
Incremental Record Linkage

Anja Gruenheid
ETH Zurich

anja.gruenheid@inf.ethz.ch

Xin Luna Dong
Google Inc.

lunadong@google.com

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

ABSTRACT
Record linkage clusters records such that each cluster corresponds
to a single distinct real-world entity. It is a crucial step in data
cleaning and data integration. In the big data era, the velocity of
data updates is often high, quickly making previous linkage results
obsolete. This paper presents an end-to-end framework that can
incrementally and efficiently update linkage results when data up-
dates arrive. Our algorithms not only allow merging records in
the updates with existing clusters, but also allow leveraging new
evidence from the updates to fix previous linkage errors. Exper-
imental results on three real and synthetic data sets show that our
algorithms can significantly reduce linkage time without sacrificing
linkage quality.

1. INTRODUCTION
Record linkage (surveyed in [8]) clusters database records such

that each cluster corresponds to a single distinct real-world entity
(e.g., a business, a person). It is a crucial step in data cleaning
and data integration. The big data era raises two challenges for
record linkage. First, the volume of data is often huge and applying
record linkage usually takes a long time. Second, the velocity of
data updates is often high, quickly making previous linkage results
obsolete. These challenges call for an incremental strategy, such
that we can quickly update linkage results when data updates arrive.
There are two goals for incremental linkage. First, we wish that the
incremental approach obtains the same or very similar results as
applying batch linkage. Second, we wish to conduct incremental
linkage significantly faster than batch linkage.

A natural thought for incremental linkage is that for each inserted
record, we compare it with existing clusters, then either put it into
an existing cluster (i.e., referring to an already known entity), or
create a new cluster for it (i.e., referring to a new entity). However,
every linkage algorithm may make mistakes and the extra informa-
tion from the data updates can often help us identify and fix such
mistakes, as we illustrate next with an example.

EXAMPLE 1.1. Figure 1(a) shows a set of 10 business records
that represent 5 businesses. For the purpose of illustration, we com-
pute pairwise similarity in a simple way: we compare (1) name,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 9
Copyright 2014 VLDB Endowment 2150-8097/14/05.

(2) street address excluding house number, (3) house number in
street address, (4) city, and (5) phone; the similarity is 1 if all
five values are the same, .9 if four are the same, .8 if three are the
same, and 0 otherwise. Figure 1(b) shows the similarity graph be-
tween the records, where each node represents a record and each
edge represents the pairwise similarity. It also shows the results of
correlation clustering (we describe it in Section 2) as the linkage
result. Note that it wrongly clusters r4 with r1 − r3 because of the
wrong phone number from r4 (in italics); it fails to merge r5 and
r6 because of the missing information in r6; and it wrongly merges
r9 with r7 − r8 instead of with r10, because r9 appears similar to
r7− r8 while r10 does not (different name, different house number,
and missing phone).

Now consider four updates ∆D1 − ∆D4 (Figure 2(a)); they
together insert records r11 − r17. Figure 3 shows the updated sim-
ilarity graph and the results of the aforementioned naive approach.
It creates a new cluster for r11 as it is different from any existing
record, and adds the rest of the inserted records to existing clusters.

However, a more careful analysis of the inserted nodes allows
fixing some previous mistakes and obtaining a better clustering
(shown in Figure 2(b)). First, because r12 − r13 are similar both
to r5 and to r6, they provide extra evidence to merge r5 and r6.
Second, when we consider r1 − r4, r14 − r15 jointly, we find that
r1 − r3, r14 − r15 are very similar, but r4 is different from most
of them, suggesting moving r4 out. Third, with r16 − r17, r9 ap-
pears to be more similar to r10 and r16 than to r7− r8, suggesting
moving r9 from C4 to C5. 2

Incremental record linkage has been studied before in [12, 13],
where the main focus is the case when the matching rules evolve
over time. In [13] the authors briefly discussed the case of evolving
data and identified a general incremental condition under which
incremental linkage can be easily carried out using the batch link-
age method. This condition requires that for any arbitrary subset of
records and its batch clustering results, if we treat each of the rest
of the records as a singleton cluster and apply the same algorithm
on all of the resulting clusters, we obtain exactly the same results
as we apply the algorithm directly on all singleton clusters. As an
example, agglomerative clustering, which iteratively merges simi-
lar clusters, is general incremental. However, not many clustering
algorithms satisfy this condition. For example, the aforementioned
naive approach that iteratively adds each record into an existing
clustering is order-dependent, so does not satisfy this condition.
Moreover, many clustering algorithms, such as correlation cluster-
ing (we shall explain it soon), operate on records rather than subsets
of records, so the batch algorithm cannot directly apply on previ-
ous clustering results. In this paper we ask two questions. First, in
case the batch linkage algorithm is not general incremental, can we
do better than just conducting linkage from scratch? Second, how

BizID ID name street address city phone
B1 r1 Starbucks 123 MISSION ST STE ST1 SAN FRANCISCO 4155431510
B1 r2 Starbucks 123 MISSION ST SAN FRANCISCO 4155431510
B1 r3 Starbucks 123 Mission St San Francisco 4155431510
B2 r4 Starbucks Coffee 340 MISSION ST SAN FRANCISCO 4155431510

D0
B3 r5 Starbucks Coffee 333 MARKET ST SAN FRANCISCO 4155434786
B3 r6 Starbucks MARKET ST San Francisco
B4 r7 Starbucks Coffee 52 California St San Francisco 4153988630
B4 r8 Starbucks Coffee 52 CALIFORNIA ST SAN FRANCISCO 4153988630
B5 r9 Starbucks Coffee 295 California St San Francisco 4159862349
B5 r10 Starbucks 295 California St San Francisco

(a)

.8
.8

.9
.9

1

C1

r2

r1

r4

r3
r5

C2
r6

C3 .8
r9

.8 .8

1

r7

r8

r10

C4

C5

(b)

Figure 1: Original business listings and record linkage results.

BizID ID name street address city phone
∆D1 B6 r11 Starbucks Coffee 201 Spear Street San Francisco 4159745077

∆D2
B3 r12 Starbucks Coffee MARKET ST San Francisco 4155434786
B3 r13 Starbucks 333 MARKET ST San Francisco 4155434786

∆D3
B1 r14 Starbucks 123 MISSION ST STE ST1 SAN FRANCISCO 4155431510
B1 r15 Starbucks 123 Mission St Ste St1 San Francisco 4155431510

∆D4
B5 r16 Starbucks 295 CALIFORNIA ST SAN FRANCISCO 4159862349
B4 r17 Starbucks 52 California Street SF 4153988630

(a)

.8
.8

.9 .9

1

C1’’

r2

r4

r3

r6

.8
r9 .8

.8

1

r7

r8

r10
r14

.9
.9 .9

1

1

1

C1’

.8
.8

.9
.9

r5

r12

r13

C2’

r11
C6

r17

.9

.9 r16
.9

.9

C4’
C5’

.9 r1

r15

.8

(b)
Figure 2: Updates for business listings and record linkage results with all updates.

can we make a trade-off between quality of the linkage results and
efficiency of the algorithm?

This paper presents a set of algorithms that can incrementally
conduct record linkage when new records are inserted and when
existing records are deleted or changed (i.e., values are modified).
In particular, we make the following three contributions.

• We describe an end-to-end solution for incremental record
linkage. Our solution incrementally maintains a similarity
graph for the records, and conducts incremental graph clus-
tering, resulting in clusters of records that refer to the same
real-world entity.
• For incremental graph clustering, we first propose two opti-

mal algorithms that apply clustering on subsets of the records
rather than all records. We then design a greedy approach
that conducts linkage incrementally in polynomial time by
merging and splitting clusters connected to the updated re-
cords, and moving records between those clusters.
• We instantiate our algorithms on two clustering methods that

do not require knowing the number of clusters a priori and
are used often in record linkage: correlation clustering and
DB-index clustering. Our experiments on real-world data
sets show that our algorithms run significantly faster than
batch linkage while obtaining similar results.

While we evaluate our approaches with tabular datasets, they ap-
ply to any entity resolution setting where entities can be modeled
as nodes and similarities between entities as edges in a graph.

The rest of the paper is organized as follows. Section 2 formally
defines the problem and describes an end-to-end solution for in-
cremental record linkage. Sections 3-4 describe our incremental
linkage algorithms. Section 5 presents our experimental results,
Section 6 discusses related work, and Section 7 concludes.

2. PROBLEM STATEMENT
This section formally defines the problem of incremental record

linkage (Section 2.1). We then describe the framework for incre-
mental linkage (Section 2.2). and review techniques for graph clus-
tering, which is a key component in record linkage (Section 2.3).

2.1 Problem definition
Given a set of records, record linkage is essentially a clustering

problem, where each cluster contains records that correspond to a

.8	
.8	

.9	 .9	

1	
r2	

r4	

r3	

r6	

.8	

r9	 .8	

.8	

1	

r7	

r8	

r10	
r14	 r15	

.9	
.9	 .9	

1	

1	

1	

C1’’’	

.8	
.8	

.8	

.9	
.9	

r5	

r12	

r13	

C2’’	

r11	
C6	

r17	

.9	

.9	 r16	
.9	

.9	

C4’’	

C5’’	 .9	 r1	
C3	

Figure 3: Results of a baseline incremental linkage algorithm.

single distinct real-world entity. We denote by D a set of records
and by LD a clustering of records in D as record-linkage results.
Ideally, the clustering should have both high precision (i.e., records
in the same cluster refer to the same real-world entity) and high
recall (i.e., records referring to the same real-world entity belong
to the same cluster). We denote by F the batch linkage method that
obtains LD on D; that is, F (D) = LD.

We consider three types of update operations: Insert adds a
new record; Delete removes an existing record; and Change
modifies one or a few values of an existing record. Note that Change
can be achieved by first removing the old record and then inserting
the new record; however, as we show later, considering Change
directly can be more efficient. We call those update operations
(Insert, Delete, and Change) made at the same time an
increment, denoted by ∆D. We denote the result of applying ∆D
to D by D + ∆D. Note that because ∆D can contain deletes and
changes, the number of the resulting records may be lower than the
sum of the number of original records and the number of records
in the increment; that is, |D + ∆D| ≤ |D|+ |∆D|. In this paper,
we assume every increment ∆D is valid: the record in a Delete
or Change operation already exists in D, and the record in an
Insert does not exist in D. We now define incremental linkage.

DEFINITION 2.1 (INCREMENTAL LINKAGE). Let D be a set
of records and ∆D be an increment to D. Let LD be the clustering
of records in D. Incremental linkage clusters records in D + ∆D
based on LD. We denote the incremental linkage method by f , and
denote the results by f(D,∆D,LD). 2

The goal for incremental linkage is two-fold. First, incremental
linkage should be much faster than conducting batch linkage, espe-
cially when the number of operations in the increment is small; that

is, applying f(D,∆D,LD) should be much faster than applying
F (D + ∆D) when |∆D| � |D|. Second, incremental linkage
should obtain results of similar quality to batch linkage; that is,
f(D,∆D,LD) ≈ F (D + ∆D), where≈ denotes clustering with
similar precision and recall.

EXAMPLE 2.2. Consider the motivating example. The original
data set is D0 = {r1 − r10}, and the linkage result LD0 is shown
in Figure 1(b). As we have explained, the clustering is incorrect.

Figure 2(a) shows 4 increments ∆D1 −∆D4, each containing
one to two Insert operations. We apply incremental linkage four
times, one for each increment. The final result contains 6 clusters,
as shown in Figure 2(b). Indeed, this is the correct result and as we
show later, it is the result we would obtain when we conduct batch
linkage on records r1 − r17. 2

Graph representation: Once we know the similarity between each
pair of records, we can construct a similarity graph G(V,E) for
records in D, where each node vr ∈ V represents a record r ∈ D
and each edge (vr, vr′) ∈ E with weight sim(r, r′) (0 ≤ sim(r, r′)
≤ 1) represents the similarity between records r, r′ ∈ D. We can
simplify the graph by omitting an edge if the similarity is below
a threshold. As an example, the similarity graph for D = {r1 −
r10} is shown in Figure 1(b). The result of record linkage can be
considered as clustering of the nodes in G; we denote the result as
LG. We now consider how an update would change the graph.

• Insert: Inserting a record is equivalent to adding a node
and edges to the node.
• Delete: Deleting a record is equivalent to removing a node

and edges to the node.1

• Change: Changing a record is equivalent to removing exist-
ing edges and adding new edges to the corresponding node.

We denote the changes of an increment to a graph by ∆G, the
result graph by G+ ∆G, and the result of incremental linkage also
as f(G,∆G,LG).

2.2 An end-to-end framework
Record linkage typically proceeds in three steps. First, it puts re-

cords into (multiple, possibly overlapping) blocks, such that records
that share some commonality and may refer to the same real-world
entity co-occur in at least one block. Recent blocking techniques
handle the volume aspect of our problem. Second, for records in the
same block, it computes pairwise similarity to construct the similar-
ity graph G. Third, it conducts graph clustering, such that records
that refer to the same real-world entity belong to the same clus-
ter, and records that refer to different entities belong to different
clusters. Thus, the approaches proposed in this work handle the ve-
locity aspect of the record linkage problem. We now describe how
we may conduct each step in an incremental fashion.

Blocking: To avoid exhaustive pairwise comparison, the block-
ing step builds an index for the records; each index entry forms a
block [2]. The index key can be a word, a token, or a k-gram. In
incremental blocking, we go over the records in the increment. For
each inserted record, we index the new record. For each deleted
record, we remove it from the index. For each changed record,
we remove it from the previous entries and re-index it. We mark
the inserted or deleted records in each index entry. Note that a
changed record may be re-indexed to the same entry and we mark
1Note that one may decide to use other semantics; for example, if a business
record is deleted because of business closing, the node and edges may be
kept to facilitate linkage in the future.

it as “re-inserted”. In our motivating example, there is an entry for
“Starbucks” and it contains all records in D0. When we index the
inserted records in ∆D1 −∆D4, we also add them to that entry.

Similarity computation: This step essentially computes ∆G. We
go over each index entry. In case the record is newly inserted, we
include in ∆G the new node. For each inserted record in an entry,
we compare it with the rest of the records in the entry. We include
in ∆G the new edges.

For each deleted record in an entry, if the record is deleted in
the increment, we include in ∆G the deleted node and its associ-
ated edges; otherwise, the record must be a changed record and we
include in ∆G the deleted edges from the corresponding node.

For each re-inserted record, we recompute its similarity with the
rest of the records in the entry. We include in ∆G the inserted
edges, the deleted edges, and the edges with changed weights.

As in batch linkage, we avoid comparing the same pair of records
multiple times if they co-occur in multiple index entries. At the
end of this step, ∆G contains (1) inserted nodes with their asso-
ciated edges; (2) deleted nodes with their associated edges; and
(3) changed edges. In our motivating example and the “Starbucks”
entry, we need to compute the similarity between each pair of in-
serted records, and between each inserted record and each previous
record; ∆G contains the new nodes and their associated edges.

Graph clustering: We re-cluster the nodes according to the changes
in the graph. This step is the most challenging step in incremental
linkage and is the focus of the rest of our paper. Rather than apply-
ing clustering on the whole G + ∆G, we wish to consider only a
subgraph of G + ∆G. To obtain similar results as batch linkage,
our incremental clustering algorithm should be designed according
to the batch clustering algorithm, which we review next.

2.3 Background for graph clustering
We review two classical clustering methods used in record link-

age: correlation clustering [1] and DB-index clustering [6]. Both
methods evaluate a clustering by an objective function and choose
the clustering that optimizes the value of the objective function;
in this way, we reward high cohesion, measuring the similarity or
closeness of nodes in the same cluster, and penalize high correla-
tion, measuring the similarity or closeness of nodes across clusters.

We focus on these two methods for three reasons. First, unlike
the clustering methods that require a priori knowledge of the num-
ber of clusters, such asK-means clustering, these two methods can
be applied when such knowledge does not exist, so are suitable
for record linkage. Second, each of these two methods represents
one of the two categories of graph-clustering methods [10]: corre-
lation clustering represents the category that uses adjacency-based
measures and DB-index clustering represents the category that uses
distance-based measures. Third, as we have discussed previously,
agglomerative clustering methods such as Swoosh [3] satisfy the
general incremental condition so incremental linkage is straightfor-
ward. We now review each method in more detail.

Correlation clustering: The goal of correlation clustering is to
find a partition of nodes in G that agrees as much as possible with
the edge labels. To achieve this goal, we can either maximize agree-
ments or minimize disagreements between the clustering and the
labels. The two strategies are equivalent but differ from the ap-
proximation point of view. We focus on the latter strategy in the
rest of the paper. For each pair of nodes in the same cluster, there is
a cohesion penalty being the complement of the similarity; for each
pair of nodes in different clusters, there is a correlation penalty be-
ing the similarity. We wish to minimize the sum of the penalties:

CC(LG) =
∑

C∈LG,r,r
′∈C

(1− sim(r, r′))

+
∑

C,C′∈LG,C 6=C′,r∈C,r′∈C′
sim(r, r′). (1)

A special case for correlation clustering is when we take binary
similarities: the similarity between two records is either 0 (dis-
similar) or 1 (similar). It has been proved that correlation clus-
tering is NP-complete even for this special case and an algorithm
called CAUTIOUS with complexityO(|V |2) can obtain a 9(1

δ2
+1)-

approximation, where δ is a threshold applied in the algorithm [1].
It is also shown in [1] that for graphs with weighted edges, round-
ing the weights to 0 or 1 and applying CAUTIOUS can obtain a
(18
δ2

+ 10)-approximation.

EXAMPLE 2.3. Consider clustering LD0 in Figure 1(b). The
clustering has a cohesion penalty .2 + .2 + .1 + .1 + 1 = 1.6 for
C1 and .2 + .2 = .4 for C4. It also has a correlation penalty of .8
between C4 and C5. Thus, CC(LD0) = 1.6 + .4 + .8 = 2.8; it is
the lowest penalty among all possible clusterings for D0. 2

DB-Index clustering: Davies-Bouldin index was originally de-
fined for a Euclidean space [6]; applying it to record linkage re-
quires some adjustment for the definition of distance. We adopt the
definition in [9], described as follows.

For each cluster C, the intra-cluster distance is defined as the
complement of average similarity between records in the cluster;
that is, D(C) = 1−Avgr,r′∈Csim(r, r′). For each pair of distinct
clusters C and C′, the inter-cluster distance is defined as the com-
plement of average similarity between records across the clusters;
that is, D(C,C′) = 1 − Avgr∈C,r′∈C′sim(r, r′). The separa-
tion measure between C and C′ is then defined as M(C,C′) =
D(C)+D(C′)+α
D(C,C′)+β , where α and β are small positive numbers such

that the denominator or numerator would affect the result even
when the other is 0.2 For each cluster C, we define its separation
measure as M(C) = maxC′ 6=CM(C,C′). DB-index is defined
as the average separation measure for all clusters and we wish to
minimize it:

DB(LG) = AvgC∈LG
M(C). (2)

Guo et al. [9] showed that DB-index clustering is also intractable
and presented a hill-climbing algorithm with complexityO(l|V |4),
where l is the number of iterations in hill climbing.

EXAMPLE 2.4. Consider the clustering in Figure 1(b). The
intra-cluster distance for C1 is 1 − Avg{.8, .8, .9, .9, 1, 0} = .27;
that for C4 is .13; and that for the other clusters is 0. The inter-
cluster distance between C4 and C5 is 1−Avg{.8, 0, 0} = .73 and
that between any other pair of clusters is 1. Taking C4 as an exam-
ple. If α = .01 and β = .001, the separation measure for C4 and
C5 is .13+0+.01

.73+.001
= .19; that for C4 and C1 is .13+.27+.01

1+.001
= .41;

and that for C4 and C2 (or C3) is .13+0+.01
1+.001

= .14. Thus, we
have M(C4) = max{.41, .14, .14, .19} = .41. The DB-index has
value Avg{.41, .28, .28, .41, .28} = .332 and this clustering has
the lowest DB-index among all possible clusterings. 2

Both correlation clustering and DB-index clustering aim at mini-
mizing a penalty function. Ideally, we wish to design an incremen-
tal graph clustering algorithm that can still find an optimal cluster-
ing on G+ ∆G. We say such an algorithm is optimal.
2Consider a graph containing only two nodes with a similarity of 1. If
we split the two nodes in clustering, the separation measure for the two
singleton clusters is α

β
. We wish to set a high penalty for such a clustering,

so α should be much larger than β.

G
G2 G1

(a) Locality

G G’

(b) Exchangeability
G

G3 G1

G2

(c) Separability

Mono-
tonicity

Connectivity

Locality

Exchangeability

Separability

(d) Relationships between the
properties.

Figure 4: Linkage properties.

DEFINITION 2.5 (OPTIMAL INCREMENTAL LINKAGE). Let
LoptG be an optimal clustering onG. An incremental linkage method
f is optimal if for every G,∆G, and LoptG , result f(G,∆G,LoptG)
is an optimal clustering on G+ ∆G. 2

We focus on incremental graph clustering in the next two sec-
tions. Section 3 describes two algorithms that can be optimal for
certain graph clustering approaches but would take exponential time.
Section 4 describes a greedy algorithm that may not find the opti-
mal clustering but takes only polynomial time.

3. OPTIMAL INCREMENTAL SOLUTION
In this section, we present two incremental linkage algorithms

that are optimal for correlation clustering. However, they are not
optimal for DB-index clustering, which lacks some desirable prop-
erties of clustering.

3.1 Desirable properties of linkage
Before we present our algorithms, we first describe several de-

sirable properties for objective functions used in graph clustering.
As we show later, these properties are critical for designing opti-
mal incremental linkage methods. In the following definitions, we
denote by O an objective function in graph clustering and assume
without losing generality that we aim at minimizing the value ofO.
We denote by LO.optG an optimal clustering of G according to O.

The first two definitions are basic properties asserting that each
cluster should contain a connected subgraph. Between them, local-
ity implies connectivity.

DEFINITION 3.1 (CONNECTIVITY). Let LG be a clustering
of G and L′G be a clustering obtained by putting two disconnected
clusters inLG into the same cluster. We sayO satisfies connectivity
if for every such LG and L′G, O(LG) < O(L′G). 2

DEFINITION 3.2 (LOCALITY). Let G1 and G2 be a split of
G such that there is no edge between G1 and G2 (Figure 4(a)). We
say O satisfies locality if for every such G,G1, and G2, LO.optG1

∪
LO.optG2

forms an optimal clustering for G under O. 2

EXAMPLE 3.3. Consider the graph in Figure 5 and two clus-
terings. The first, LG, contains n + 1 clusters: C0 − Cn, n ≥ 2.
Among them, C0 contains two disconnected subgraphsC′0 andC′′0 ,
where C′0 has m nodes. The second, L′G, contains n + 2 clusters:
C′0, C

′′
0 , C1 − Cn. If the objective function satisfies connectivity,

L′G should be a better clustering than LG.

.5	

…	

.5	

.5	

.5	

.5	 .5	 .5	 .5	

.5	
.5	 .5	

C1	
C0	

C0’	

C0’’	

C2	 Cn	

.5+2	δ .5+2	δ .5+2	δ …	

12	 	 /(1-‐)	 ᵟᵟ 12	 	 /(1-‐)	 ᵟᵟ12	 	 /(1-‐)	 ᵟᵟ

Figure 5: An example illustrating that DB-index violates the de-
sired graph clustering properties.

Now consider the DB-index. According to Eq. (2), the intra-
cluster distance of C0 is 1− .5∗m(m−1)/2+.5

(m+2)(m+1)/2
= .5 + 2m

(m+2)(m+1)
.

When m is large, the distance can be arbitrarily close to .5, and
we denote it by .5 + δ, where δ is a positive number close to 0.
For Ck, k ∈ [1, n], the intra-cluster distance is 1 − (.5 + 2δ) =
.5 − 2δ. For C0 and Ck, the inter-cluster distance is 1. For Ck
and Ck′ , k, k′ ∈ [1, n], the inter-cluster distance is 1 − 12δ

1−δ /4 =
1−4δ
1−δ . For simplicity, we assume α = β = 0; we have the same

conclusion when α > 0 or β > 0. The separation measure for
C0 is M(C0) = .5+δ+.5−2δ

1
= 1 − δ. The separation measure

for Ck and C0 and that for Ck and Ck′ are the same, 1 − δ, so
M(Ck) = 1− δ. Thus, the DB-index for LG is 1− δ.

When we splitC0 intoC′0 andC′′0 to obtain L′G, the intra-cluster
distance for C′0 (or C′′0) is .5 and the separation measure is 1. The
separation measure for Ck remains the same. Thus, the DB-index
is 1+1+(1−δ)n

n+2
= 1 − nδ

n+2
> 1 − δ, indicating that LG is better

than L′G. Indeed, LG is the optimal clustering for the graph in
Figure 5, so DB-index violates connectivity and locality. 2

The next two properties are stronger than locality, requiring that
even in a connected graph, there should be subgraphs that are “in-
dependent” of the rest of the graph.

DEFINITION 3.4 (EXCHANGEABILITY). Let C̄ ⊆ LoptG be a
subset of clusters and G′ ⊆ G be the subgraph containing only
nodes in C̄ and edges between them (Figure 4(b)). We say O sat-
isfies exchangeability if for every such G and C̄, C̄ is an optimal
clustering forG′ and replacing C̄ with any other optimal clustering
of G′ obtains an optimal clustering for G under O. 2

DEFINITION 3.5 (SEPARABILITY). LetG1, G2, G3 be a par-
tition of G such that (1) G1 and G3 are disconnected; (2) there
exists an optimal clustering for G1 ∪G2 with no cluster across G1

and G2; and (3) there exists an optimal clustering for G2 ∪ G3

with no cluster across G2 and G3 (Figure 4(c)). We say O satis-
fies separability if for every suchG,G1, G2 andG3, there exists an
optimal clustering for G with no cluster across two or three of the
subgraphs G1 −G3 under O. 2

EXAMPLE 3.6. Continue with Figure 5 and DB-index. Recall
that the optimal clustering contains clustersC0−Cn. Consider the
subgraphG′ with nodes in C0. If exchangeability holds, C0 should
be an optimal clustering forG′; however, the optimal clustering for
G′ is actually {C′0, C′′0 }. Thus, DB-index violates exchangeability.

Now consider splitting G into G1 = {C′0}, G3 = {C′′0 }, G2 =
{C1, . . . , Cn}. Obviously, (1)G1 andG3 are disconnected; (2) an
optimal clustering for G1 ∪ G2 is {C′0, C1, . . . , Cn}; and (3) an
optimal clustering forG2∪G3 is {C′′0 , C1, . . . , Cn}. However, the
optimal clustering for G contains cluster C0, across G1 and G3.
Thus, DB-index violates separability. 2

Finally, we define a property that is independent of the afore-
mentioned properties. It states that increasing similarity between
nodes in the same cluster or decreasing similarity between nodes
across clusters would not change clustering results.

DEFINITION 3.7 (MONOTONICITY). Let v1, v2 ∈ V be two
nodes in the same cluster in LO.optG . Let G′ be a graph obtained
by increasing the weight of edge (v1, v2) in G. We say O satisfies
positive monotonicity if for every suchG andG′, LO.optG is also an
optimal clustering of G′.

Let v1, v2 ∈ V be two nodes in different clusters in LO.optG . Let
G′ be a graph obtained by decreasing the weight of edge (v1, v2)
in G. We say O satisfies negative monotonicity if for every such G
and G′, LO.optG is also an optimal clustering of G′.

We sayO satisfies monotonicity if it satisfies both positive mono-
tonicity and negative monotonicity. 2

Figure 4(d) shows the relationship between these five properties.
We formally state them in the next theorem.

THEOREM 3.8. For the relationships between the properties,
• locality implies connectivity;
• exchangeability implies locality;
• separability implies locality;
• there exists an objective function that satisfies exchangeabil-

ity but not separability and vice versa;
• there exists an objective function that satisfies connectivity

but not monotonicity and vice versa. 2

As we have shown in the examples, DB-index does not satisfy
any of the five properties; nevertheless, we consider it in this paper
because it represents distance-based clustering. In contrast, corre-
lation clustering satisfies all properties.

THEOREM 3.9. The objective function of Correlation cluster-
ing (Eq.(1)) satisfies connectivity, locality, monotonicity, exchange-
ability, and separability. DB-index does not satisfy any of them. 2

Comparison with [13]: Incremental linkage was briefly dis-
cussed for data updates in [13]. It defines a property for linkage
methods that operate on clusters; we restate it as follows.

DEFINITION 3.10 (GENERAL INCREMENTAL). We define F
as a batch linkage algorithm whose input is the clustering of records.
Let S(G) be the set of singleton clusters for each node in graph G.
We say F is general incremental if for every subgraph G′ ⊆ G, we
have F (S(G \G′) ∪ F (S(G′))) = F (S(G)). 2

When a batch linkage algorithm F is general incremental, we
can apply it directly on the clustering results forG and the singleton
clusters for ∆G. In other words, we can define f(G,∆G,LG) =
F (LG ∪ S(∆G)). However, both CAUTIOUS for correlation clus-
tering and the batch algorithm for DB-index clustering [9] operate
on individual nodes rather than on clusters, so they are not general
incremental; [13] does not present any solution for them.

Our approach differs in two aspects. First, we define properties
for the objective functionO used in a clustering method rather than
for the clustering algorithm F itself (e.g., there can be many dif-
ferent algorithms aiming at minimizing the penalty for correlation
clustering). Second, we show that even if F is not general incre-
mental and we cannot directly apply the batch algorithm, we can
still design incremental linkage algorithms that are typically much
more efficient than applying batch linkage. We show that under
our defined properties our proposed algorithms can be optimal; but
even if these properties do not hold, we show empirically that our
algorithms still generate high-quality linkage results.

We next describe two incremental clustering algorithms that are
optimal under these aforementioned properties.

3.2 Connected component algorithm
Intuitively, when the clustering algorithm satisfies locality, it is

safe to consider only the subgraph that is directly or indirectly con-
nected to the changed nodes. We call this subgraph the connected
component of the increment.

DEFINITION 3.11 (CONNECTED COMPONENT). Let G be a
similarity graph and ∆G be an increment on G. We define the
transitive closure of a node as the connected subgraph in G+ ∆G
including the node. We define the transitive closure of an edge as
the connected subgraph in G+ ∆G including the edge and its two
nodes. The connected component of ∆G, denoted by T (∆G), con-
tains the union of the transitive closures for each inserted, deleted,
or changed node or edge. 2

In addition, when monotonicity holds, we can simplify the con-
nected component by ignoring changes of increasing weights for
intra-cluster edges and of decreasing weights for inter-cluster edges.
Similarly, for a deleted node, we can ignore its associated edges to
other clusters, as their weights essentially drop to 0. We call the
resulting subgraph the monotone connected component.

DEFINITION 3.12 (MONOTONE CONNECTED COMPONENT).
Let G be a similarity graph and LoptG be the given optimal cluster-
ing onG. Let ∆G be an increment onG. The monotone connected
component of ∆G, denoted by T̂ (∆G), is defined as follows.

• For each inserted node v ∈ ∆G, T̂ (∆G) contains its tran-
sitive closure.
• For each deleted node v ∈ ∆G, T̂ (∆G) contains its cluster

in LoptG , but does not contain v and edges to v.
• For each edge e ∈ ∆G with increased weight, if e is across

clusters in LoptG , T̂ (∆G) contains its transitive closure.
• For each edge e ∈ ∆G with decreased weight, if e is within

a cluster in LoptG , T̂ (∆G) contains its transitive closure. 2

Given G,∆G,LoptG , the connected component algorithm, CON-
NECTED, proceeds in three steps.

1. Find the connected component T (∆G).
2. Find the optimal clustering on T (∆G).
3. Construct the new clustering from LoptG by replacing the old

clusters for T (∆G) with the new optimal clusters.
Note that instead of using connected component, we can also

use monotone connected component and we call this alternative
MONOCONNECTED.

EXAMPLE 3.13. Consider increment ∆D4 in Figure 2(a). It
inserts nodes r16, r17, and the associated edges. The transitive
closure of r16 contains nodes r7 − r10, r17 and similarly for r17
(see Figure 2(b)). So the connected component for ∆D4 contains
the subgraph with nodes r7 − r10, r16 − r17. The optimal clus-
tering under correlation clustering for this subgraph contains two
clusters: C′4 and C′5. Thus, we replace the old C4 and C5 with
C′4 and C′5 to obtain a new clustering, which leads to the optimal
clustering for the whole graph under correlation clustering.

Now consider an increment ∆D5 that removes node r4. The
transitive closure of r4 contains nodes in C′1 (C′′1 contains only
r4 so is not included). Accordingly, CONNECTED applies corre-
lation clustering on C′1 and obtains the same clusters as before.
However, the monotone connected component for r4 is empty, so
MONOCONNECTED can simply remove C′′1 to obtain the new clus-
tering. 2

We next show the optimality and complexity of MONOCON-
NECTED.

…

v

C

…

Figure 6: An instance where ITERATIVE can be much faster than
MONOCONNECTED.

LEMMA 3.14. Algorithm CONNECTED is optimal if and only if
locality holds. 2

THEOREM 3.15 (OPTIMALITY OF MONOCONNECTED).
Algorithm MONOCONNECTED is optimal if and only if locality and
monotonicity hold. 2

COROLLARY 3.16. MONOCONNECTED is optimal for corre-
lation clustering but not optimal for DB-index clustering. 2

PROPOSITION 3.17 (COMPLEXITY OF MONOCONNECTED).
Let c(|G|) be the complexity of finding the optimal clustering onG.
The complexity of MONOCONNECTED is O(c(|G+ ∆G|)). 2

When G + ∆G is a connected graph, T̂ (∆G) can be the same
as G + ∆G in the worst case; then, MONOCONNECTED needs to
apply clustering on the whole graph, so it has the same complexity
as batch linkage. However, when G is not well connected, T̂ (∆G)
could be much smaller than the full graph and MONOCONNECTED
can be much faster. Also note that if finding an optimal clustering
is intractable, c is exponential in the size of the graph and MONO-
CONNECTED takes exponential time.

3.3 Iterative algorithm
Although MONOCONNECTED requires examining only a sub-

graph, the subgraph can be large when the similarity graph is well
connected. One opportunity for optimization is to consider the
nodes that are only closely connected. The iterative algorithm first
considers a subgraph with only clusters that are directly connected
to the increment, which we call directly connected component, and
expands the subgraph iteratively if the optimal clustering changes.

DEFINITION 3.18 (DIRECTLY CONNECTED COMPONENT).
Let G be a similarity graph and LoptG be the given optimal cluster-
ing on G. Let ∆G be an increment on G. The directly connected
component of ∆G, denoted by T̄ (∆G), is defined as follows.

• For each inserted node v ∈ ∆G, T̄ (∆G) contains v and its
connected clusters in LoptG .
• For each deleted node v ∈ ∆G, T̄ (∆G) contains its cluster

in LoptG , but does not contain v and edges to v.
• For each edge e ∈ ∆G with increased weight, if e is across

clusters C1, C2 ∈ LoptG , T̄ (∆G) contains C1 and C2.
• For each edge e ∈ ∆G with decreased weight, if e is within

a cluster C ∈ LoptG , T̄ (∆G) contains C. 2

EXAMPLE 3.19. Consider ∆D4 in Figure 2(a). The inserted
node r16 is connected to C4 and C5, whereas r17 is connected to
C4. Thus, the directly connected component contains r7−r10, r16−
r17, the same as the monotone connected component. Now con-
sider Figure 6 with the inserted node v. The directly connected
component contains v and its neighbor cluster C, much smaller
than the monotone connected component, the whole graph. 2

The iterative algorithm, ITERATIVE, starts with the directly con-
nected component and expands it only when necessary. In particu-
lar, it proceeds in four steps.

1. Obtain the directly connected component of the increment,
T̄ (∆G), and put each of its connected subgraphs into queue
Q. The previous clustering stored for each subgraph follows
LoptG and puts each inserted node into a singleton cluster.

2. For each subgraph G′ ∈ Q, dequeue it and find the optimal
clustering. For each cluster that does not exist in the previous
clustering, find its directly connected cluster, denoted byG′′.

3. If G′′ has never been added to Q, go over Q for subgraphs
that are connected or overlapping with G′′. Remove them
from Q and merge them with G′′. Repeat this until there is
no such subgraph in Q. Add G′′ to Q.

4. Repeat Steps 2-3 until Q is empty.

For the example in Figure 6, ITERATIVE would start with the
subgraph containing the inserted node v and its neighbor cluster
C. Since v is connected to only one node in C, ITERATIVE would
decide to keep the current clustering and so terminate without con-
sidering any other cluster; thus, it can be much faster than MONO-
CONNECTED. However, in some extreme cases ITERATIVE can
iteratively expand to the whole monotone connected component;
in such cases ITERATIVE can be slower than MONOCONNECTED
and the number of iterations is bounded by the longest path between
clusters in LoptG (the length is at most |LoptG | − 1).

PROPOSITION 3.20 (COMPLEXITY OF ITERATIVE). The com-
plexity of ITERATIVE is O(|LoptG | · c(|G+ ∆G|). 2

Finally, we show that ITERATIVE is guaranteed to be optimal if
and only if the clustering method satisfies all the properties.

THEOREM 3.21 (OPTIMALITY OF ITERATIVE). Algorithm
ITERATIVE is optimal if and only if exchangeability, separability,
and monotonicity hold. 2

COROLLARY 3.22. ITERATIVE is optimal for correlation clus-
tering but not optimal for DB-index clustering. 2

4. AN EFFICIENT SOLUTION
As we have shown, the connected component algorithm may re-

quire considering an unnecessarily big subgraph when the simi-
larity graph is well-connected, while the iterative algorithm may
require repeated efforts in examining quite a few subgraphs before
convergence. In addition, as we have discussed, finding an opti-
mal solution for correlation clustering or DB-index clustering is in-
tractable. In this section, we describe a greedy solution, GREEDY,
with two goals. First, the algorithm should take only polynomial
time. Second, although the algorithm iteratively expands the sub-
graphs for examination as ITERATIVE does, clustering in each later
round should be built upon the clustering of the previous round.
Specifically, GREEDY differs from ITERATIVE in two ways. In
ITERATIVE, the working queue Q stores subgraphs that consist
of multiple directly connected clusters, and each iteration applies
batch clustering on a subgraph. In GREEDY, the working queue,
denoted by Qc, stores clusters, and for each cluster we examine
whether we wish to adjust nodes between it and its neighbor clus-
ters. In other words, ITERATIVE iterates at the coarse granularity of
subgraphs with multiple clusters, whereas GREEDY iterates at the
finer granularity of individual clusters.

In the rest of the section, we first describe the framework of the
algorithm (Section 4.1), and then briefly discuss how to instantiate
it for particular clustering methods (Section 4.2).

4.1 Greedy algorithm
In the greedy algorithm, each time we examine a cluster C from

the working queue Qc and consider three possible operations that
we may apply to the cluster: merging C with some other cluster(s),
splitting C to one or more clusters, and moving some of the nodes
of C to another cluster or vice versa. We next describe the three
operations in detail and then give the full algorithm.
Merge: Given a cluster C ∈ Qc, we consider whether merging it
with other clusters would generate a better clustering (lower value
for the objective function). To finish the exploration in polynomial
time, we consider merging only pairs of clusters. The algorithm,
MERGE, proceeds as follows.

1. For each neighbor clusterC′ ofC, evaluate whether merging
C with C′ generates a better clustering.

2. Upon finding a better clustering, (1) merge C with C′, (2)
add C ∪ C′ to Qc, and (3) remove C′ from Qc if C′ ∈ Qc.

EXAMPLE 4.1. First, consider increment ∆D1 in Figure 2(a)
and correlation clustering. Cluster C6 = {r11} is not connected
to any node so we do not merge it with another cluster.

Next, consider ∆D2, which puts clusters C7 = {r12} and C8 =
{r13} to the working queue Qc. We first merge C7 with C2 =
{r5} (reducing the penalty from 4.2 to 3.4), then gradually merge
also with C8 and C3 = {r6} (final penalty .8), obtaining C′2 in
Figure 2(b). 2

Split: Given a cluster C ∈ Qc, we consider whether splitting
it into several clusters would generate a better clustering. To re-
strict the algorithm to polynomial time, we consider splitting into
two clusters and we examine one node each time. The algorithm,
SPLIT, proceeds as follows.

1. For each node v ∈ C, evaluate whether splitting v out gen-
erates a better clustering.

2. Upon finding such a node v, create a new cluster C′ = {v}
and conduct steps 3-4.

3. For each remaining node v′ ∈ C, evaluate whether moving
v′ to C′ obtains a better clustering. If so, move v′ to C′ and
repeat Step 3.

4. Add C and C′ to Qc if they are connected to other clusters.

EXAMPLE 4.2. Consider increment ∆D3 in Figure 2(a), which
adds clusters C11 = {r14} and C12 = {r15} to Qc. Since they
are closely connected with C1, merging them into C1 reduces the
penalty under correlation clustering from 8.2 to 4. When we exam-
ine the new cluster {r1− r4, r14, r15}, we find that splitting out r4
reduces the penalty to 2.2. There is no more node to be moved out
and we terminate with two clusters C′1 and C′′1 . 2

Move: Given a clusterC ∈ Qc, we consider whether moving some
of its nodes to other clusters or moving some nodes of other clusters
into C would generate a better clustering. Again, we consider node
moving between two clusters such that the algorithm finishes in
polynomial time. The algorithm, MOVE, proceeds as follows.

1. For each neighbor cluster C′ of C, do Steps 2-3.
2. For each node v ∈ C that is connected to C′ and for each
v ∈ C′ connected to C, evaluate whether moving v to the
other cluster generates a better clustering. Upon finding such
a node v, move it to the other cluster.

3. Repeat Step 2 until there is no more node to move. Then,
(1) add the two new clusters to Qc, and (2) dequeue C′ if
C′ ∈ Qc.

Algorithm 1: Greedy(G(V,E),∆G,LG)

Input : G(V,E): Original similarity graph;
∆G: Increment;
LG: clustering of the original graph

Output : New clustering in LG
Qc ← ∅;1

G′ ← T̄ (∆G);2
Put each cluster in G′ to Qc;3
while Qc 6= ∅ do4

dequeue C ∈ Qc;5
changed← false;6
// operations return true if they change the clustering7
changed← MERGE(C,G+ ∆G,LG,Qc);8
if ¬changed then9

changed← SPLIT(C,G+ ∆G,LG,Qc);10

if ¬changed then11
changed← MOVE(C,G+ ∆G,LG,Qc);12

return LG;13

Table 1: Working queue for Example 4.4.

Rnd Removed Added Qc

1 - C = {r16}, C′ = {r17} {C,C′}
2 C C′′ = {r10, r16} {C′, C′′}
3 C′ C′′′ = {r7 − r9, r17} {C′′, C′′′}
4 C′′ C′4 = {r7 − r8, r17} {C′4, C′5}

C′5 = {r9 − r10, r18}
5 C′4 - {C′5}
6 C′5 - ∅

EXAMPLE 4.3. Consider C′′4 and C′′5 in Figure 3, where no
merging or splitting can improve the clustering. However, moving
r9 from C′′4 to C′′5 reduces the penalty under correlation clustering
from 2.4 to 2.2. 2

Full algorithm: We show the full algorithm GREEDY in Algo-
rithm 1. Initially, it starts with the directly connected component
(Ln.2) It then puts each cluster in T̄ (∆G) (each inserted node
is considered as a singleton cluster) into the working queue Qc

(Ln.3). For each cluster C ∈ Qc in the queue, it checks the three
operations for C in the order of merging (Ln.8), splitting (Ln. 10),
and moving (Ln.12). This is because (1) moving is more expensive
than merging or splitting, and (2) in our experiments we observed
much more merging than splitting, and in turn than moving (Sec-
tion 5). Once there are changes to any cluster, the algorithm puts
the changed clusters back to the queue and considers the next clus-
ter in Qc (Lns.9, 11). This process continues until Qc is empty
(Ln.4).

EXAMPLE 4.4. Consider increment ∆D4 in Figure 2(a). Ta-
ble 1 shows the trace of GREEDY under correlation clustering.

Initially, we put C = {r16} and C′ = {r17} into Qc. We first
examine C and decide to merge it with C5 = {r10}; this puts
C′′ = {r10, r16} to Qc. We then examine C′ and decide to merge
it with C4 = {r7 − r9}; this puts C′′′ = {r7 − r9, r17} to Qc.
After that we examine C′′ and decide to move r9 from C′′′ to C′′,
generating clusters C′4 and C′5 (Figure 2(b)); we remove C′′′ from
Qc and add C′4 and C′5. Examining C′4 and C′5 does not make any
change, so we terminate. 2

PROPOSITION 4.5 (COMPLEXITY OF GREEDY). Let g(|G|)
be the time of evaluating the objective function on graph G. The
complexity of GREEDY is O(|G+ ∆G|6g(|G+ ∆G|)). 2

Since typically we can evaluate an objective function in poly-
nomial time, GREEDY takes only polynomial time. Although the
complexity bound of GREEDY seems high, it is quite fast in prac-
tice for three reasons. First, each cluster is typically small, much
smaller than the whole graph G+ ∆G. Second, for each examined
cluster, the number of neighboring clusters is typically small, much
smaller than |G+∆G|. Third, although in the worst case there can
be O(|G+ ∆G|3) clusters that have ever appeared in Qc, in prac-
tice there are much fewer. Finally, we note that the approximation
bound of the greedy algorithm remains an open problem, but we
show by empirical study that it works well in practice.

4.2 Instantiation for correlation clustering
We can easily instantiate the greedy algorithm for correlation

clustering or DB-index clustering. In particular, we show that un-
der correlation clustering we can further simplify the algorithm for
each operation (the framework remains the same).
Merge: According to the objective function Eq.(1) for correlation
clustering, we merge two clusters C and C′ when∑

v∈C,v′∈C′

w(v, v′) >
|C| · |C′|

2
.

Split: We can simplify SPLIT as follows. First, in Step 1, instead
of considering every node in C, we only consider the node that
has the lowest connectivity within C, where connectivity is com-
puted as the average similarity with other nodes in C. If the lowest
connectivity is above .5, we can stop. Second, in Step 3, instead
of considering every remaining node in C, we consider the node
v with the lowest difference of pC(v) − pC′(v), where pC(v) is
the sum of the edge weights between v and each node in C, and
pC′(v) is the sum of the edge weights between v and each node in
C′. If pC(v) − pC′(v) > |C|−|C′|−1

2
, we can stop. We note that

this condition is the same as the previous condition if we consider
C′ = ∅. Instead of computing pC(v) − pC′(v) from scratch each
time, we can maintain it incrementally as we split out nodes.
Move: We can simplify MOVE in a similar way to SPLIT. In Step
2, instead of considering every node in C ∪ C′, we choose the
node v ∈ C with the lowest pC(v) − pC′(v) and do the moving
if pC(v) − pC′(v) ≤ |C|−|C′|−1

2
; otherwise, we choose the node

v ∈ C′ with the lowest pC′(v) − pC(v) and do the moving if
pC′(v)− pC(v) < |C′|−|C|−1

2
.

These simplifications can reduce the complexity of the algorithm,
called GREEDYCORR, shown as follows.

PROPOSITION 4.6 (COMPLEXITY OF GREEDYCORR).
The complexity of GREEDYCORR is O(|G+ ∆G|6). 2

5. EXPERIMENTAL EVALUATION
We present experimental results on two real-world datasets and a

synthetic dataset. The results show that our incremental algorithms
significantly improve over batch linkage on efficiency without sac-
rificing linkage quality, and significantly improve over naive incre-
mental linkage algorithms on linkage quality.

5.1 Experiment setup
Datasets: We experimented with three datasets. The first dataset,
Biz, contains 87 snapshots of business records in the San Fran-
cisco area; we took the first snapshot as the original dataset, and
computed an increment for each later snapshot. Every snapshot
of this dataset contains approx. 5K records with slight variations
depending on the applied update. The increments contain on av-
erage 120 Inserts, 118 Deletes, and 59 Changes, and the

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	
0.001	

0.1	

10	

1000	

100000	

1	 11	 21	 31	 41	 51	 61	 71	 81	

!m
e	
(in

	 m
s,
	 lo
g	
sc
al
e)
	

Updates	

Changed	

Deleted	

Inserted	

Batch	

Naïve	

CC	

IT	

Greedy	

(a) Correlation clustering on Biz.
0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	
1E-‐10	

1E-‐08	

0.000001	

0.0001	

0.01	

1	

100	

1	 11	 21	 31	 41	 51	 61	 71	 81	

!m
e	
(in

	 m
s,
	 lo
g	
sc
al
e)
	

Updates	

Changed	

Deleted	

Inserted	

Naïve	

CC	

IT	

Greedy	

(b) DB-index clustering on Biz.
Figure 7: Comparison of various algorithms under CONT on Biz.

Table 2: Statistics of real-world datasets according to CAUTIOUS .
Statistics Biz Cora

Number 4892 1916
Node Avg #neighbors 3.05 41.8

Max #neighbors 26 106
Number 2054 575

Cluster Avg #nodes 2.38 3.3
Avg #neighbors .7 27.8
Max #neighbors 10 92

Number 1624 88
Subgraph Avg #nodes 3.01 21.7

Max #nodes 29 18

maximum number of operations in an increment is 4120. The top
part of Figure 7(a) (with the Y-axis on the right side of the figure)
shows a break down of the updates for each increment. We indexed
the records on 3-grams for blocking. We then applied the Monge-
Elkan [4] string similarity for pairwise similarity computation and
ignored edges with a similarity below .7. The similarity graph is
fairly sparse as shown for the first snapshot of Biz in Table 2.

The second real-world dataset, Cora3 that we examine has been
widely used for record linkage and contains 1916 publication records.
On this dataset, we have a single snapshot, we indexed the records
on words for blocking and, following [7], we applied the weighted
Jaccard measure with a threshold of .9 for similarity computation.
As Cora is not a naturally incremental dataset, we generated a
range of possible increments as follows: in the first increment we
randomly remove 1 record; in the i-th increment we add back the
records removed in the (i− 1)-th increment and randomly remove
2i−1 records; in the last (i.e., 11-th) increment, we only add back
the previously removed (1024) records.

Our synthetic dataset uses the Febrl data generator.4 We vary the
generation parameters which we will further explain in Section 5.4.

Implementations: To determine the effectiveness of our incremen-
tal approaches, we implemented the following algorithms:

3http://secondstring.sourceforge.net/.
4http://sourceforge.net/projects/febrl/.

• BATCH applies CAUTIOUS [1] for correlation clustering and
the hill climbing algorithm in [9] for DB-index clustering.
• NAIVE, the baseline incremental algorithm, compares each

inserted record with existing clusters, then either adds it into
an existing cluster or creates a new cluster for it (Section 1).
• CC applies CONNECTED (Section 3.2).
• IT applies ITERATIVE (Section 3.3).
• GREEDY applies GREEDY (Section 4).

Our implementation has two variations: in RESET the starting
point for each increment is reset to the batch linkage results from
the previous increment; in CONT the starting point is the incremen-
tal linkage results from the previous increment. In practice, we are
likely to use CONT for updates and periodically apply batch link-
age. In CAUTIOUS, we used parameter δ = .1 [1]; in DB-INDEX,
we set α = .2 and β = .1. We implemented the algorithms in Java,
and experimented on a Linux machine with eight Intel Xeon L5520
cores (2.26GHz, cache 24MB).
Measures: We measure efficiency and quality of our algorithms.
For efficiency, we repeated the experiments 100 times and reported
the average execution time. We focused on clustering and only re-
ported clustering time; note however that if we count also blocking
and pairwise similarity computation, incremental linkage would
have even higher benefit over batch linkage. For quality, we re-
port (1) the penalty (i.e., cut inter-cluster and missing intra-cluster
edges) and (2) the F-measure if we have the gold standard. Here,
precision measures among the pairs of records that are clustered
together, how many are correct; recall measures among the pairs of
records that refer to the same real-world entity, how many are clus-
tered together; and the F-measure is computed as 2·precision·recall

precision+recall
.

Objective: The goal of these experiments is three-fold. First, we
want to establish incremental record linkage as desirable in a dy-
namic environment because of performance improvement and qual-
ity consistency. Second, we will show that iterative incremental
approaches can reduce the linkage space drastically and decrease
execution time even further. Last, we will identify the tradeoffs
between the three incremental algorithms in this paper.

Table 3: Comparison of various algorithms on Biz. Highest per-
formance is highlighted in bold. Penalty values are averaged. Im-
provement is calculated for NAIVE w.r.t. BATCH and for the other
methods w.r.t. NAIVE.

Method Time (s) Impro. Penalty
BATCH 3.7 - 988
NAIVE .86 76.7% 3037

CONT CC .18 78.7% 988
Corr IT 0.16 81.4% 981
Clust. GREEDY 0.14 84.1% 592

NAIVE 0.79 79.7% 1072
RESET CC 0.20 74.2% 987

IT 0.17 77.7% 987
GREEDY 0.20 74.3% 922
NAIVE 997 99.9% 5426

DB- CONT CC 57.1 94.3% 651
Index IT 14.4 98.6% 783

GREEDY .79 99.9% 941

0	

2	

4	

6	

1	 21	 41	 61	 81	

Pe
na

lty
	 (i
n	
K)
	

Updates	

Batch	

Naïve	

CC	

IT	

Greedy	

(a) Correlation clustering on Biz.

0	

2	

4	

6	

8	

10	

1	 21	 41	 61	 81	

Pe
na

lty
	 (i
n	
K)
	

Updates	

Naïve	

CC	

IT	

Greedy	

(b) DB-index clustering on Biz.

Figure 8: Penalty for CONT on Biz.

5.2 Experiments on Biz
Overview: Table 3 gives a summary of the quality and perfor-
mance of our five implemented methods; Figure 7 (with the Y-
axis on the left side of the figure) shows the execution time for
these algorithms under CONT; Figure 8 shows the corresponding
penalty. We observe that all incremental linkage algorithms signifi-
cantly improved over BATCH on efficiency: for correlation cluster-
ing the slowest one reduced the execution time by 76.7% while the
fastest one by 95.7%; for DB-index the slowest one reduced exe-
cution time by three orders of magnitude while the fastest one by
nearly five orders of magnitude as BATCH takes 3.8 hours on aver-
age per snapshot. Among the incremental algorithms, the iterative
algorithms (IT and GREEDY) outperform both NAIVE and CC in
execution time and achieve comparable or better result quality.

Observations for NAIVE: The naive algorithm has competitive
performance and output quality for small updates. As the perfor-
mance of this algorithm is quadratic in the size of updates, it de-
creases with an increasing update size as shown in Figure 7 where
large updates trigger execution times that are higher than those for
BATCH. Aggregated over all increments, NAIVE still improves ex-
ecution time for correlation clustering by 76.7% and 99.9% for
DB-Index. Nevertheless, NAIVE is the slowest of our implemented
incremental approaches. NAIVE is also the worst incremental ap-
proach in terms of quality which shows that a merge-only strategy
does not take the changing graph structure into consideration ap-

Table 4: Comparison of CC, IT, and GREEDY for varying update
sizes and Biz dataset (CONT).

Method Performance Impro.
Update Size

Comparison small med. large

Corr. Clust.
IT CC 94.1% 86.4% 53.9%

GREEDY CC 92.2% 100% 92.3%
IT 37.4% 72.7% 69.2%

DB-Index
IT CC 96.1% 95.5% 100%

GREEDY CC 100% 100% 100%
IT 31.4% 72.7% 92.3%

Table 5: Details on Biz (Correlation Clutering, CONT).
CC IT GREEDY

time (ms) 189 167 171
#Iterations 1 2.0 2.5
#Nodes 480 293 474
#Edges 2003 1482 1968
#Total-nodes - 329 1237
#Total-edges - 1817 11204
#Examined-Merge - - 115
#Real-Merge - - 88
#Examined-Split - - 44
#Real-Split - - 1
#Examined-Move - - 7
#Real-Move - - 0

propriately. It has an average penalty of 3037 for correlation clus-
tering and 5426 for DB-Index which is three times, resp. six times,
worse than any other incremental approach.

Observations for CC: In contrast to NAIVE, CC achieves basically
the same result quality as BATCH. Minor variations (for example
an average penalty for RESET of 987 instead of 988) may occur
as CAUTIOUS is an approximation and is thus not guaranteed to
make the optimal decision. CC improves the execution time of
NAIVE by at least 74.2%, and we observe that it is especially effec-
tive for large increments in correlation clustering. Table 4 shows an
overview of the performance of CC in comparison to our iterative
approaches. A small update contains at most 50 updated records,
a large update contains at least 500 updated records, all other up-
dates are medium-sized. Our incremental dataset then consists of
51 small, 22 medium, and 13 large updates. The table shows how
often either IT or GREEDY is better compared to CC. We observe
that CC has worse performance than either GREEDY or IT in at
least 92.2% (96.1% for DB-index) of the small and 86.4% (95.5%
for DB-index) of the medium-sized updates. In contrast, CC out-
performs IT in 46.1% of the large updates. More specifically, CC
excels in those increments where the graph significantly changes,
i.e. where a lot of nodes and edges are touched redundantly by the
iterative approaches. An overview of which approach touches how
many nodes and edges is shown in Table 5. The number of total
nodes and edges describes the average number of nodes and edges
that have been iterated over every increment where one node can
be counted multiple times if, e.g., it is checked in both, a merge
and split operation. As shown here, IT has lower values for both
touched nodes and edges than CC which also explains the lower
execution time. GREEDY on the other hand has higher values here,
because it evaluates more options with its three operators. These
operations are nevertheless efficient especially due to our selec-
tion criteria for split and move. As a result, the execution time
of GREEDY is lower than CC for all DB-index experiments and at
least better in 92.2% of the updates for correlation clustering.

Observations for IT and GREEDY: Both, GREEDY and IT, have
similar execution times for correlation clustering but for DB-index
clustering GREEDY is 94.5% faster than IT. This difference can be
explained by the applied objective function: GREEDY does not use
the hillclimbing algorithm but rather uses its three operators to de-
termine a candidate clustering which reduces its execution time sig-

nificantly. In general, we observe that IT outperforms GREEDY for
small updates on correlation clustering where it is faster in 58.6%
of the updates. GREEDY inherently has an overhead for clusters
that do not change because it checks for all three operations. In
fact, we observe that on average GREEDY attempts 115 merges, 44
splits, and 7 moves per iteration. Checking for all these operations
is obviously more costly than IT if the modified cluster is not well-
connected or will not change its clustering.

5.3 Experiments on Cora
Overview: Table 6 and Figure 9 show the execution time and qual-
ity of our proposed methods using Jaccard similarity and correla-
tion clustering on Cora. Compared to Biz, the similarity graph for
Cora is much denser, as shown in Table 2.
Observations for NAIVE: On small increments, NAIVE was much
faster than the other methods while having similar linkage qual-
ity. However, large updates trigger more mistakes made by NAIVE.
The reason is the merge-only policy of NAIVE which does not al-
low to reconsider more beneficial clustering alternatives that may
be possible if records are split or moved first.
Observations for CAUTIOUS algorithms: Because of the high
connectivity of this dataset, CC finished in nearly the same time
as BATCH starting from the fifth increment; indeed, in this round
CC touched 64% of the nodes in the graph. Similarly, IT was even
slower than CC after the fifth increment; this is because IT ended
up examining nearly the same subgraph as CC but did additional
work in early iterations on smaller subgraphs.
Observations for GREEDY: GREEDY is much faster than IT on
this dataset and reduced the execution time by 66.8% over CC and
by 75.8% over IT. Recall that we are using CAUTIOUS as imple-
mentation for both CC and IT. This algorithm decides whether to
combine records into a cluster based on set logic which obviously
gets more expensive the more connected the graph is because more
candidates need evaluation. In contrast, merge operations as sug-
gested for GREEDY are structured much more simply: the penalty
of two clusters separated or combined is computed following the
objective function and we then choose the better solution. An ef-
ficient merge operator thus decreases execution time effectively,
making up for the more time-costly split and move operations.

5.4 Experiments on Febrl
Data generation: We generate synthetic data using the Febrl dataset
generator. It allows us to specify how many original and duplicate
records we generate as well as the distribution of noise within the
generated dataset. For our experiments we vary the following pa-
rameters: the number of duplicates per original record d; the num-
ber of modifications within one attribute and how many attributes
are modifiedm (we use the same value for both as we want to show
the behavior of our approaches if the noise level increases, separat-
ing them is less relevant); the number of inserted and deleted nodes
within one increment nins and ndel; and finally θ, the similarity
threshold applied in generating the similarity graph. For compara-
bility, we generate 10K original records and 10k duplicate records
as the original dataset given d and m. Note that θ modifies the
internal similarity graph but not the underlying dataset. We used
the blocking generated by Febrl, which guarantees that duplicates
are in the same block. To determine the pairwise similarity be-
tween records, we use Jaro Winkler similarity, as suggested in [7]
for Febrl data. We apply correlation clustering as the objective
function in all reported experiments. Like Cora, Febrl is not a nat-
urally incremental dataset. As a result, we need to simulate the
increments. Every experiment that we run has 10 increments, by
default we randomly selected 10K records as the initial dataset; we

Table 6: Algorithm comparison for Cora. F-Measure is averaged.
Method Time (s) F-Measure Penalty

BATCH 5.24 .811 10074
NAIVE .47 .722 12832

CONT CC 3.3 .81 10163
IT 4.5 .81 10170

GREEDY 1.09 .837 6847
NAIVE .318 .754 11853

RESET CC 3.04 .81 10113
IT 4.31 .811 10119

GREEDY 1.31 .838 6945

0	

1000	

2000	

3000	

4000	

5000	 0.00	

0.10	

10.00	

1000.00	

100000.00	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

U
pd

at
e	
Si
ze
	

Ti
m
e	
(in

	 m
s,
	 lo
g	
sc
al
e)
	

Updates	

Deleted	

Inserted	

Batch	

Naïve	

CC	

IT	

Greedy	

(a) Time

0	
0.2	
0.4	
0.6	
0.8	
1	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

F-‐
M
ea
su
re
	

Update	

Batch	

Naïve	

CC	

IT	

Greedy	

(b) F-Measure

0	

20	

40	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	
Pe

na
lty

	 (i
n	
K)
	

Updates	

Batch	

Naïve	

CC	

IT	

Greedy	

(c) Penalty

Figure 9: Experimental results on Cora.

then randomly selected nins =1K (i.e., 5%) records from the re-
maining records for insertion and ndel =.5K (i.e., 2.5%) existing
records for deletion per increment. We use d = 9, m = 3, and
θ = .8 as default values for the remaining parameters.

Results: We make four observations when varying these parame-
ters: First, varying θ confirms the observations made for Biz and
Cora. If the graph is denser, i.e. the average number of neighbors
increases from 0 (θ = 1) to 25.01 for (θ = .7), GREEDY is more
resilient in terms of quality and requires less execution time than
the CAUTIOUS approaches (IT and CC) for denser environments
(Figures 10 and 11). We also observe (not shown in the graph) that
GREEDY improves the result quality with each increment because
it touches more nodes. Second, increasing d from 1 to 9 mono-
tonically increases the average execution time by a factor of 1.1
(NAIVE), 1.7 (CC), 4.6 (IT), and 1.4 (GREEDY). The quality for
all approaches increases from d = 1 at .61 (NAIVE), .59 (IT and
CC), and .68 (GREEDY) to d = 9 with .82 (NAIVE), .87 (IT and
CC), and .9 (GREEDY). The increase can be attributed to the fact
that more duplicates mean a better chance of having high cohesion
within an entity. Third, an increase of m results in a similar perfor-
mance per method as shown in Figure 10 for θ = .8. At the same
time, the change causes a decrease in F-measure for all approaches.
More specifically, the quality of NAIVE, CC, and IT decreases by
5% increasing m from 1 to 5 while the result quality of GREEDY
is decreased by 1%. Last, we note that delete-only workloads are
more efficient to process for all approaches except for CC. It takes
the whole connected component as input which makes it indifferent
to workload characteristics while IT, GREEDY, and NAIVE a) eval-
uate where the inserted or deleted record fits in and then b) how
the clustering changes because of that. For deleted records, the

0.1	
1	
10	
100	

1000	
10000	

100000	

1	 0.95	 0.9	 0.85	 0.8	 0.75	 0.7	 Ti
m
e	
(in

	 m
s,
	 lo
g	
sc
al
e)
	

Similarity	 Threshold	

Naïve	

CC	

IT	

Greedy	

Figure 10: Time, varying θ (Febrl)

0	

0.2	

0.4	

0.6	

0.8	

1	

1	 0.95	 0.9	 0.85	 0.8	 0.75	 0.7	

F-‐
M
ea
su
re
	

Similarity	 Threshold	

Naïve	

CC	

IT	

Greedy	

Figure 11: F-Measure, varying θ (Febrl)

0.1	

1	

10	

100	

1000	

100	 200	 400	 600	 800	 1000	 Ti
m
e	
(in

	 m
s,
	 lo
g	
sc
al
e)
	

Update	 Size	

Naïve	

CC	

IT	

Greedy	

Figure 12: Time, varying nins (Febrl)

first part is obviously less costly as the position of a record in the
clustering is already known. Specifically, we observe an increase
by factor 60 for NAIVE, 8 for IT, and 2 for GREEDY when com-
paring a delete-only to an insert-only workload (nins =1K and
ndel =1K). The varying factors are directly correlated to the way
that deletes are handled for each approach: while GREEDY creates
the clustering with costly split and move operations, IT initiates a
cluster check on a smaller, less connected cluster, and NAIVE sim-
ply removes the record from the dataset. If we focus on an insert-
only workload, we can show how the algorithms scale differently in
noisy environments (Figure 12): While the performance of NAIVE
is 52% better than GREEDY for nins = 100, GREEDY is 47% bet-
ter than NAIVE for nins = 1000. At the same time, GREEDY main-
tains a higher F-measure (.9 compared to .82 of NAIVE). We can
observe in this figure that a high connectivity of the graph is highly
correlated with the performance of CC and IT: As both approaches
(iteratively) explore at least 64.4% of the records in the graph for
nins = 1000, their performance is clearly worse than GREEDY
which only evaluates 13% of the graph on average. These observa-
tions are confirmed by varying the threshold θ thus increasing the
level of noise as shown in Figure 10.

6. RELATED WORK
Record linkage has been extensively studied in the literature (sur-

veyed in [8]); however, most of the research focuses on batch link-
age rather than performing linkage in an incremental fashion to im-
prove the efficiency. To the best of our knowledge, incremental
linkage has been studied only in [12, 13]; however, they focused
on evolving matching rules and discussed evolving data only very
briefly. We present an end-to-end solution for incremental record
linkage and we compared it to their work in detail in Section 3.1.

Another body of work close to ours is incremental graph cluster-
ing. Mathieu et al. [11] studied incremental correlation clustering
for the case where (1) one vertex is added each time, and (2) al-
ready identified clusters need to be preserved. Their algorithm is
analogous to the naive algorithm in our experiments. Charikar et
al. [5] studied incremental clustering when the number of clusters
is known a priori. Both papers focused on theoretical analysis and
neither reported experimental results. Our algorithm is different in
three aspects. First, we consider updates including not only insert-
ing a record, but also deleting or changing an existing record. Sec-
ond, we allow merging previously formed clusters, splitting them,
or moving nodes between them, such that we can leverage new ev-
idence from updates for fixing previous clustering errors. Third,
we do not require any prior knowledge of the number of clusters,
which is not realistic for the record linkage context. We show by
extensive experiments that our algorithms achieve high efficiency
without sacrificing the quality of linkage results.

7. CONCLUSION
This paper describes a set of algorithms that conduct record link-

age in an incremental fashion when updates of the data arrive. Our
algorithms not only allow merging records in the updates with ex-
isting clusters, each representing records that refer to the same en-
tity, but also allow leveraging new evidence to modify existing clus-

ters. We have shown on three real-world and synthetic data sets that
they can handle a variety of increments: CC is a good alternative to
BATCH even for large increments as it solely modifies those compo-
nents that are connected to the increment. Our iterative approaches
on the other hand are best applied for changes that affect a small
portion of the connected component, i.e. when the update has local
rather than global impact. Here, we have shown that both IT and
GREEDY have well-defined use cases: as IT applies the original ob-
jective function, it will obtain similar quality to the respective batch
algorithm while its performance is dependent on the implementa-
tion of the same. GREEDY has a predictable overhead which be-
comes less relevant, the more time-consuming the implementation
of the original objective function as we have shown for DB-INDEX.
Additionally, we show in our experiments that GREEDY is robust
in noisy environments. Future work includes studying the problem
on Web-scale data sets and for incremental linkage involving entity
mentions in unstructured texts.

8. REFERENCES
[1] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.

In Machine Learning, pages 238–247, 2002.
[2] R. Baxter, P. Christen, and T. Churches. A comparison of fast

blocking methods for record linkage. In ACM SIGKDD
Workshop on Data Cleaning, Record Linkage, and Object
Consolidation, 2003.

[3] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach to
entity resolution. VLDB J., 18(1):255–276, 2009.

[4] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In SIGKDD,
pages 39–48, 2003.

[5] M. Charikar, C. Chekuri, T. Feder, and R. Motwani.
Incremental clustering and dynamic information retrieval.
SIAM J. Comput., 33(6):1417–1440, 2004.

[6] D. L. Davies and D. W. Bouldin. A Cluster Separation
Measure. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-1(2):224–227, Apr. 1979.

[7] U. Draisbach and F. Naumann. On choosing thresholds for
duplicate detection. In Proceedings of the 18th International
Conference on Information Quality (ICIQ), 2013.

[8] L. Getoor and A. Machanavajjhala. Entity resolution:
Theory, practice, & open challenges. PVLDB,
5(12):2018–2019, 2012.

[9] S. Guo, X. Dong, D. Srivastava, and R. Zajac. Record
linkage with uniqueness constraints and erroneous values.
PVLDB, 3(1):417–428, 2010.

[10] O. Hassanzadeh, F. Chiang, R. J. Miller, and H. C. Lee.
Framework for evaluating clustering algorithms in duplicate
detection. PVLDB, 2(1):1282–1293, 2009.

[11] C. Mathieu, O. Sankur, and W. Schudy. Online correlation
clustering. In STACS, pages 573–584, 2010.

[12] S. Whang and H. Garcia-Molina. Entity resolution with
evolving rules. PVLDB, 3(1):1326–1337, 2010.

[13] S. E. Whang and H. Garcia-Molina. Incremental entity
resolution on rules and data. VLDB J., 23(1):77–102, 2014.

