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ABSTRACT
Many data management applications, such as setting up Web

portals, managing enterprise data, managing community data,

and sharing scientific data, require integrating data from multi-

ple sources. Each of these sources provides a set of values and

different sources can often provide conflicting values. To present

quality data to users, it is critical that data integration systems

can resolve conflicts and discover true values. Typically, we ex-

pect a true value to be provided by more sources than a particu-

lar false one, so we can take the value provided by the majority

of the sources as the truth. Unfortunately, a false value can be

spread through copying and that makes truth discovery extremely

tricky. In this paper, we consider when there are a large number

of sources among which some may copy from others, how to find

true values from conflicting information.

We present a novel approach that considers dependence be-

tween data sources in truth discovery. Intuitively, if two data

sources provide a large number of common values and many of

these values are rarely provided by other sources (e.g., particular

false values), it is very likely that one copies from the other. We

apply Bayesian analysis to decide dependence between sources

and design an algorithm that iteratively detects dependence and

discovers truth from conflicting information. We also extend our

model by considering accuracy of data sources and similarity be-

tween values. Our experiments on synthetic data as well as real-

world data show that our algorithm can significantly improve ac-

curacy of truth discovery and is scalable when there are a large

number of data sources.

1. INTRODUCTION
Many data management applications require integrating

data from multiple sources, each of which provides a set of
values as “facts”. However, “facts and truth really don’t
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have much to do with each other” (by William Faulkner).
Different sources can often provide conflicting values, some
being true while some being false. To provide quality data to
users, it is critical that data integration systems can resolve
conflicts and discover true values. Typically, we expect a
true value to be provided by more sources than a particular
false one, so we can apply voting and take the value provided
by the majority of the sources as the truth. Unfortunately, a
value provided by one data source, no matter true or false,
can be copied by many other sources. “A lie told often
enough becomes the truth” (by Vladimir Lenin); telling the
truth from conflicting information becomes extremely tricky
in such a situation. In this paper, we consider the following
problem: from the conflicting values provided by a large
number of sources among which some may copy from others,
how can one decide which is the true value?

We are mainly motivated by integrating data from the
Web. As an example, consider AbeBooks.com, which in-
tegrates information on books from different online book-
stores. A search on “Digital Visual Fortran Programmer’s
Guide” (ISBN: 1555582184) returned 12 bookstores that sell
the book1. Among them 7 claimed Michael Etzel is the au-
thor, 4 claimed Michael Etzel and Karen Dickinson together
are the authors, and 1 claimed Micheal Etzel and Karen
Dickinson are the authors. The website needs to decide who
on earth authored the book so that it can correctly answer
queries such as asking for books authored by Karen Dick-
inson. Although there are more bookstores claiming that
Michael Etzel by himself is the author, some of them are
likely to derive data from others and indeed, both Michael
Etzel and Karen Dickinson are the authors. Similar scenar-
ios can arise in integrating enterprise information, managing
community data, sharing scientific data, and so on.

Ideally, when applying voting we would like to ignore in-
formation that is copied; however, this raises at least three
challenges. First, in many applications we do not know how
each source obtains its data, nor do we have an update log of
the sources, so we have to discover copiers from a snapshot of
data. The discovery is non-trivial as sharing common data
does not in itself imply copying; for example, two sources
can both know the true values and provide them indepen-
dently. Second, even when we decide that two sources are
dependent, with only a snapshot of data it is not obvious
which of them is a copier. Third, a copier can also provide
some data by itself or verify some of the copied data, so it

1This result is according to a data set collected by [13] in
2007.



Table 1: The motivating example: five data sources
provide information on the affiliations of five re-
searchers. Only S1 provides all true values.

S1 S2 S3 S4 S5

Stonebraker MIT Berkeley MIT MIT MS
Dewitt MSR MSR UWisc UWisc UWisc

Bernstein MSR MSR MSR MSR MSR
Carey UCI Oracle BEA BEA BEA
Halevy Google Google UW UW UW

is inappropriate to ignore all data it provides.
In this paper, we present a novel approach that considers

dependence between data sources in truth discovery. Our
technique considers not only whether two sources share the
same values, but also whether the shared values are true
or false. Intuitively, for a particular object, there are of-
ten multiple distinct false values but usually only one true
value. Sharing the same true value does not necessarily im-
ply sources being dependent; however, sharing the same false
value is typically a rare event when the sources are fully inde-
pendent. Thus, if two data sources share a lot of false values,
they are more likely to be dependent. We develop Bayes
models that compute the probability of two data sources
being dependent and take the result into consideration in
truth discovery. Note that detection of dependence between
data sources is based on recognition of true values, whereas
correctly deciding true values requires knowledge of source
dependence. There is an inter-dependence between them
and we solve the problem by iteratively deciding dependence
between sources and discovering truth from conflicting in-
formation. To the best of our knowledge, source-dependence
analysis has not been investigated for the purpose of truth
discovery.

We also consider accuracy in voting: we trust the values
provided by an accurate data source more and give them a
higher weight. This method requires identifying not only if
a pair of sources are dependent, but also which source is the
copier. Indeed, accuracy in itself is a clue in deciding the
direction of dependence: given two data sources, if the ac-
curacy of their common data is highly different from that of
one of the sources, that source is more likely to be a copier.
Note that considering accuracy of sources in truth discovery
has been explored in [13]. Whereas we share the basic idea,
we present a different model for computing source accuracy
and extend it to incorporate the notion of source depen-
dence. We present more detailed comparison in Section 5.4.

We now illustrate the main techniques of the paper with
an example.

Example 1.1. Consider the five data sources in Table 1.
They provide information on affiliations of five researchers
and only S1 provides the correct affiliations for all researchers.
However, since the affiliations provided by S3 are copied by
S4 and S5 (with certain errors during copying), a naive vot-
ing would consider them as the majority and so make wrong
decisions for three out of five researchers.

We solve the problem by considering dependence between
data sources. If we knew which values are true and which are
false, we would suspect that S3, S4 and S5 are dependent,
because they provide the same false values. On the other
hand, we would suspect the dependence between S1 and S2

much less, as they share only true values. Based on this

analysis, we would ignore the values provided by S4 and S5

and then be able to decide the correct affiliation for four out
of five researchers (except Carey).

Further, we consider accuracy of data sources. Based on
the voting results we have obtained with consideration of
source dependence, S1 is more accurate than S2 and S3.
Thus, we would trust S1 more and this leads to the correct
decision on Carey’s affiliation. Note that if we do not con-
sider dependence between S3, S4 and S5, we would consider
S3 and S4 as the most accurate and that further strengthens
the wrong information they provide. 2

In summary, our paper makes the following three contri-
butions:

1. First, we formalize the notion of source dependence
and presents a classification of copiers. We develop
Bayes models that are able to discover copiers of vari-
ous kinds.

2. Second, we incorporate the notion of accuracy of sources
in the analysis of source dependence, and design an al-
gorithm that considers both dependence between sources
and accuracy of sources in truth discovery. We fur-
ther extend this algorithm by considering similarity
between values and distribution of false values.

3. Finally, we tested our algorithms on synthetic data and
a real-world data set. The experimental results show
that our algorithm can significantly improve accuracy
of truth discovery, is robust in presence of particular
cases of falsification by malicious sources, and is scal-
able when there are a large number of data sources.

We envision our work as a first step towards integrat-
ing data from multiple sources where some may copy from
others. We expect our techniques to have broad impact
on various aspects of data sharing, including resolving con-
flicts from multiple sources, removing duplications of various
forms, answering queries efficiently from multiple sources
with awareness of copiers, and recommending trustworthy
data sources.

This paper is structured as follows. Section 2 formally
defines the problem we solve and the notion of dependence
between data sources. Section 3 and 4 describe the core
models that detect copiers and discover truths accordingly.
Section 5 describes our algorithm that considers both depen-
dence and accuracy in truth discovery. Section 6 presents
several extensions and Section 7 describes experimental re-
sults. Finally, Section 8 discusses related work and Section 9
concludes.

2. OVERVIEW
This section formally describes the problem we solve, de-

fines dependence between data sources, and overviews mod-
els we present in this paper.

2.1 Problem statement
We consider a set of data sources S and a set of objects

O. An object represents a particular aspect of a real-world
entity, such as the affiliation of a person; in a relational
database, an object corresponds to a cell in a table. For
each object O ∈ O, a source S ∈ S can (but not necessarily)
provide a value. Among different values provided for an
object, one correctly describes the real world and is true, and
the rest are false. Table 2 lists the variables and parameters



Table 2: Variables and parameters in this paper.
Name Description

O Objects
O An object

V(O) Domain of O
n(O) Number of incorrect values of O
ε(O) Probability of making an error on an independently provided value for O
Ψ(O) Observation of which source votes for which value on O

v A value
S̄o(v) The set of sources that provide value v on object O
P (v) The probability that v is a correct value of O
C(v) The confidence of v is a correct value of O
V (v) The total vote count of v as a value of O
S Data sources
S A data source

S(O) The value provided by data source S on object O
A(S) The accuracy of S
A′(S) The accuracy score of S. A′(S) = − ln( 1

A(S)
− 1) + ln n

ε(S) Error rate of S. ε(S) = 1 − A(S)
I(S) The vote count of S on a particular value

S1⊥S2 S1 and S2 are independent of each other
S1 ∼ S2 S1 and S2 are dependent
S1 → S2 S1 copies from S2

Ot Objects where two data sources provide the same true value
kt Size of Ot

Of Objects where two data sources provide the same False value
kf Size of Of

Od1 Objects where S1 provides the true value while S2 provides a false one
kd1 Size of Od1

Od2 Objects where S2 provides the true value while S1 provides a false one
kd2 Size of Od2

Od0 Objects where two data sources provide different false values
kd0 Size of Od0

Φ Observation of distribution of Ot, Of , Od1, Od2 and Od0

α A-priori probability of dependence between two data sources
c Percentage of copied values over all values provided by a copier
ε Probability of making an error on an independently provided value
n Number of incorrect values for each object in the underlying domain

we use in this paper and we shall explain each of them at
the time of use.

In this paper we solve the following problem: given a snap-
shot of data sources in S, decide the true value for each
object O ∈ O.

We note that in real-world applications, the value pro-
vided by a data source can either be atomic or a set or list
of atomic values (e.g., author list). In the latter case, we
consider the set or list as a whole. This problem setting
already fits many real-world applications and the solution
is non-trivial. There exist applications where the true value
is a set of atomic values while each data source typically
provides one or a few of the values. We defer handling this
situation to future work.

2.2 Dependence between sources
We say there exists a dependence from data source S to

T if S copies directly from T . We allow that S copies only
a subset of T ’s values, revises some of the copied values,
and adds additional values; though, in the latter two cases,
the revised and added values are considered as independent

contributions by S. Note that this definition considers only
direct copying; in other words, the fact that source A copies
from B and B copies from C does not imply dependence
from A to C, as A may not copy directly from C. We allow a
copier to copy from multiple sources (by union, intersection,
etc.). As we consider only a snapshot of data, cyclic copying
on a particular object is impossible.

Based on this definition, there are two types of data sources:
independent sources and copiers. An independent source
provides all values independently. We further distinguish
good independent sources from bad ones: a data source is
considered to be good if for each object it is more likely to
provide the true value than a particular false value; other-
wise, it is considered to be bad.

A copier copies some values from other sources (indepen-
dent sources or copiers) and provides the rest of the values
independently (by examining and revising copied values or
adding new values). We categorize copiers into benevolent
and malicious ones. A copier is benevolent if each value it
provides independently is more likely to be a true value than
a particular false one and malicious otherwise. For exam-
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Figure 1: Models for truth discovery.

ple, a copier that tries to fix some false values it copies is
benevolent, whereas a copier that randomly changes some
copied values to avoid being detected as a copier, or makes
random mistakes in copying, is malicious. As a special case,
a copier that does not provide any value independently is
considered as benevolent.

2.3 Models in this paper
We start our discussion from a core case that satisfies the

following three conditions:

• Same source accuracy: For each object, all inde-
pendent data sources have the same probability of pro-
viding a true value.

• Uniform false-value distribution: For each object,
there are multiple false values in the underlying do-
main and an independent source has the same proba-
bility of providing each of them.

• Categorical value: For each object, values that do
not match exactly are considered as completely differ-
ent.

In this core case, independent sources are good under the
following condition. For each O ∈ O, let ε(O) be the prob-
ability that a source provides a false value (i.e., error rate)
on O and n(O) be the number of false values on O in the

underlying domain. Then, if 1 − ε(O) > ε(O)
n(O)

(i.e., ε(O) <
n(O)

n(O)+1
), independent sources in S are good. Intuitively,

given such a set of independent data sources, we can discover
true values by voting. The following proposition, which we
prove and generalize in Section 5, formalizes this intuition.

Proposition 2.1 (Voting). Let O be an object and
S̄O be a set of independent sources voting for O. In the

core case, if ε(O) < n(O)
n(O)+1

, among the different values on

O provided by S̄O, the one provided by the maximum number
of sources has a higher probability to be true. 2

Even for this core case, discovering dependence between
data sources and deciding true values are non-trivial; we
solve the problem by two models Bene (Section 3) and Mal
(Section 4). Then, we relax the Same-source-accuracy con-
dition and present the Accu model (Section 5). As exten-
sions (Section 6), we present the AccuPR model consider-
ing probabilities of a value being true in dependence discov-
ery, the Sim model relaxing the Categorical-value condition,
and the NonUni model relaxing the Uniform-false-value-
distribution condition. Figure 1 depicts the relationships
between these models.

Throughout the paper, all of our models make the follow-
ing assumptions.

• Assumption 1 (Independent values). The values
independently provided by a data source on different
objects are independent of each other.

• Assumption 2 (Independent copying). The de-
pendence between a pair of data sources is indepen-
dent of the dependence between any other pair of data
sources.

• Assumption 3 (Random copying). A copier ran-
domly copies a fraction (or all) of the values provided
by the original source.

Our experimental results on real-world data show that even
when these assumptions might be violated, our techniques
still work well. Note that under Assumption 3, loop copying
between data sources is impossible; otherwise, a data source
can end up copying values provided by itself.

3. MODEL FOR BENEVOLENT COPIERS
This section describes how we detect benevolent copiers

and discover truth from conflicting information accordingly.
We consider malicious copiers in the next section.

3.1 Dependence of data sources
Assume S consists of two types of data sources: good

independent sources and benevolent copiers. Let n (n > 1)
be the number of false values in the underlying domain for
each object. Let c (0 < c ≤ 1) be the probability that a value
provided by a copier is copied. Let ε (0 ≤ ε < n

n+1
) be the

error rate; that is, the probability that an independently
provided value is false.

Given two data sources S1 and S2, we want to compute
the probability that they are dependent. Let Ōt be the set
of objects on which they provide the same true value, Ōf be
the set of objects on which they provide the same false value,
and Ōd be the set of objects on which they provide different
values. These three sets are disjoint and Ōt ∪ Ōf ∪ Ōd ⊆ O.
We denote by Φ the observation of Ōt, Ōf and Ōd and denote
by kt, kf and kd their sizes respectively. Intuitively, it is
more likely for a good independent source to provide the
true value than a particular false value on an object; thus, if
we fix Ōt ∪ Ōf and Ōd, the more common false values that
S1 and S2 provide, the more likely that they are dependent.
On the other hand, if we fix Ōt and Ōf , the fewer objects
on which S1 and S2 provide different values, the more likely
that they are dependent. We conduct a probability analysis
based on these intuitions.

We first consider what is the probability of observing Φ if
S1 and S2 are independent, denoted by S1⊥S2. Since there
is a single true value, the probability that S1 and S2 provide
the same true value for object O is

Pr(O ∈ Ōt|S1⊥S2) = (1 − ε)2. (1)

Under the Uniform-false-value-distribution condition, the
probability that a data source provides a particular false
value for object O is ε

n
. Thus, the probability that S1 and

S2 provide the same false value for O is

Pr(O ∈ Ōf |S1⊥S2) = n · (
ε

n
)2 =

ε2

n
. (2)

Then, the probability that S1 and S2 provide different
values on an object O, denoted by Pd for convenience, is

Pr(O ∈ Ōd|S1⊥S2) = 1 − (1 − ε)2 −
ε2

n
= Pd. (3)



Following the Independent-values assumption, the condi-
tional probability of observing Φ is

Pr(Φ|S1⊥S2) =
(1 − ε)2ktε2kf P

kd

d

nkf
. (4)

We next consider what is the probability of observing Φ
if S1 and S2 are dependent, denoted by S1 ∼ S2. There
are two cases where S1 and S2 provide the same value v.
First, with probability c, one copies v from the other and so
v is true with probability 1 − ε and false with probability
ε. Second, with probability 1− c, the two sources provide v
independently and so its probability of being true or false is
the same as in the case where S1 and S2 are independent.
Thus, we have

Pr(O ∈ Ōt|S1 ∼ S2) = (1 − ε) · c + (1 − ε)2 · (1 − c),(5)

Pr(O ∈ Ōf |S1 ∼ S2) = ε · c +
ε2

n
· (1 − c). (6)

Finally, the probability that S1 and S2 provide different
values on an object is that of S1 providing a value indepen-
dently and the value differs from that provided by S2:

Pr(O ∈ Ōd|S1 ∼ S2) = Pd · (1 − c). (7)

Thus, the conditional probability of observing Φ is

Pr(Φ|S1 ∼ S2) =
(1 − ε)kt (1 − ε + cε)ktεkf (cn + ε − cε)kf (1 − c)kdP

kd
d

nkf
.

(8)

By applying the Bayes Rule, we obtain the probability of
S1 ∼ S2 conditioned on the observation of Φ as follows.

Pr(S1 ∼ S2|Φ)

=
Pr(Φ|S1 ∼ S2)Pr(S1 ∼ S2)

Pr(Φ|S1 ∼ S2)Pr(S1 ∼ S2) + Pr(Φ|S1⊥S2)Pr(S1⊥S2)

=

„

1 + (
1 − α

α
)(

1 − ε

1 − ε + cε
)kt(

ε

cn + ε − cε
)kf (

1

1 − c
)kd

«−1

(9)

Here α = Pr(S1 ∼ S2)(0 < α < 1) is the a-priori proba-
bility that two data sources are dependent. Note that we
should avoid setting α to 0 or 1, because otherwise Pr(S1 ∼
S2|Φ) = α and no Φ can change our a-priori belief of the
likelihood of dependence. We discuss how we set the pa-
rameters at the end of this section.

Equation (9) has several nice properties that conform to
the intuitions we discussed early in this section, formalized
as follows.

Theorem 3.1. Let S be a set of good independent sources
and benevolent copiers. Equation (9) has the following three
properties on S.

1. Fixing kt + kf + kd, when kt + kf increases and none
of kt and kf decreases, the probability of dependence
increases;

2. Fixing kt + kf and kd, when kf increases, the proba-
bility of dependence increases;

3. Fixing kt and kf , when kd decreases, the probability of
dependence increases. 2

Proof. We prove the three properties as follows.

1. Let k0 = kt + kf + kd. Then, kd = k0 − kt − kf . We
have

Pr(S1 ∼ S2|Φ)

=

„

1 + (
1 − α

α
)(

1 − ε − c + cε

1 − ε + cε
)kt (

ε − cε

cn + ε − cε
)kf (

1

1 − c
)k0

«−1

.

As 0 < c < 1, we have 0 < 1−ε−c+cε
1−cε

< 1 and 0 <
ε−cε

cn+ε−cε
< 1. When kt or kf increases, ( 1−ε−c+cε

1−cε
)kt

or ( ε−cε
cn+ε−cε

)kf decreases. Thus, Pr(S1 ∼ S2|Φ) in-
creases.

2. Let kc = kt + kf . Then, kt = kc − kf . We have

Pr(S1 ∼ S2|Φ)

=

„

1 + (
1 − α

α
)(

1 − ε

1 − ε + cε
)kc (

ε(1 − ε + cε)

(1 − ε)(cn + ε − cε)
)kf (

1

1 − c
)k

«−1

.

Because ε < n
n+1

, ε(1− ε + cε) < (1− ε)(cn + ε− cε).

Thus, when kf increases, ( ε(1−cε)
(1−ε)(n−cn+cε)

)kf decreases

and so Pr(S1 ∼ S2|Φ) increases.

3. Because kd increases, ( 1
1−c

)kd increases, and so Pr(S1 ∼

S2|Φ) decreases.

Note that Equation (9) does not indicate direction of de-
pendence. Indeed, without considering accuracy of individ-
ual sources, we do not have evidence for deciding direction in
presence of benevolent copiers. Section 4 and 5 describe two
models that detect directions of dependencies for malicious
copiers and sources of different accuracy. Also note that
Equation (9) computes probability of dependence based on
shared values between sources. In case of transitive copying
or co-copying, it can compute (incorrectly) a high probabil-
ity of dependence (i.e., direct copying) between the transi-
tive copier and the original source, or between copiers who
copy from the same source. However, as we discuss shortly
and as our experiments show, this type of mis-classification
does not affect vote count much and so seldom change truth
discovery results.

3.2 Vote count of a value
We have described how we decide if a pair of data sources

are dependent. However, even if a data source copies from
another, it is possible that it provides some of the values
independently and it would be inappropriate to ignore these
values. We next describe how to count the vote for a partic-
ular value once we know the probability of dependence. We
first analyze what the ideal vote count should be and then
describe an algorithm that estimates the ideal count.

3.2.1 Ideal vote count
We start from the case where we know deterministically

the dependence relationship between sources and discuss
probabilistic dependence subsequently. Consider a specific
value v for a particular object O and let S̄o(v) be the set of
data sources that provide v on O. Suppose for each pair of
sources in S̄o(v), we know if one copies from the other and
which is the copier. Accordingly, we can draw a dependence
graph G, where for each S ∈ S̄o(v), there is a node, and for
each S1, S2 ∈ S̄o(v) where S1 copies from S2, there is an
edge from S1 to S2.

For each S ∈ S̄o(v), we denote by d(S, G) the out-degree of
S in G, corresponding to the number of data sources from



which S copies. If d(S, G) = 0, S is independent and its
vote count for v is 1. Otherwise, according to the random-
copying assumption, for each source S′ that S copies from,
S provides a value independently of S′ with probability 1−
c. According to the Independent-copying assumption, the
probability that S provides v independently of any other
source is (1 − c)d(S,G) and the total vote count of v with
respect to G is

V (v, G) =
X

S∈S̄o(v)

(1 − c)d(S,G). (10)

However, recall that Equation (9) computes only a proba-
bility of dependence between a pair of sources and does not
indicate the direction of the dependence. Thus, we have to
enumerate all possible dependence graphs and take the sum
of the vote count with respect to each of them, weighted by
the probability of the graph. Let D̄o be the set of possible
dependencies between sources in S̄o(v) and we denote the
probability of D ∈ D̄o by p(D). Consider a subset D̄ ⊆ D̄o

of m dependencies. According to the Independent-copying
assumption, the probability that all and only dependencies
in D̄ hold is

Pr(D̄) = ΠD∈D̄p(D)ΠD∈D̄o−D̄(1 − p(D)). (11)

There are up to 2m acyclic dependence graphs with this set
of dependencies and we denote them by Ḡ(D̄). Our a-priori
belief would be that all dependence graphs in Ḡ(D̄) have
the same probability; however, by analyzing the probability
of multiple sources independently providing the same value,
we can obtain more accurate probability of each dependence
graph.

Consider a dependence graph G ∈ Ḡ(D̄). Let k be the
number of independent data sources in G. We first com-
pute given G, what is the probability that all data sources
in S̄o(v) provide the same value v for a particular object, de-
noted by Pr(v|G). This probability is the probability that
all independent sources in G provide value v. By applying
the same analysis as in the last section, we obtain that the

probability is (1−ε)k if v is true and εk

nk−1 otherwise. Thus,
the conditional probability of v being provided by all sources
in S̄o(v) is

Pr(v|G) = (1 − ε)k+1 +
εk+1

nk−1
. (12)

As we believe a-priori that all dependence graphs in Ḡ(D̄)
have the same probability, by applying the Bayes Rule, we
compute the probability of G as

Pr(G|v, D̄) =
P (v|G, D̄)

P

G0∈Ḡ(D̄) P (v|G0, D̄)
=

P (v|G)
P

G0∈Ḡ(D̄) P (v|G0)
.

(13)
According to Equations (12) and (13), G has the highest
probability when it has the minimum number of indepen-
dent sources; that is, when each connected subgraph in G
contains a single independent source. When the number
of independent sources is increased, the probability of G is
reduced dramatically.

Based on Equations (11) and (13) we can compute the
probability of G as

Pr(G|v) = Pr(G|v, D̄)Pr(D̄). (14)

Finally, the vote count of v should be the sum of the vote
count with respect to each dependence graph weighted by

S1

S2 S3

S1

S2 S3

S1

S2 S3

S1

S2 S3

(a) (b) (c) (d)

Figure 2: Dependence graphs with a dependence
between S1 and S3 and one between S2 and S3, where
S1, S2, and S3 provide the same value on an object.

the probability of that dependence graph:

V (v) =
X

G

V (v, G)Pr(G|v). (15)

Example 3.2. Consider three data sources S1, S2 and S3

that provide the same value v on an object. Assume c = .8
and between each pair of sources the probability of depen-
dence is .4. We can compute v’s vote count by enumerating
all possible dependence graphs.

• There is 1 graph with no dependence. All sources are
independent so the vote count is 1 + 1 + 1 = 3. The
probability of this graph is (1 − .4)3 = .216.

• There are 6 graphs with only one dependence. The
total probability of graphs that contain a particular de-
pendence is (1− .4)2 ∗ .4 = .144. Each dependence has
two directions, so the probability of each such graph is
.144/2 = .072. No matter which direction the depen-
dence is in, the vote count is 1 + 1 + .2 = 2.2.

• There are 12 graphs with two dependencies. Figure 2
shows the four that contain a dependence between S1

and S3, and a dependence between S2 and S3. The
sum of their probabilities is (1 − .4) ∗ .42 = .096. For
each of the first three graphs (Figure 2(a)-(c), each
with a single independent source), the vote count is
1 + .2 + .2 = 1.4 and by applying the Bayes Rule we
compute its probability as .32 ∗ .096 = .03. For the last
one (Figure 2(d), with two independent sources), the
vote count is 1 + 1 + .22 = 2.04 and its probability is
.04 ∗ .096 = .004.

• Finally, there are 6 acyclic graphs with three dependen-
cies (we ignore the details), where each has vote count
1 + .2 + .22 = 1.24 and probability .43/6 = .011.

By taking the weighted sum, we compute the total vote
count of v as 2.08. 2

We note that if we have a-priori knowledge of correla-
tions between copyings, such as one copier copying from a
single source, we can extend our model by applying such
knowledge to prune some dependence graphs, normalizing
the probabilities of the rest of the graphs, and then taking
the weighted sum as the vote count.

3.2.2 Estimating vote count
As there are an exponential number of dependence graphs,

computing the vote count by enumerating all of them can
be quite expensive. Let d be the number of possible depen-
dencies. For each dependence, we need to consider three
possibilities: the dependence does not hold, it holds in one
direction, and it holds in the other direction. Thus, there
are 3d dependence graphs and so computing the vote count
takes exponential time. To make the analysis of source de-
pendence scalable, we need to find a way to estimate the
vote count in polynomial time.



We estimate a vote count by considering the data sources
one by one. For each source S, we denote by Pre(S) the set
of sources that have already been considered and by Post(S)
the set of sources that have not been considered yet. We
compute the probability that the value provided by S is
independent of any source in Pre(S) and take it as the vote
count of S. The vote count computed in this way is not
precise because if S depends only on sources in Post(S)
but some of those sources depend on sources in Pre(S), our
estimation still (incorrectly) counts S’s vote. To minimize
such error, we wish that the probability that S depends
on a source S′ ∈ Post(S) and S′ depends on a source S′′ ∈
Pre(S) be the lowest. Thus, we take a greedy algorithm and
consider data sources in such an order: in the first round, we
select a data source that is associated with a dependence of
the highest probability; in later rounds, each time we select
a data source that has the maximal dependence on one of
the previously selected sources.

We now consider how to compute the vote count of v once
we have decided an order of the data sources. Let S be a
data source that votes for v and we denote by P (S ∼ S0)
the probability of dependence between sources S and S0.
The probability that S provides v independently of any data
source in Pre(S) is

V (S, Pre(S)) = ΠS0∈Pre(S)(1 − cP (S ∼ S0)). (16)

Let I(S) = V (S, Pre(S)). The total vote count of v is
P

S∈S̄o(v) I(S).

Example 3.3. Continue with Example 3.2. As all depen-
dencies have the same probability, we can consider the data
sources in any order. We choose the order of S1, S2, S3.
The vote count of S1 is 1, that of S2 is 1 − .4 ∗ .8 = .68,
and that of S3 is .682 = .46. So the estimated vote count is
1 + .68 + .46 = 2.14, very close to the real vote count, 2.08.
2

Finally, as a further optimization, we would like to con-
sider a dependence only if it has the potential to change
vote counts substantially. If the probability of a dependence
is lower than a threshold η, we ignore the dependence and
view the two data sources as independent. Our experimen-
tal results show that setting η to a low number, such as
0.1, typically does not change the voting results, but can
improve the efficiency by ???.

Algorithm BeneVoteCount describes how we count votes
for each value provided on a particular object O. In the algo-
rithm we denote by S(O) the value S provides on object O.
We formalize the properties of BeneVoteCount as follows,
showing scalability of our estimation algorithm.

Theorem 3.4. BeneVoteCount has the following two
properties.

1. Let t0 be the ideal vote count of a value and t be the vote
count computed by BeneVoteCount. Then, t0 ≤ t ≤
1.5t0.

2. Let s be the number of sources that provide information
on an object. We can estimate the vote count of all
values of this object in time O(s2 log s). 2

Proof. 1. Consider m data sources that vote for a
value and assume BeneVoteCount ranks them as
S1, . . . , Sm. Let D̄ be a subset of dependencies. Let G

0: Input: O, S̄o, D̄o. //O is an object, S̄o is the set of sources
providing values on O, and D̄o is the set of dependencies
between sources in S̄o.

Output: The vote count of each value on O.
1: //Find dependence between sources that vote the same value

for each (dependence d = (S1, S2) ∈ D̄o)
if (Pr(d) > η && S1(O) = S2(O))

Add d to D̄; // η is the threshold for a valid dependence
2: //Sort sources in S̄o to an ordered list S̄:

Heap = ∅; //A binary heap for sorting
while (D̄ 6= ∅)

Let d = (S1, S2) be the depen in D̄ w. max pr;
Remove d from D̄; Add S1, S2 to S̄;
Move all depens in D̄ related to S1 or S2 to Heap;
while (Heap 6= ∅)

Let d0 = (S1, S2) be the depen in Heap w. max pr;
if (S1 ∈ S̄ && S2 ∈ S̄)

Remove d from Heap;
else if (S1 (or S2) ∈ S̄)

Add S2 (or S1) to S̄;
Remove d from Heap;
Move all depens in D̄ w. S2 (or S1) to Heap;

if (|S̄| < |S̄o|) Add S̄o − S̄ to the end of S̄;
3: //Compute the vote count:

for each (S ∈ S̄)
Compute S’s vote count according to Equation (16);

Add S’s vote count to the vote count of S(O);

Algorithm 1: BeneVoteCount: Compute vote count for
values on a particular object using the benevolent model.

be a dependence graph with dependencies in D̄. If G
contains nodes Si, Sj , Sk, 1 ≤ i < j < k ≤ m, where Sj

depends on Sk and Sk depends on Si, our estimation
will (incorrectly) count the vote by Sj ; otherwise, our
estimation computes the correct vote count for G. For
any three nodes in G, the probability that the previ-
ously described case happens is at most 1

3
(by Bayes

analysis). So the probability that BeneVoteCount
estimates more vote count for G than the ideal vote
count is at most 1

3
. Thus, the total vote count es-

timated by BeneVoteCount is at most 1/3
1−1/3

= .5

more than the ideal vote count.

2. Let d be the number of dependencies between the sources;

d ≤ s(s−1)
2

. Step 1 scans all dependencies in D̄o and
takes time O(d). Step 2 at most adds all dependen-
cies in D̄o into the heap. Inserting a dependence into
the heap and finding the dependence with the maxi-
mal probability in the heap both take time O(log d),
so Step 2 takes time O(d log d). Step 3 computes vote
count for each source and takes time O(s2). In to-
tal, BeneVoteCount takes time O(d log d + s2) =
O(s2 log s).

3.3 Finding the true values
Once we know the vote count of each value, we can decide

the true values by voting. However, computing vote counts
requires knowing probabilities of dependencies between data
sources, whereas computing the probabilities of dependen-
cies requires knowing the true values. There is a recursive
dependence between them and we solve the problem by com-
puting them iteratively.

Algorithm Vote describes how to discover true values
from conflicting information provided by multiple data sources.



0: Input: S,O.
Output: The true value for each object in O.

1: D = ∅; //dependencies between sources
V̄ = ∅; //decided true values

V̄0 = null; //true values decided in the last round

2: while (V̄ 6= V̄0)

3: V̄0 = V̄ ; V̄ = ∅;
4: for each (S1, S2 ∈ S, S1 6= S2)

Add depen between S1 and S2 to D (if not yet);
Compute Pr(S1 ∼ S2) according to (19) in 1st round

and to (9) later;
5: for each (O ∈ O)

Find the set S̄o ⊆ S of sources that vote for O and the
set D̄o ⊆ D of dependencies between sources in S̄o;

BeneVoteCount(O, S̄o, D̄o);

Select the value with the maximal vote count and add

to V̄ (if there are several values winning the same number

of votes, choose the previously selected one if possible and

randomly choose one otherwise);

Algorithm 2: Vote: Discover true values.

Vote iteratively computes the probability of dependence
between each pair of data sources and the vote count of
each value, and then for each object takes the value with
the maximal vote count as the true value. This process re-
peats until the voting results converge.

Note that it is critical to consider the dependence be-
tween sources from the beginning; otherwise, a data source
that has been duplicated many times can dominate the vote
results in the first round and make it hard to detect the
dependence between it and its copiers (as they share only
“true” values). However, in the first round we do not know
which values are true and which are false; in other words,
we cannot distinguish Ōt and Ōf . We instead consider
Ōc = Ōt ∪ Ōf and denote by kc the size of Ōc. By ap-
plying similar analysis, we obtain the probability that two
independent sources provide the same value as

Pr(o ∈ Ōc|S1⊥S2) = (1 − ε)3 +
ε3

n
. (17)

Let Pc = (1 − ε)3 + ε3

n
. The probability of two dependent

sources providing the same value is

Pr(o ∈ Ōc|S1 ∼ S2) = c + Pc · (1 − c). (18)

By applying the Bayes Rule, we derive from Equations (3)(7)
(17)(18) the probability of two data sources being dependent
conditioned on the observation of Φ as follows:

Pr(S1 ∼ S2|Φ) =

„

1 + (
1 − α

α
)(

Pc

c + Pc − cPc
)kc(

1

1 − c
)kd

«−1

.

(19)
We can prove that when there are a finite number of ob-

jects in O, Algorithm Vote cannot change the decision for
an object O back and forth between two different values
forever; thus, the algorithm converges. In practice, our ex-
periments show that the algorithm typically converges in
only a few rounds.

Theorem 3.5 (Convergence of Vote). Let S be a
set of good independent sources and benevolent copiers that
provide information on objects in O. Let l be the number
of objects in O and n0 be the maximum number of values
provided for an object by S. The Vote algorithm converges
in at most 2ln0 rounds on S and O. 2

Proof. Assume in contrast, there exists S and O on
which Vote does not converge. Then there must be at least
one object O ∈ O on which the true value decided by Vote
is changed back and forth between v and v′. Let S̄ be the
set of sources that provide v and S̄′ be the set of sources
that provide v′.

Suppose at the k1-th round, v is decided to be the true
value on O and at the k2-th (k2 > k1) round, v′ is decided
to be the true value on O. Because of this decision, the
probability of dependence between sources in S̄ is increased
and the vote count is decreased. Let ∆1 (∆1 < 0) be the
change of the total vote count of S̄. On the other hand, the
probability of dependence between sources in S̄′ is decreased
and the vote count is increased. Let ∆′

1 (∆′
1 > 0) be the

change of the total vote count of S̄′.
Suppose at the k3-th round (k3 > k2) the true value on O

is changed back to v. Then, between the k2-th round and
the (k3−1)-th round, there must exist a set Ō1 of objects on
which the decision of the true values was changed. Let ∆2 be
the total change of vote count of sources in S̄ resulted from
Ō1 and ∆′

2 be this change for sources in S̄′. If Ō1 contains
a single value, ∆′

2 − ∆2 is maximum when all sources in
S1 provide the newly selected value and all sources in S2

provide the originally selected value. Thus, we must have
∆2 ≤ −∆1 and −∆′

2 ≤ ∆′
2. Hence, ∆1 +∆2 ≤ 0 ≤ ∆′

1 +∆′
2

and S̄ still cannot win the vote back on O. So there must
be at least two values in Ō1 to make ∆1 + ∆2 > ∆′

1 + ∆′
2.

After this round, because the decision on the true value of
O changes, the vote count of S1 and S2 are further changed.
Let ∆3 > 0 be the change for S̄ and ∆′

3 < 0 be the change
for S̄′ resulted from O.

Now consider the k4-th round (k4 > k3) in which the true
value on O is changed again to v′. Between the k3-th round
and the (k4)− 1 round, there must exist a set Ō2 of objects
on which the decision of the true values was changed. Let
∆4 be the total change of vote count of sources in S̄ and
∆′

4 be this change for sources in S̄′ for this time. If Ō2

contains two values, then following the same analysis, we
must have ∆4 ≥ −∆2 − ∆3 and −∆′

4 ≥ ∆′
2 + ∆′

3. Hence,
∆2 + ∆3 + ∆4 ≥ 0 ≥ ∆′

2 + ∆′
3 + ∆′

4 and S̄′ still cannot win
the vote on O. So there must be at least three values in Ō2.

For the same reason, next time when the decision on the
true value of O is changed to v, there must exist at least 4
other objects on which the decided true values are changed;
and then the next time 5 objects are required to have de-
cision change for the decision on the true value of O to be
changed to v′, and so on. As there are only a finite number
of objects in O, this process cannot continue forever, contra-
dicting our assumption that Vote changes back and forth
between v and v′.

We now consider the maximum number of rounds required
for convergence. Let O be the object with the maximum
number of values being provided by the sources. The deci-
sion of its true values should converge in at most (l−1)(n0−
1)+1 rounds. This is because for each two values, there are
at most l−1 rounds that the decided true value for O switch
between the two values; after the l − 1 rounds, one of them
is eliminated and can never be decided to be the true value
again. To eliminate n0 − 1 values, we thus need at most
(l − 1)(n0 − 1) rounds.

During these rounds, the total number of changes of de-
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Figure 3: Probabilities of dependencies computed
by Bene on the motivating example. We only show
dependencies with a probability over .1.

Table 3: Vote counts of affiliations for Carey and
Halevy in the motivating example.

Carey Halevy

UCI Oracle BEA Google UW

Round 1 1 1 1.24 1.3 1.24
Round 2 1 1 1.25 1.85 1.25

cided true values for other objects are at least

(n0 − 1)

l−1
X

i=1

i =
l(l − 1)(n0 − 1)

2
.

The average number of changes for each object is thus l(n0−1)
2

.

Thus, there must be an object, O′, for which at least l(n0−1)
2l

=
n0−1

2
values are already eliminated. The object O′ has at

most n0 values and so we need to eliminate another n0−1
2

values. As the value of O cannot change any more, elimi-
nating one value of O′ takes at most l − 2 rounds, and so

in total (l−2)(n0−1)
2

rounds. We can compute the number
of remaining rounds for convergence of the true fact for the
rest of the objects in a similar way. So the total rounds is

1 + (l − 1)(n0 − 1) + (l − 2)
n0 − 1

2
+ (l − 3)

n0 − 1

4
+ . . .

< 1 + 2(l − 1)(n0 − 1) < 2ln0

We next illustrate the algorithm on the motivating exam-
ple.

Example 3.6. We run Algorithm Vote on data sources
in Example 1.1. Figure 3 shows the probabilities of depen-
dencies computed in each round and Table 3 shows the vote
count of affiliations for Carey and Halevy.

Initially, we do not know which values are true and which
are false and so apply Equation (19). We compute the proba-
bility of dependence between S1 and S2 (sharing three values)
as .87 and those between S3, S4, S5 (sharing four or five val-
ues) as .99. Accordingly we decide that the affiliations for
the five researchers are MIT, MSR, MSR, BEA, Google re-
spectively.

In the second round, we refine the dependence probabilities
according to the selected true values. The probability between
S1 and S2 (sharing only true values) is reduced to .18 and
those between S3, S4, S5 (sharing two or three false values)
remain high; thus, the refined probabilities more closely re-
flect the reality. Though the new probabililities change the
vote counts, they do not further change our voting results.

The voting converges in this round and finds correct affilia-
tions for four out of five researchers.

As we show later, if we consider accuracy of data sources,
the new vote counts shall increase our belief of S1’s accuracy
and can eventually lead to the correct decision for Carey’s
affiliation. 2

Setting parameters: Finally, we discuss how we set pa-
rameters in Equations (9) and (16) and refine them dur-
ing voting. Initially, we set them according to our a-priori
knowledge of the probabilities of dependence, errors, etc.
During the voting process, in each iteration we can refine
α, ε and c based on the computed dependence probabilities
and the decided true values, and use the new parameters in
the next iteration. Our experimental results show that dif-
ferent initial parameter settings lead to similar voting results
(Section 7), providing evidence of robustness.

We note that the probabilities that a data source makes
mistakes on different objects and the probabilities that a
value provided by different copiers is copied can be differ-
ent. Equation (9) uses the average probability. We can also
extend it to use different probabilities. We next show the
extension for different error rates as an example.

Let ε(O) be the probability of providing a false value on
object o. Then, we can refine Equation (9) as follows:

Pr(S1 ∼ S2|Φ)

= (1 + (
1 − α

α
)(

1

1 − c
)kdΠO∈Ōt

1 − ε(O)

1 − (1 − c)ε(O)

ΠO∈Ōf

ε(O)

ε(O) + cn − cε(O)
)−1

(20)

In Section 5 we consider the case where the error rate is
different for different sources.

4. MODEL FOR MALICIOUS COPIERS
This section describes how we discover true values in pres-

ence of malicious copiers.

4.1 Dependence of data sources
We now consider a set S of good independent sources and

malicious copiers. Assume when a malicious copier provides
a value independently, among the n values that are not pro-
vided by the original source on the same object, it chooses
a particular one with probability 1

n
.

Consider two data sources S1 and S2. Intuitively, it is
more likely that a malicious copier changes a true value into
some false one than the opposite. Thus, if the true values
provided by S2 is a subset of those provided by S1, it is likely
that S2 copies from S1; on the other hand, if the true values
provided by S1 and those provided by S2 merely overlap, it
is less likely that S1 or S2 is a malicious copier.

To incorporate this intuition, we further divide Ōd, the
set of objects on which S1 and S2 provide different values,
into three sets: Ōd1 contains objects on which S1 provides
true values but S2 provides false values, Ōd2 contains ob-
jects on which S2 provides true values but S1 provides false
values, and Ōd0 contains objects on which S1 and S2 provide
different false values. As there is a single true value, it is
not possible for S1 and S2 to provide different true values.
In addition, we consider different directions of dependence,



denoting S1 depending on S2 by S1 → S2 and S2 depending
on S1 by S2 → S1.

We now compute the probability of Φ given a particular
dependence relationship between S1 and S2. If S1 and S2

are independent, with the same analysis as in Section 3, we
compute the probability of a particular category as follows:

Pr(O ∈ Ōt|S1⊥S2) = (1 − ε)2 (21)

Pr(O ∈ Ōf |S1⊥S2) =
ε2

n
(22)

Pr(O ∈ Ōd1|S1⊥S2) = ε(1 − ε) (23)

Pr(O ∈ Ōd2|S1⊥S2) = ε(1 − ε) (24)

Pr(O ∈ Ōd0|S1⊥S2) = ε2 ·
n − 1

n
(25)

In the last equation, ε2 is the probability that both S1 and
S2 provide false values and n−1

n
is the probability that S2

provides a different false value from S1.
If S2 copies from S1, the probability of a particular cate-

gory can be computed as follows.

Pr(O ∈ Ōt|S2 → S1) = (1 − ε) · c (26)

Pr(O ∈ Ōf |S2 → S1) = ε · c (27)

Pr(O ∈ Ōd1|S2 → S1) = (1 − ε)(1 − c) (28)

Pr(O ∈ Ōd2|S2 → S1) = ε · (1 − c) ·
1

n
(29)

Pr(O ∈ Ōd0|S2 → S1) = ε · (1 − c) ·
n − 1

n
(30)

Equations (26)(27) consider the case that S2 copies the
value from S1 (with probability c), where the value is true
with probability 1 − ε and false with probability ε. Equa-
tions (28)(29)(30) consider the case that S2 provides the
value independently (with probability 1− c). If S1 provides
a true value, then S2 must provide a false one. If S1 provides
a false value, then S2 provides a true value with probability
1
n

and provides a different false value with probability n−1
n

.
When S1 copies from S2, we have the same equations

except for O ∈ Ōd1 and O ∈ Ōd2:

Pr(O ∈ Ōt|S2 → S1) = (1 − ε) · c (31)

Pr(O ∈ Ōf |S2 → S1) = ε · c (32)

Pr(O ∈ Ōd1|S1 → S2) = ε · (1 − c) ·
1

n
(33)

Pr(O ∈ Ōd2|S1 → S2) = (1 − ε) · (1 − c) (34)

Pr(O ∈ Ōd0|S2 → S1) = ε · (1 − c) ·
n − 1

n
(35)

Thus, we compute different probabilities for different direc-
tions of dependence.

Assume a-priori we believe the probability of dependence
of each direction is α, we can apply the Bayes Rule to com-
pute the probabilities of S1⊥S2, S1 → S2 and S2 → S1, con-
ditioned on the observation of Φ. Note that the distribution
of Ōd1, Ōd2 and Ōd0 can dramatically change the probability
of dependence, so the properties in Theorem 3.1 do not hold
for the malicious model.

4.2 Vote count of a value
Ideally, the vote count of a value is the sum of the vote

counts with respect to each dependence graph weighted by
the probability of that graph. Since we now know the prob-
ability of each direction of dependence, we can compute the
probability of a dependence graph by taking the product of

the probabilities of the corresponding dependence relation-
ship between each pair of sources. As a further step, for
all dependence graphs that contain dependence between the
same pairs of sources, we take the computed probabilities as
the a-priori probabilities and apply Bayes analysis to adjust
the probability of each graph as we describe in Section 3.2.1.

We next consider what is the vote count of each graph.
Recall that in the benevolent model, even if a data source
is a copier, with probability 1 − c it provides a value inde-
pendently, so we need to count its vote to a certain fraction.
When a malicious copier changes a value, it only randomly
chooses another value so its vote count should be ignored.
Thus, the vote count with respect to a graph G is the num-
ber of independent sources in G.

Again, computing the vote count by enumerating all pos-
sible dependence graphs takes exponential time and we need
a quick estimation. The new challenge we face is to consider
different directions of dependencies. Our algorithm sorts
the sources as follows. If between a pair of sources S1 and
S2, the probability of S1 → S2 is much higher than that
of S2 → S1, we consider S1 as a copier and order S2 be-
fore S1; otherwise, we consider both directions as equally
possible and sort the sources following the same rule as for
the benevolent model. The details is described in Algorithm
MalVoteCount.

Finally, we can still use Algorithm Vote to find true val-
ues except that we apply the malicious model. Note that
under the malicious model Vote may not converge. When
we select different values as the true values, the direction
of the dependence between two sources can change and ac-
cordingly we may consider different data sources as copiers
and neglect their votes; thus, the vote counts we compute
may change dramatically and suggest different true values.
We stop after a certain number of rounds and use the re-
sults of that round as the final results. We observe in our
experiments (see Section 7) that even when Vote does not
converge, the selected true values vary for only a few objects,
so in which round we stop does not change the number of
correctly decided true values much.

4.3 Comparison of the two models
Both the benevolent model and the malicious model have

their own advantages and disadvantages. As both benevo-
lent copiers and malicious copiers tend to share many false
values with the original source, the benevolent model can
detect both all of them; however, it computes a lower de-
pendence probability for malicious copiers than the mali-
cious model and cannot decide the direction of dependence.
Even when it discovers a malicious copier, it assumes the
copier is benevolent and considers it in vote counting.

On the other hand, the malicious model is good at detect-
ing malicious sources, but can miss some of the benevolent
copiers if they also change false values to true ones. Even if
it discovers benevolent copiers, it neglects all of its provided
values, though some of them are indeed independent. In ad-
dition, it can ring false alarm when there are highly accurate
sources, in which case it considers less accurate sources as
copiers and neglects their votes.

As our experiments show (see Section 7), the benevolent
model and the malicious model are suitable for different
types of data sources. If we know beforehand the types
of sources, we can choose the more appropriate model. We
can also combine these two models by assuming there are



0: Input: o, S̄0, D̄0. //o is an object, S̄0 is the set of sources
providing values on o, and D̄0 is the set of dependencies
between sources in S̄0.

Output: The vote count of each value on o.
1: //Generate the set D̄ of relevant dependencies and record

dependence direction:
for each (S ∈ S̄0)

Dep(S) = ∅; //sources that S depends on
for each (dependence d = (S1, S2) ∈ D̄0)
if (Pr(S1 → S2) + Pr(S2 → S1) > η && S1(O) = S2(O))

Add d to D̄;
if Pr(S1 → S2) − Pr(S2 → S1) > θ) (resp. opposite)

Insert S2 (resp. S1) to Dep(S1);

Sort dependencies in D̄ in descendant order of probabilities;
2: //Sort sources in S̄0 to an ordered list S̄:

S̄ = ∅; V̄ = ∅; //set of values we have handled.
while (|S̄| 6= |S̄0|)

R̄ = ∅; //set of sources with zero original sources
for each (S ∈ (S̄0 − S̄))
if (Dep(S) == ∅)

Add S to R̄;
for each (S0 ∈ (S̄0 − S̄) && S0 6= S)

Remove S from Dep(S0);
if (R̄ == ∅)

Choose S whose Dep(S) has minimal size, add S to R̄
and remove it from other sources’ original source set

D̄′ = ∅;
while (R̄ 6= ∅ && D̄ 6= D̄′)
for each (d = (S1, S2) ∈ D̄)
if (S1(O) 6∈ V̄ && S1 ∈ R̄ && S2 ∈ R̄)

Add S1 and S2 to S̄; Add S1(O) to V̄ ;
Remove d from D̄; Remove S1 and S2 from R̄;
break;

else if (S1 ∈ S̄ && S2 ∈ S̄)
Remove d from D̄; break;

else if (S1 (or S2) ∈ S̄)
Add S2 (or S1) to S̄;
Remove S2 (or S1) from R̄; Remove d from D̄;
break;

if (|S̄| < |S̄0|)

Add S̄0 − S̄ to the end of S̄;
3: //Compute the vote count:

for each (S ∈ S̄)
Pr(S) = 1; //probability of S being independent
for each (S0 before S in S̄)

Pr(S)*=(1 − Pr(S0 → S) − Pr(S → S0));

Add Pr(S) to the vote count of S(O).

Algorithm 3: MalVoteCount: Compute vote count for
values on a particular object using the malicious model.

both malicious copiers and benevolent copiers, and for each
pair of data sources S1 and S2, we compute the probabilities
of S1 and S2 being independent, one of S1 and S2 being a
benevolent copier, S1 being a malicious copier, and S2 be-
ing a malicious copier. Another option is to assume a copier
can change some of the copied values in a benevolent man-
ner and some of the copied values in a malicious manner
(or make mistakes in copying), and assign different change
rates to different change manners. In the next section we
describe another model, which takes into consideration the
accuracy of sources and in general performs better than both
the benevolent model and the malicious model.

5. CONSIDERING ACCURACY OF SOURCES
Data sources are often of different accuracy: some data

sources make few mistakes whereas others make a lot. When
we discover true values, we are more willing to trust values

provided by the former sources. This section describes the
Accu model, which considers accuracy of data sources. We
first discuss how the accuracy of sources can affect our belief
of dependence between sources, and then describe how we
compute accuracy and take it into consideration when we
count votes.

Our Accu model indeed computes a probabilistic distri-
bution of various values in the underlying domain for a par-
ticular object. We can either choose the value with the
highest probability as the true value, or store all possible
values with their probabilities using a probabilitic database.

5.1 Dependence w.r.t. accuracy of sources
Intuitively, if between two data sources S1 and S2, the ac-

curacy of the common values is closer to the overall accuracy
of S1, then it is more likely that S2 copies from S1. We incor-
porate this intuition by considering accuracy of sources when
we compute the probability of dependencies. Our model
can discover not only benevolent copiers, but also malicious
ones, as malicious copiers can have very different accuracy
on values they copy and values they provide independently.

Let S be a data source. We denote by A(S) the accuracy
of S and by ε(S) the error rate of S; ε(S) = 1 − A(S). We
describe how to compute A(S) shortly. Note that accuracy
of a source is orthogonal to whether a source is good or bad,
as the former considers the probability of a source provid-
ing true values, while the latter compares the probability of
providing a true value and a particular false value for an
object.

Consider two data sources S1 and S2. We conduct the
same analysis on the probability of S1 and S2 providing the
same or different values as in Section 3, except that every-
where we used to consider the error rate of a value, we now
consider the error rates of the sources. A similar analysis as
in Section 3 leads to the following sets of equations. When
S1 and S2 are independent, we have

Pr(O ∈ Ōt|S1⊥S2) = (1 − ε(S1))(1 − ε(S2)) = Pt,(36)

Pr(O ∈ Ōf |S1⊥S2) =
ε(S1)ε(S2)

n
= Pf , (37)

Pr(O ∈ Ōd|S1⊥S2) = 1 − Pt − Pf . (38)

When S2 copies from S1, we have

Pr(O ∈ Ōt|S2 → S1) = (1 − ε(S1)) · c + Pt · (1 − c),(39)

Pr(O ∈ Ōf |S2 → S1) = ε(S1) · c + Pf · (1 − c), (40)

Pr(O ∈ Ōd|S2 → S1) = (1 − Pt − Pf ) · (1 − c). (41)

When S1 copies from S2, we obtain the same set of equations
as in case of S2 copying from S1 except that ε(S1) is replaced
with ε(S2) everywhere.

Pr(O ∈ Ōt|S1 → S2) = (1 − ε(S2)) · c + Pt · (1 − c),(42)

Pr(O ∈ Ōf |S1 → S2) = ε(S2) · c + Pf · (1 − c), (43)

Pr(O ∈ Ōd|S1 → S2) = (1 − Pt − Pf ) · (1 − c). (44)

Here, the probability of S1 and S2 providing the same true
or false value is different when we have different directions
of dependence.

By applying the Bayes Rule, we can compute the proba-
bilities of S1⊥S2, S1 → S2 and S2 → S1. If we consider
Pr(S1 → S2) + Pr(S2 → S1) as the probability of de-
pendence between S1 and S2, the three properties in Theo-
rem 3.1 still hold.



5.2 Accuracy of a data source
We next consider how one can compute the accuracy of a

data source. A naive way is to compute the fraction of true
values provided by the source. However, we do not know for
sure which are the true values, especially among values that
are voted by similar number of sources, we can make wrong
decisions. We instead compute the accuracy of a source as
the average probability of the values provided by it being
true.

Formally, let V̄ (S) be the values provided by S and let m
be the size of V̄ (S). For each v ∈ V̄ (S), we denote by P (v)
the probability that v is true. We compute A(S) as follows.

A(S) =
Σv∈V̄ (S)P (v)

m
. (45)

Now we need a way to compute the probability that a
value is true. We base our computation both on how many
sources provide this value and on the accuracy of those
sources.

We start with the case where all data sources are indepen-
dent. Consider an object O ∈ O. Let V(O) be the domain
of O; that is, the set of all possible values on O. The size
of V(O) is n + 1: n false values and one true value. Let
S̄o be the sources that provide information on O. For each
v ∈ V(O), we denote by S̄o(v) ⊆ S̄o the set of sources that
vote for v (note that S̄o(v) can be empty). We denote by
Ψ(O) the observation of which value each S ∈ S̄o votes for.

We first consider how to compute the probability that we
observe a particular voting Ψ(O). Consider a value v ∈
V(O). If v is true, the conditional probability of Ψ(O) is the
probability that sources in S̄o(v) each provides the true value
and other sources each provides a particular false value:

Pr(Ψ(O)|v true) = ΠS∈S̄o(v)A(S) · ΠS∈S̄0−S̄o(v)

1 − A(S)

n

= ΠS∈S̄o(v)

nA(S)

1 − A(S)
· ΠS∈S̄o

1 − A(S)

n
.

(46)

Among the values in V(O), there is one and only one true
value. Assume our a-priori belief of each value being true is
the same, denoted by β. We then have

Pr(Ψ(O)) =
X

v∈V(O)

(Pr(Ψ(O)|v true) · Pr(v true))

=
X

v∈V(O)

„

β · ΠS∈S̄o(v)

nA(S)

1 − A(S)
· ΠS∈S̄o

1 − A(S)

n

«

.

(47)

We now apply the Bayes Rule to compute the probability
that a particular value v ∈ V(O) is true given our observa-
tion of Ψ(O).

P (v) = Pr(v true|Ψ(O))

=
Pr(Ψ(O)|v true) · Pr(v true)

Pr(Ψ(O))
=

ΠS∈S̄o(v)
nA(S)
1−A(S)

P

v0∈V(O) ΠS∈S̄o(v0)
nA(S)
1−A(S)

.

(48)

To simplify the notation, we define the normalization fac-
tor ω as

ω =
X

v0∈V(O)

ΠS∈S̄o(v0)

nA(S)

1 − A(S)
. (49)

So ω is independent of S̄o(v). We define the confidence of v,
denoted by C(v), as

C(v) = ln P (v) + ln ω =
X

S∈S̄o(v)

ln
nA(S)

1 − A(S)
. (50)

If we define the accuracy score of a data source S as

A′(S) = ln
nA(S)

1 − A(S)
= − ln(

1

A(S)
− 1) + ln n, (51)

we have

C(v) =
X

S∈S̄o(v)

A′(S). (52)

So we can compute the confidence of a value by summing up

the accuracy scores of its providers. Finally, P (v) = eC(v)

ω

and ω =
P

v0∈D(O) eC(v0).

A value with a higher confidence has a higher probability
to be true; thus, rather than comparing vote counts, we
compare confidence of values. The following theorem shows
three properties of Equation (52).

Theorem 5.1. Equation (52) has three properties:

1. If all data sources have the same accuracy, when the
size of S̄o(v) increases, C(v) increases;

2. Fixing all sources in S̄o(v) except S, when A(S) in-
creases for S, C(v) increases.

3. If there exists S ∈ S̄o(v) such that A(S) = 1 and no
S′ ∈ S̄o(v) such that A(S′) = 0, C(v) = +∞; if there
exists S ∈ S̄o(v) such that A(S) = 0 and no S′ ∈ S̄o(v)
such that A(S′) = 1, C(v) = −∞. 2

Proof. We prove the three properties as follows.

1. When all data sources have the same accuracy, they
have the same accuracy score. Let A′ be the accuracy
score and s be the size of S̄o(v). Then C(v) = s · A′,
so C(v) increases with s.

2. When A(S) increases for a source S, A′(S) increases
as well and so C(v) increases.

3. When A(S) = 1 for a source S, A′(S) = ∞ and C(v) =
∞. When A(S) = 0 for a source S, A′(S) = −∞ and
C(v) = −∞.

Note that the first property is actually a justification of
the voting strategy (Proposition 2.1). The third property
shows that we should be careful not to assign very high or
very low accuracy to a data source. We avoid this problem
by defining the accuracy of a source as the average proba-
bility of its provided values.

Finally, if a data source S copies a value v from other
sources, we should ignore S when computing the confidence
of v. Following the same analysis, we compute the confi-
dence of a value v as follows (I(S) is the same as in Equa-
tion (16)).

C(v) =
X

S∈S̄o(v)

A′(S)I(S). (53)



0: Input: S,O.

Output: The true value for each object in O.

1: Set the accuracy of each source as 1 − overall error rate;

2: while (accuracy of sources do not change much && no oscil-

lation of decided true values)

3: Compute probability of dependence between each pair of

sources;

4: Sort sources according to the dependencies;

5: Compute confidence of each value for each object;

6: Compute accuracy of each source;
7: for each (O ∈ O)

Among all values on O, select the one with the highest

confidence as the true value;

Algorithm 4: AccuVote: Discover true values by consid-
ering accuracy and dependence of data sources.
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Figure 4: Probabilities of dependencies computed
by Accu on the motivating example. We only show
dependencies where the sum of the probabilities on
both directions is over .1.

5.3 Combining accuracy and dependence
We now extend the Vote algorithm to incorporate anal-

ysis of accuracy. We need to compute three measures: ac-
curacy of sources, dependence between sources, and confi-
dence of values. Accuracy of a source depends on confidence
of values; dependence between sources depends on accuracy
of sources and the true values selected according to the con-
fidence of values, and confidence of values depends on both
accuracy of and dependence between data sources.

One possible solution is to interleave voting by considering
dependence and voting by considering accuracy till the two
types of voting agree on the voting results. This method
fails because there are cases where the two types of voting
never agree with each other. For example, in the motivating
example, voting by considering dependence always converges
with results (MIT, MSR, MSR, BEA, Google), while voting
by considering accuracy always converges with results (MIT,
UWisc, MSR, BEA, UW).

Another option is to conduct analysis of both accuracy
and dependence in each round. Specifically, Algorithm Ac-
cuVote starts by setting the probability of each value as
one minus the overall error rate, iteratively (1) computes
accuracy and dependence based on the confidence of values
computed in the previous round, and (2) updates confidence
of values accordingly, and stops when the accuracy of the
sources becomes stable. Note that as we consider direction
of dependence, AccuVote may not converge. We stop the
process after we detect oscillation of decided true values.
Again, our experiments show that the results generated by
different rounds during oscillation have similar overall qual-
ity (see Section 7).

Example 5.2. Continue with the motivating example. Fig-
ure 4 shows the probability of dependence Accu computes,
Table 4 shows the accuracy of each data source Accu com-

Table 4: Accuracy of data sources computed by
Accu on the motivating example.

S1 S2 S3 S4 S5

Round 1 .52 .42 .53 .53 .53
Round 2 .63 .46 .55 .55 .41
Round 3 .71 .52 .53 .53 .37
Round 4 .79 .57 .48 .48 .31

... ... ... ... ... ...
Round 11 .97 .61 .40 .40 .21

Table 5: Confidence of affiliations computed for
Carey and Halevy in the motivating example.

Carey Halevy

UCI Oracle BEA Google UW

Round 1 1.61 1.61 2.0 2.1 2.0
Round 2 1.68 1.3 2.12 2.74 2.12
Round 3 2.12 1.47 2.24 3.59 2.24
Round 4 2.51 1.68 2.14 4.01 2.14

... ... ... ... ... ...
Round 11 4.73 2.08 1.47 6.67 1.47

putes, and Table 5 shows the confidence of affiliations com-
puted for Carey and Halevy. Starting from the second round,
S1 is considered more accurate and the values it provides are
given higher weights. In later rounds, Accu gradually in-
creases the accuracy of S1 and decreases that of S3, S4 and
S5. At the fourth round, Accu decides that UCI is the cor-
rect affiliation for Carey and finds the right affiliations for
all researchers. Finally, Accu terminates at the eleventh
round and the source accuracy and dependence probability it
computes converge to close to the real ones. 2

5.4 Comparison withTruthFinder

Yin et al. [13] proposed TruthFinder, which considers
accuracy of sources in truth discovery. Whereas we both
consider accuracy of sources, our model differs from theirs
in two aspects.

The most important difference is that we consider the de-
pendence between sources. TruthFinder uses a dampening
factor to address the possible dependence between sources;
however, this approach is not necessarily effective and for
our motivating example, TruthFinder incorrectly decides
that all values provided by S3 are true. Our model consid-
ers dependence in a principled fashion. By examining the
probability that a pair of data sources are dependent and
its effect on voting, we are able to apply dampening only
when appropriate and apply different “dampening factors”
for different data sources.

Another major difference is that we compute the proba-
bility of a value being true in a different way. TruthFinder
computes it as the probability that at least one of its providers
provides the true value and ignores sources that vote for
other values. As they pointed out, they have the problem of
“overly high confidence” if they do not apply the dampening
factor. Our computation (Equation (48)) considers all data
sources and considers both the possibility that the value is
true and the possibility that the value is false.

Section 7 presents an experimental comparison between
the two approaches.

6. EXTENSIONS
This section describes several extensions of the Accu model



by considering probabilities of a value being true in depen-
dence discovery and by relaxing the Categorical-value con-
dition and the Uniform-false-value-distribution condition.
The extensions we present are complementary to each other
and can be easily combined for a full model.

AccuPR: Our dependence discovery is based on the obser-
vation that two independent data sources are more likely to
provide the same true value than the same false value. How-
ever, in practice we often cannot decide for sure if a value
is true or false; instead, the Accu model computes for each
value a probability that it is true and we can use it in our
dependence analysis. In particular, we denote by Pr(S, v)
the probability that source S provides value v; then,

Pr(S, v) = P (v) · A(S) + (1 − P (v)) ·
1 − A(S)

n
. (54)

Accordingly, we compute probability of two sources provid-
ing a particular pair of values in dependence analysis. We
denote by Pr(v1, v2|C) the conditional probability of S1 pro-
viding v1 and S2 providing v2. Then,

Pr(v, v|S1⊥S2) = P (S1, v) · P (S2, v) = Pc, (55)

Pr(v1, v2|S1⊥S2) = P (S1, v1) · P (S2, v2) = Pd, (56)

Pr(v, v|S2 → S1) = cP (S1, v) + (1 − c)Pc, (57)

Pr(v1, v2|S2 → S1) = (1 − c)Pd. (58)

Here, we show the probabilities conditioned on S1⊥S2 and
S2 → S1; those conditioned on S1 → S2 can be computed
in a similar way. We can apply the Bayes Rule to compute
the probability of dependence accordingly.

SIM: We consider similarity between values. Let v and v′

be two values that are similar. Intuitively, the sources that
vote for v′ also implicitly vote for v and should be considered
when counting votes for v. For example, a source that claims
UW as the affiliation may actually mean UWisc and should
be considered as an implicit voter of UWisc.

We extend Accu by incorporating the similarity model
in [13]. Formally, we denote by sim(v, v′) ∈ [0, 1] the sim-
ilarity between v and v′, which can be computed by edit
distance of strings, difference between numerical values, etc.
After computing the confidence of each value of object O,
we adjust them according to the similarities between them
as follows:

C∗(v) = C(v) + ρ ·
X

v′ 6=v

C(v′) · sim(v, v′), (59)

where ρ ∈ [0, 1] is a parameter controlling the influence of
similar values. We then use the adjusted confidence in com-
putation in later rounds.

We can go further by considering also values that are tran-
sitively similar; that is, if both sim(v1, v2) and sim(v2, v3)
are high, we consider v3 when computing the confidence of
v1. Let S̄(v) be the set of values that are similar to v. Our
revision, adopting the underlying idea of PageRank, is as
follows.

C∗(v) = (1− ρ)C(v) + ρ ·
X

v′ 6=v

C(v′) ·
sim(v, v′)

P

v0∈S̄(v′) sim(v0, v′)
.

(60)
Note that this revision is not needed when the transitivity
of similarity holds; that is, high sim(v1, v2) and sim(v2, v3)
imply a high sim(v1, v3).

NonUni: In reality, false values of an object may not be
uniformly distributed; for example, an out-of-date value or
a value similar to the true value can occur more often than
others. We extend Accu for this situation as follows.

Assume we know the distribution of false values described
by f(d), d ∈ [0, 1], the percentage of false values whose dis-

tribution probability is d; thus,
R 1

0
f(d) = 1. Then, the

probability that two false-value providers provide the same
value is

R 1

0
d2f(d) instead of ( 1

n
)2 · n = 1

n
. Accordingly, we

revise Equation (37) as

Pr(O ∈ Ōf |S1⊥S2) = ε(S1)ε(S2)

Z 1

0

d2f(d) = Pf . (61)

Similarly, we need to revise Equation (46) as follows. Let

E = e
R 1
0 ln df(d)(|S̄o|−|S̄o(v)|).

Pr(Ψ(O)|v true) = ΠS∈S̄o(v)A(S)·ΠS∈S̄o−S̄o(v)(1−A(S))·E.
(62)

Finally, we note that a false value v that occurs frequently
is not a strong indicator of dependence. This is reflected
in the AccuPR model, which in such case will compute a
high probability of v being true and accordingly lower the
probability of dependence between v’s providers.

7. EXPERIMENTAL RESULTS
To understand how well our algorithm performs on data

sources with different characteristics, we experimented on
both synthetic and real-world data. Our experimental re-
sults show that when there are only independent sources,
our algorithms obtain results that are the same as or bet-
ter than that obtained by naive voting, and when there are
copiers, our algorithms are able to detect them and signifi-
cantly improve the results. In addition, we examined if our
algorithm can prevent falsification of true values.

7.1 Experimental settings
We first describe the synthetic data sets we generated and

leave the description of the real-world data set to Section 7.5.
We consider five types of universes of data sources, where
each source provides information for all objects.

1. Indep-source universe contains 10 independent sources;

2. Bene-copier universe contains 10 independent sources
and 9 benevolent copiers that copy from the same in-
dependent source and provide 20% of the values inde-
pendently;

3. Mal-copier universe contains 10 independent sources
and 9 malicious copiers that copy from the same in-
dependent source and provide 20% of the values ran-
domly;

4. Naive-copier universe contains 10 independent sources
and 9 copiers that copy all data from the same inde-
pendent source.

5. Pareto universe contains 25 to 100 data sources, of
which 20% are independent and 80% are copiers. Among
the independent sources, 20% have an error rate of .2
and 80% have an error rate of .5. Among the copiers,
80% copy from one of the more accurate independent
sources and 20% copy from one of the less accurate
independent sources. Also, among the copiers, 50%
are benevolent and provide 20% of the values indepen-
dently with an error rate of .1, 25% are malicious and



provide 20% of the values randomly, and 25% copy all
values2.

For the first four types of universes, we consider three
cases: no-authority, copy-from-non-authority and copy-from-
authority. In the no-authority case, every independent source
has the same error rate. In the copy-from-non-authority
case, there is an authority source that provides the true value
for each object, but the copiers copy from a non-authority
source. In the copy-from-authority case, there is an author-
ity source and the copiers copy from it. Note that in the
Indep-source universe, the latter two cases are the same
since we have no copier.

For each type of universe and each case, we randomly
generated the set of data sources according to εu, the error
rate, nu, the number of incorrect values, and ou, the number
of objects. The values range from 0 to nu, where we con-
sider 0 as the true value and the others as false. We varied
εu from .1 to .9, nu from 5 to 100, and ou from 5 to 100.
For Pareto universe, we in addition randomly decided from
which source a copier copies according to the distribution.
For each set of parameters, we randomly generated the data
set 100 times, applied our algorithms to decide the true val-
ues, and reported the average precision of the results. We
define precision of the results as the fraction of objects on
which we select the true values (as the number of true values
we return and the real number of true values are both the
same as the number of objects, the recall of the results is the
same as the precision). Note that this definition is different
from that of accuracy of sources.

We implemented models Bene, Mal, Accu, AccuPR
and Sim as described in this paper. We also implemented
the following methods for comparison:

• Naive conducts naive voting;

• NaiveSim conducts naive voting but considers simi-
larity between values;

• AccuNoDep considers accuracy of sources as we de-
scribed in Section 5, but assumes all sources are inde-
pendent;

• TF applies the model presented in [13].

• TFNoSim is the same as TF except that it does not
consider similarity between values.

• TFNoDam is the same as TFNoSim except that it
does not apply the dampening factor (0.3).

For all methods, when applicable we (1) set α = .2 and
c = .8, (2) set ε and n to the value used in generating the
data sources, (3) set ε = .25 for the Pareto universe, and (4)
set ρ = 1 for Sim. We implemented the algorithms in Java
and conducted our experiments on a WindowsXP machine
with AMD Athlon(tm) 64 2GHz CPU and 960MB memory.

7.2 Comparing dependence-detection models
We first compare our dependence-detection methods, namely,

Bene, Mal and Accu, on the first four types of universes.
We use Naive as a baseline. We report our results for
nu = 100 and ou = 100 and briefly discuss the results for
other parameter settings at the end of this section. Fig-
ure 5 plots the precision on the Indep-source universe. Fig-
ure 6 plots the precision on the Bene-copier, Mal-copier

2We call it Pareto universe as it observes the Pareto Rule
(80/20 Rule) in many aspects.
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Figure 5: Precision in the Indep-source universe.

and Naive-copier universes. Table 6 summarizes the per-
formance of different models on different types of universe.

In the Indep-source universe, each method obtains higher
precision when there is an authority source; also, the higher
the error rate, the lower the precision. Bene and Mal ob-
tain the same precision as Naive, and Accu obtains a pre-
cision of 1.0 when an authority source exists. Being able
to obtain the same results as simple voting in absence of
copiers is an important feature of our models, showing that
in dependence discovery we do not generate false positives
that can change the voting results.

In the Bene-copier universe, since the number of copiers
is close to the number of independent sources, if we apply
naive voting, the source being copied can almost dominate
the results and the precision of the results is similar to the
accuracy of that source (not exactly the same because the
benevolent copiers also independently provide some infor-
mation). However, our algorithms are able to detect the
dependence and so obtain much higher precision. Specifi-
cally, we make the following observations.

• Bene successfully detects the dependence. As it con-
siders the independent contribution made by copiers,
it obtains a higher precision than in the case where
there are no copiers.

• Mal is also able to detect the dependence. In gen-
eral it obtains similar precision to the no-copier case
as it ignores the independent contribution from the
copiers. However, Mal has a low precision in the copy-
from-non-authority case when the error rate is low. In
this case, the non-authority independent sources share
many true values with the authority, and the rest of
their values are all false; thus, Mal suspects them to
be copiers even more than the real copiers. As a result,
the real copiers have more effect on the voting results
and the false values they copy have higher chance to
win.

• Accu obtains a precision of 1.0 when there exists an
authority source and the same precision as Bene oth-
erwise. The only exception is when ε = .9 in the no-
authority case. With this high error rate and low num-
ber of independent sources, the independent sources
often do not agree with each other on the true value
of an object. Then, the values that are copied 9 times
(even though Accu detects the copying) have a slightly
higher confidence in the first round. Thus, the copiers
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Figure 6: Precision in the Bene-copier universe and Mal-copier universe. For comparison, we also plotted the
precision of Naive when there is no copier.

are considered to be more accurate and gradually dom-
inate the results. This problem disappears when more
independent sources are present.

In the malicious-copier universe, we observe that the naive
model obtains almost the same precision as the precision
of the source being copied, as the malicious copiers do not
contribute trustable information. The major difference from
the benevolent-copier universe is that when εu ≤ .2, there
are more common values between independent sources than
between a source and its copier. Thus, our dependence-
detection techniques ring false alarms and obtain a slightly
lower precision. In addition, because Bene and Accu con-
sider the vote of copiers with a certain weight, they give the
copiers the chance to strengthen the results they copy, so
Mal in general has slightly higher precision than Bene.

Finally, in the Naive-copier universe, we observe very sim-
ilar pattern to the benevolent-copier universe, showing that
even though c = .8 does not conform to the real data, our
algorithms still perform well. The precision of Bene and
Accu is slightly lower, as now the copiers do not contribute
independent information. The precision of Mal is lower in
the copy-from-non-authority case when the error rate is low,
as naive copiers are actually harder to be detected than ma-

licious copiers using the malicious model.
Note that we observed that Mal and Accu do not con-

verge on some data sets and the probability that Mal does
not converge is much higher. In case of inconvergence, the
selected true values are changed back and forth on a few
objects, but the overall precision remains similar.

Effects of parameters: We also conducted experiments
with different parameter settings and have the following ob-
servations.

First, we varied parameters in the random generation of
data sources. We observed that when there are fewer objects
or fewer false values in the domain, there is less statistical
evidence for dependence detection and so the precision of
the results can be lower and less stable. On the other hand,
when there are more data sources, true values are provided
by more sources and the precision can be higher.

Second, we varied voting parameters, including α, c, ε and
n. We observed that our models are robust with respect to
parameters that represent a-priori probabilities; in particu-
lar, ranging α and ε from .1 to .9 does not change precision
of the results. This observation is common in Bayes anal-
ysis. We also observed that ranging n from 10 to 100 does
not change the precision and setting it to 1000 or 10000 even



Table 6: Summary of performance of different dependence-detection models on different types of universe.
We abbreviate no-authority as NA, copy-from-non-authority as CNA, and copy-from-authority as CA.

Model Indep Srcs Benevolent Copiers Malicious Copiers Naive Copiers Pareto
Bene Good Good Fair Good Excellent

Good except low ε Good except low ε
Mal Good Fair in the CNA case in the CNA case Good

Excellent except when Excellent except when high Excellent except when
Accu Excellent high ε & low #sources ε & low #sources in the high ε & low #sources Excellent

in the NA case NA case or low ε in the NA case
in the NA and CNA cases
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Figure 7: Precision of results when parameter c
varies. Recomputation of c can significantly improve
the precision.

increases the precision. However, we observed that ranging
c from 0 to 1 can significantly change the precision. As an
example, Figure 7 shows the precision of the results in the
benevolent-copier universe (cu = .8) and no-authority case.
When we set c to the same as cu, we obtain a precision of
.99 when εu = .5 and .66 when εu = .8. However, when
we range c from .1 to .9, in case of εu = .5, the precision
of the results drops significantly when c is set to .2; in case
of εu = .8, the precision drops significantly when c is set
to .6. Recomputing c in each iteration in voting can effec-
tively solve the problem: the precision remains stable when
εu = .5 and drops at c = .2 when εu = .8.

7.3 Comparing truth-discovery algorithms
To examine the effect of each algorithm in a more com-

plex universe, we experimented on the Pareto universe. Fig-
ure 8 shows the precision for a universe with 100 values. We
observe that Accu and Bene obtain the highest precision,
showing that considering dependence between sources signif-
icantly improve results of truth discovery, and when more
accurate sources are copied more often, considering accu-
racy of sources does not necessarily help. Mal also performs
reasonably well. AccuNoDep, TF and TFNoDam obtain
even lower precision than Naive, showing that considering
accuracy of sources while being unaware of dependence can
become more vulnerable in presence of duplications. Ac-
cuNoDep and TFNoDam both extend Naive with only
analysis of source accuracy but do so in different ways; be-
tween them AccuNoDep obtains better results. Finally, we
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Figure 8: Precision in the Pareto universe.

observe that AccuPR does not obtain higher precision than
Accu, showing that considering the probabilities of values
being true in dependence analysis does not necessarily im-
prove the results.

7.4 Preventing falsification
We next studied whether our algorithms can prevent fal-

sification. We consider a Pareto universe with 25 (normal)
data sources (so 5 independent sources) and a set of falsifiers
who intend to falsify the true values on a set of f objects.
Among the falsifiers, one is a bad independent source and
the others are malicious copiers. For each object that the
falsifiers intend to falsify, all falsifiers provide value -1, which
is not provided by any other source in the universe. For the
rest of the objects, the independent falsifier provides values
observing a certain error rate, and the copiers copy from the
independent falsifier in a malicious manner.

We classify falsifiers into the following four categories (the
error rate is that on the objects not to be falsified).

• Innocent: The independent falsifier has an error rate
εf = .5 and the copiers copy all values;

• Knowledgeable: The independent falsifier has an error
rate of 0 and the copiers copy all values;

• Smart: The independent falsifier has an error rate εf =
.5 and the copiers provide a certain percentage of the
values randomly (cf < 1);

• Sophisticated: The independent falsifier has very low
error rate and the copiers provide a certain percentage
of the values randomly;
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Figure 9: Number of falsifiers required to falsify a
set of true values. Our algorithms can effectively
prevent innocent and knowledgeable falsifiers from
falsifying one true value and prevent smart and so-
phisticated falsifiers from falsifying multiple true
values.

We want to find out how many falsifiers are required to
falsify the true values for f objects. For each category of
falsifiers, we started from one randomly generated indepen-
dent falsifier and gradually added copier falsifiers. If -1 is
selected as the true value for each object of falsification three
times consecutively, we stopped and reported the number of
falsifiers. If after reaching 1000 falsifiers the falsifiers still
cannot succeed, we stopped and reported 1000. Figure 9
shows the results for different types of falsifiers. We have
several observations.

First, it is very hard for innocent and knowledgeable fal-
sifiers to falsify the true values: even 1000 falsifiers cannot
falsify one true value against 25 normal sources.

Second, when cf = .8, it requires around 500 smart falsi-
fiers to falsify one true value; but when cf = .5, the falsi-
fiers look like independent sources and only 6 falsifiers are
required under the Accu algorithm. From another perspec-
tive, this result indicates that even if a wrong value is pro-
vided by a set of more accurate sources, a number of inde-
pendent normal sources do have the chance to fix it.

Third, under the Accu model it is easy for sophisticated
falsifiers with εf = 0 and cf = .8 to win: only 4 falsifiers are
required to falsify one value. From another perspective, this
indicates that a value provided by an authority data source
is more likely to be considered as true, even if a different
value is provided by several less accurate sources. Bene
and Mal do not consider accuracy of sources so can still
effectively prevent falsification: more than 300 falsifiers are
required to falsify one value. If the independent falsifier has
an error rate of .05, then even Accu can detect them and
nearly 100 falsifiers are required to win.

Fourth, it is hard even for sophisticated falsifiers to falsify
multiple true values. Falsifying 5 true values requires more
than 700 sophisticated falsifiers with εf = 0 and cf = .8.
However, it is still easy for smart falsifiers to falsify a set of
true values: no more than 100 sources are required to falsify
50 true values, reflecting one direction for improvement: in-

Table 7: Results on the book data set. For each
method, we report the precision of the results, the
runtime, and the number of rounds for convergence.

Model Precision Rounds Time(s)
Naive .71 1 .2

NaiveSim .74 1 .2
AccuNoDep .79 23 1.1

Bene .83 3 28.3
Accu .87 22 185.8
Sim .89 18 197.5

TFNoSim .71 10 .5
TF5 .83 8 11.6

tuitively, if a number of sources provide the same values on
a number of objects and the values are different from those
provided by other sources, while provide very different values
on other objects, we should suspect the dependence between
them.

Finally, though Accu seems to be less effective than Mal
in preventing falsification, for each case that it cannot pre-
vent falsification, there is another scenario with equivalent
sources where the decision of Accu is more appropriate.

7.5 Experiments on real-world data
We experimented on a real-world data set also used in [13]3

(we removed duplicates). The data set was extracted by
searching computer-science books on AbeBooks.com. For
each book, AbeBooks.com returns information provided by
a set of online bookstores. Our goal is to find the list of
authors for each book. In the data set there are 877 book-
stores, 1263 books, and 24364 listings (each listing contains
a list of authors on a book provided by a bookstore).

We did a pre-cleaning of authors’ names and generated a
normalized form that preserves the order of the authors and
the first name and last name (ignoring the middle name)
of each author. On average, each book has 19 listings; the
number of different author lists after cleaning varies from 1
to 23 and is 4 on average.

We applied various models on this data set (we did not
apply Mal as we believe all sources are benevolent) and
set α = .2, c = .8, ε = .2 and n = 100 when applicable. We
compared similarity of two author lists using 2-gram Jaccard
distance.

We used a golden standard that contains 100 randomly
selected books and the list of authors found on the cover
of each book (the same golden standard as used in [13]).
In the golden standard we represent the author list in the
same normalized format. We compared the results of each
method with the golden standard and reported the pre-
cision. We consider missing or additional authors, mis-
ordering, misspelling, and missing first name or last name
as errors; though, we do not report missing or misspelled
middle names4.

Precision and Efficiency Table 7 lists the precision of

3We thank authors of [13] for providing us the data set.
4Note that the precision we reported is not comparable with
that reported in [13], as their partially correct results are
each given a partial score between 0 and 1, mis-ordering of
authors is not penalized, but incorrect or missing middle
name is penalized.
5[13] reports that correct authors were provided for 85
books; however, they did not count mis-ordering of authors
as incorrect.



Table 8: Bookstores that are likely to be copied by
more than 10 other bookstores. For each bookstore
we show the number of books it lists and its accuracy
computed by Sim.

Bookstore #Copiers #Books Accu
Caiman 17.5 1024 .55

MildredsBooks 14.5 123 .88
COBU GmbH & Co. KG 13.5 131 .91

THESAINTBOOKSTORE 13.5 321 .84
Limelight Bookshop 12 921 .54
Revaluation Books 12 1091 .76

Players Quest 11.5 212 .82
AshleyJohnson 11.5 77 .79
Powell’s Books 11 547 .55

AlphaCraze.com 10.5 157 .85
Avg 12.8 460 .75

each algorithm. Sim obtained the best results and improved
over Naive by (.89-.71)/.71=25.4%. NaiveSim, AccuN-
oDep and Bene each extends Naive on one aspect; while
all of them increased the precision, Bene increased the most.
We also observed that considering similarity between author
lists increased the precision of Accu only slightly (by 2.3%),
but increased the precision of TFNoSim significantly (by
16.9%); indeed, TFNoSim obtained the same precision as
Naive.

To further understand how considering dependence and
precision of sources can affect our results, we looked at the
books on which Accu and Naive generated different results
and manually found the correct authors. There are 143 such
books, among which Accu and Naive gave correct authors
for 119 and 15 books respectively, and both gave incorrect
authors for 9 books.

Finally, Bene was quite efficient and finished in 28.3 sec-
onds. It took Accu and Sim longer time to converge (3.1
minutes, 3.3 minutes respectively); though, truth discovery
is often a one-time process and so taking a few minutes is
still reasonable.

Dependence and source accuracy: Out of the 385,000
pairs of bookstores, 2916 pairs provide information on at
least the same 10 books and among them Sim found 508
pairs that are likely to be dependent. Among each such pair
S1 and S2, if the probability of S1 depending on S2 is over
2/3 of the probability of S1 and S2 being dependent, we
consider S1 as a copier of S2; otherwise, we consider S1 and
S2 each has .5 probability to be a copier. Table 8 shows the
bookstores whose information is likely to be copied by more
than 10 bookstores. On average each of them provides infor-
mation on 460 books and has accuracy .75. Note that among
all bookstores, on average each provides information on 28
books. This conforms to the intuition that small bookstores
are more likely to copy data from large ones. Interestingly,
when we applied Naive on only the information provided
by bookstores in Table 8, we obtained a precision of only
.58, showing that bookstores that are large and referenced
often actually can make a lot of mistakes.

Finally, we compare the source accuracy computed by our
algorithms with that sampled on the 100 books in the golden
standard. Specifically, there were 46 bookstores that provide
information on more than 10 books in the golden standard.
For each of them we computed the sampled accuracy as the
fraction of the books on which the bookstore provides the
same author list as the golden standard. Then, for each

Table 9: Difference between accuracy of sources
computed by our algorithms and the sampled ac-
curacy on the golden standard.

Sampled Sim Accu Accu TF
NoDep NoSim

Avg src accu .542 .607 .614 .623 .908
Avg diff - .082 .087 .096 .366

bookstore we computed the difference between its accuracy
computed by one of our algorithms and the sampled ac-
curacy. Table 9 shows the comparison. The source accu-
racy computed by Sim is the closest to the sampled accu-
racy, indicating the effectiveness of our model on computing
source accuracy and showing that considering dependence
between sources helps obtain more precise source accuracy.
The source accuracy computed by TFNoSim is high, con-
sistent with the observation of overly high confidence made
in [13].

8. RELATED WORK
We are not aware of any existing work on detecting depen-

dence between data sources. Data provenance [4] is a hot
research topic but it focuses on managing provenance in-
formation already provided by users or applications. Opin-
ion pooling, which combines probability distribution from
multiple experts and arrives at a single probability distribu-
tion to represent the consensus behavior, has been studied
in the context of dependent experts in [5, 6, 9]; however,
these works did not study how to discover such dependence.
Moss [10] detects plagiarism of programs by comparing fin-
gerprints (k-grams) of the programs; our method is different
in that we consider values provided for different objects in
databases.

There has been many works studying how to assess trust-
worthiness of data sources. Among them, PageRank [3],
Authority-hub analysis [8], etc., decide authority based on
link analysis [2]. EigenTrust [7] and TrustMe [11] assign a
global trust rating to each data source based on its behavior
in a P2P network. The strategy that is closest to ours is
TruthFinder [13], with which we have compared in detail in
Section 5.4 and in experiments.

Finally, a lot of research has been done on combining con-
flicting data from multiple sources. Bleiholder and Nau-
mann [1] surveyed existing strategies for resolving incon-
sistency in structured or semi-structured data and showed
how to implement them within an information integration
system. Wu and Marian [12] proposed aggregating query re-
sults from different web sources by considering importance
and similarity of the sources. Our algorithm differs from
theirs in that we developed formal models to discover depen-
dence between data sources and accuracy of sources, based
on which we decide truth from conflicting information.

9. CONCLUSIONS
In this paper we studied how to improve truth discovery

by detecting dependence between sources and analyzing ac-
curacy of sources. We considered a snapshot of data and de-
veloped Bayesian models that discover copiers by analyzing
values shared between sources. The results of our models
can be considered as a probabilistic database, where each
object is associated with a probability distribution of vari-
ous values in the underlying domain. Experimental results



show that our algorithms can significantly improve accuracy
of truth discovery and are scalable when there are a large
number of data sources.

Our work is a first step towards integrating data among
sources where some can copy from others. There are many
future topics under this umbrella. First, we plan to extend
our current models by considering evolution of data. Sec-
ond, we plan to combine techniques of record linkage and
truth discovery to enhance both of them. Third, we plan
to leverage knowledge of dependence between sources to an-
swer queries more efficiently in a data integration system.
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