and takes polynomial time in the size of the mapping.

Theorem 5.40. There exists a schema p-mapping pM and a query Q, such that answering

Q with respect to pM in by-table semantics takes exponential time in size of pM ’s Bayes-Net

representation. �

Proof. Consider pM in Example 5.39. Consider the following query:

SELECT t1, ..., tn

FROM T

Consider a source instance DS with one tuple, where each attribute value in the tuple is

distinct. There are 2n tuples in Qtable(DS). To enumerate all these answers takes time

O(2n), which is exponential in the size of pM ’s Bayes-Net representation.

Theorem 5.41. Let pCM be a schema probabilistic complex mapping between schemas S̄

and T̄ . Let DS be an instance of S̄. Let Q be an SPJ query over T̄ . The data complexity and

mapping complexity of computing Qtable(DS) with respect to pCM are PTIME. The data

complexity of computing Qtuple(DS) with respect to pCM is #P-complete. The mapping

complexity of computing Qtuple(DS) with respect to pCM is in PTIME. �

Proof. We prove the theorem by showing that we can construct a normal schema p-

mapping from pCM and answer a query with respect to the normal p-mapping. For each

pCM ∈ pCM between source S(s1, . . . , sm) and target T (t1, . . . , tn), we construct a normal

p-mapping pM = (S′, T ′,m) as follows. The source S′ contains all elements of the power

set of {s1, . . . , sm} and the target T ′ contains all elements of the power set of {t1, . . . , tn}.

For each complex mapping cm ∈ pCM , we construct a mapping m such that for each set

correspondence between S and T in cm, m contains an attribute correspondence between

the corresponding sets in S′ and T ′. Because each attribute occurs in one correspondence

in cm, m is a one-to-one mapping. The result pM contains the same number of possible

mappings and each mapping contains the same number of correspondences as pCM . We

denote the result schema p-mapping by pM . Query answering with respect to pCM gets
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the same result as with respect to pM and so the complexity results for normal schema

p-mappings carry over.

Theorem 5.42. Let cpM be a schema conditional p-mapping between S̄ and T̄ . Let DS

be an instance of S̄. Let Q be an SPJ query over T̄ . The problem of computing Qtuple(DS)

with respect to cpM is in PTIME in the size of the mapping and #P-complete in the size

of the data. �

Proof. By-tuple query answering with respect to schema conditional p-mappings is essen-

tially the same as that with respect to normal p-mappings, where for each source tuple, we

first decide which condition it satisfies and then consider applying possible mappings asso-

ciated with that condition. Thus, the complexity of by-tuple query-answering with respect

to normal schema p-mappings carries over.
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