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ABSTRACT
Dataspaces are collections of heterogeneous and partially
unstructured data. Unlike data-integration systems that
also offer uniform access to heterogeneous data sources, datas-
paces do not assume that all the semantic relationships be-
tween sources are known and specified. Much of the user
interaction with dataspaces involves exploring the data, and
users do not have a single schema to which they can pose
queries. Consequently, it is important that queries are al-
lowed to specify varying degrees of structure, spanning key-
word queries to more structure-aware queries.

This paper considers indexing support for queries that
combine keywords and structure. We describe several exten-
sions to inverted lists to capture structure when it is present.
In particular, our extensions incorporate attribute labels,
relationships between data items, hierarchies of schema ele-
ments, and synonyms among schema elements. We describe
experiments showing that our indexing techniques improve
query efficiency by an order of magnitude compared with
alternative approaches, and scale well with the size of the
data.

Categories and Subject Descriptors: H.3.1: Content
Analysis and Indexing

General Terms: Performance, Experimentation

Keywords: Dataspace, Indexing, Heterogeneity

1. INTRODUCTION
Dataspaces are large collections of heterogeneous and par-

tially unstructured data [24]. Unlike data integration sys-
tems that also offer uniform access to heterogeneous data
sources, dataspaces do not assume that all the semantic re-
lationships between sources are known and have been spec-
ified. In some cases, semantic relationships are unknown
because of the sheer number of sources involved or the lack
of people skilled in specifying such relationships. In other
cases, not all semantic relationships are necessary in order
to offer the services of interest to users. A dataspace sys-
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tem typically employs automatic methods that try to ex-
tract some of the semantic relationships, but these results
are approximate at best. The goal of dataspaces is to pro-
vide useful services whenever possible, and assist users in
creating tighter semantic relationships when they see fit.
Scenarios in which we want to manage dataspaces include
personal data on one’s desktop, collections of data sources
in enterprises, government agencies, collaborative scientific
projects, digital libraries, and large collections of structured
sources on the Web.

We are building a system that enables users to interact
with dataspaces through a search and query interface. In do-
ing so, we are keeping two goals in mind. First, much of the
interaction with such a system is of exploratory nature—the
user is getting to know the data and its structure. Second,
since there are many disparate data sources, the user can-
not query the data using a particular schema. To support
these two goals, it is important that users are able to use
varying degrees of structure in their queries, ranging from
keyword queries to structure-aware queries. Furthermore, it
is beneficial that the system returns possibly related data in
answers to queries and not only the data that strictly satisfy
the query.

We capture these novel querying needs with two types of
queries: predicate queries and neighborhood keyword queries.
A predicate query allows the user to specify both keywords
and simple structural requirements, such as “a paper with
title ‘Birch’, authored by ‘Raghu’, and published in ‘Sigmod
1996’”. A neighborhood keyword query is specified by a set
of keywords, but differs from traditional keyword search in
that it also explores associations between data items, and so
it leverages additional structure that may exist in the data
or may have been automatically discovered. For example,
searching for “Birch” returns not only the papers and pre-
sentations that mention the Birch project, but also people
working on Birch and conferences in which Birch papers
have been published.

This paper considers indexing support for predicate queries
and neighborhood keyword queries. Broadly speaking, ex-
isting methods either build a separate index for each at-
tribute in each data source to support structured queries on
structured data, or create an inverted list to support key-
word search on unstructured data. Consequently, as we shall
show, they fall short in the context of queries that combine
keywords and structure. The area in which indexing struc-
ture and keywords has received most attention is in the con-
text of XML. However, the techniques proposed for XML
indexing fall short in our context for two reasons. First, the



XML techniques typically rely on encoding the parent-child
and ancestor-descendant relationships in an XML tree; how-
ever, the relationships in a dataspace do not fit this model.
Furthermore, most XML indexing methods build multiple
indexes; as we show in our experiments, visiting multiple
indexes to answer a predicate query or a neighborhood key-
word query can be quite time-consuming.

We propose to capture both text values and structural
information using an extended inverted list. Our index aug-
ments the text terms in the inverted list with labels denoting
the structural aspects of the data such as (but not limited to)
attribute tags and associations between data items. When
an attribute tag is attached to a keyword, it means that
this keyword appears as a value for that attribute. When
an association tag is attached to a keyword, it means that
this keyword appears in an associated instance. We explore
several methods for extending inverted lists and describe ex-
periments that validate the utility of our extensions.

Our ultimate goal is to support robust indexing of loosely-
coupled collections of data in the presence of varying degrees
of heterogeneity in schema and data, such that we can ef-
ficiently answer queries that combine keywords and simple
structural requirements. This paper makes the following
contributions towards this goal:

• We introduce a framework that indexes heterogeneous
data from multiple sources through a (virtual) central
triple store, so as to support queries that combine key-
words and structural specification.

• We describe extensions to inverted lists that capture
attribute information and associations between data
items.

• We show how our techniques can be extended to incor-
porate various types of heterogeneity, including syn-
onyms and hierarchies of attributes and associations.

• We describe experimental results showing that our tech-
niques improve search efficiency by an order of magni-
tude and perform better than competing alternatives.
In addition, the experiments show that our technique
scales well and supports efficient index updates.

Section 2 overviews our indexing framework and formally
defines our problem. Section 3 describes how to extend in-
verted lists to support attribute and association information.
Section 4 shows further extensions for attribute hierarchies
and synonyms. Section 5 presents experimental results. Sec-
tion 6 discusses related work and Section 7 concludes.

2. PROBLEM DEFINITION
We begin by describing our problem setting and the types

of queries we aim to support. We also give a brief overview
of inverted lists.

2.1 Indexing Heterogeneous Data
Our goal is to support efficient queries over collections of

heterogeneous data that are not necessarily semantically in-
tegrated as in data-integration systems. The scenario we use
throughout our discussion is representative of data that may
be extracted from multiple sources, some of which are only
partially structured or not structured at all (e.g., DBLife [18],
Semex [19], iMeMex [8]). The scenario includes a collection
of files of various types (e.g., Latex and Bibtex files, Word
documents, Powerpoint presentations, emails and contacts,
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Figure 1: We build an index over a collection of hetero-

geneous data. Our index is an inverted list where each

row represents a keyword and each column represents a

data item from the data sources.

and webpages in the web cache), as well as some structured
sources such as spreadsheets, XML files and databases. We
extract associations between disparate items in the unstruc-
tured data and also from structured data sources.

Answers to queries are data items from the sources, such
as files, rows in spreadsheets, tuples in relational databases
or elements in XML data. Hence, our goal is to build an
index whose leaves are references to data items in the indi-
vidual sources (see Figure 1).

To build such an index, we model the data from different
data sources universally as a set of triples, which we refer to
as a triple base. Each triple is either of the form (instance,
attribute, value) or of the form (instance, association, in-
stance). Thus, a triple base describes a set of instances and
associations. An instance corresponds to a real-world object
and is described by a set of attributes, for each of which there
might be multiple values. An association is a relationship
between two instances. We assume that associations are
directional, and in particular, the two directions of a partic-
ular association may be named differently (e.g., author and
authoredPaper).

The items in our index correspond to instances extracted
from the data sources using a variety of methods. For ex-
ample, we extract instances and associations from tuples in
a relational database by trying to guess the E/R model that
may lead to the schema. For example, if the key of a table
consists of multiple attributes and each is a foreign key to
another table, we consider tuples in the table as representing
associations. As other examples, we adapt techniques from
[23, 5, 19] to extract relationships between structured and
unstructured data. Note that these extractions are impre-
cise in nature, and so our querying mechanisms and indexing
techniques need to allow more flexibility. Our paper omits
the details of extraction and focuses on the indexing aspect.

To further accommodate heterogeneity, our triple base
also models synonyms among attribute and association names
(as well as an association being synonymous with an at-
tribute) and hierarchies. Hierarchies can be of sub-property
type (e.g., father being a sub-property of parent) or sub-field
type (e.g., city being a sub-field of address), and we do not
distinguish between them. Heterogeneity often arises in the
way data sources model structure hierarchies (e.g., different
ways of modeling addresses and people); therefore, it is im-
portant for our indexing mechanisms to be hierarchy-aware.

Example 1. Consider the triple base depicted in Figure 2.
It contains three Person instances p1, p2, p3, one Article in-
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Figure 2: An example triple base. The ellipses represent

instances and the rectangles represent attribute values.

Undirectional edges represent attributes and directional

edges represent associations.

stance a1, and one Conference instance c1. For each in-
stance we list the attribute values and associated instances.
For example, Paper a1 has title “Birch:...”; it is associated
with Person instances p1 and p2, and Conference instance
c1. Here we assume that the attributes firstName, lastName

and nickName are sub-attributes of name, and the associa-
tion contactAuthor is a sub-association of author. 2

2.2 Querying Heterogeneous Data
We aim to support queries over heterogeneous data sources

where users are not aware of the existing structure. Hence,
we support queries that enable the user to specify as much
structure as she can, including none at all. The first type
of queries, called predicate queries, describes the desired in-
stances by a set of predicates, each specifying an attribute
value or an associated instance.

Definition 2.1. A predicate query contains a set of pred-
icates. Each predicate is of the form (v, {K1, . . . , Kn}), where
v is called a verb and is either an attribute name or an as-
sociation name, and K1, . . . , Kn are keywords.

The predicate is called an attribute predicate if v is an
attribute, and an association predicate if v is an association.

The semantics of predicate queries is as follows. The re-
turned instances need to satisfy at least one predicate in the
query. An instance satisfies an attribute predicate if it con-
tains at least one of {K1, . . . , Kn} in the values of attribute
v or sub-attributes of v. An instance o satisfies an associ-
ation predicate if there exists i, 1 ≤ i ≤ n, such that o has
an association v or sub-association of v with an instance o′

that has an attribute value Ki. 2

We note that we can also express conjunctions of predi-
cates in our language, but the details are irrelevant to our
discussion.

Example 2. The query “Raghu’s Birch paper in Sigmod
1996” can be described with the following three predicates.
The query is satisfied by instance a1 in our example.

(title ‘Birch’), (author ‘Raghu’),

(publishedIn ‘1996 Sigmod’) 2

In practice, users can specify predicate queries in two
ways. First, they can specify a query through a user in-
terface featuring drop-down menus that show all existing
attribute or association labels. Second, they can compose

the query in a certain syntax (such as the one shown in
Example 2), specifying attribute or association labels that
they know (such as those in data sources familiar to them).
In general, our querying is aimed to be more forgiving in
cases where users do not know the schema. For example, we
support synonym terms, and we don’t require knowledge of
attribute hierarchies—users can specify terms anywhere in
a hierarchy.

The second type of queries, called neighborhood keyword
queries, extends keyword search by taking associations into
account.

Definition 2.2. A neighborhood keyword query is a set
of keywords, K1, . . . , Kn. An instance satisfies a neighbor-
hood keyword query if either of the following holds:

• The instance contains at least one of {K1, . . . , Kn} in
attribute values. In this case we call it a relevant in-
stance.

• The instance is associated (in either direction) with a
relevant instance. In this case we call it an associated
instance. 2

Example 3. Consider the query “Birch”. Instance a1 is
a relevant instance as it contains “Birch” in the title at-
tribute, and p1, p2, and c1 are associated instances. 2

Predicate queries and neighborhood keyword queries are
different from traditional structured queries in that the user
can specify keywords instead of precise values, and provide
only approximate structure information. For example, the
query in Example 2 does not specify if “Raghu” should occur
in an author attribute, or in an author sub-element, or in
the attribute of another tuple that can be joined with the
returned instance. These types of queries are also different
from keyword search in that query answering explores the
structure of the data to return associated relevant instances.
In the rest of the paper, we introduce an index designed to
support such queries.

Clearly, a significant part of answering the above queries
is intelligent ranking of the results. Our system uses a com-
bination of methods, including ranking results that match
several keywords in a predicate more highly, weighting as-
sociations differently when ranking associated instances, ap-
plying PageRank on the association network. The rest of the
paper focuses on the indexing aspects of query answering.

2.3 Inverted Lists
Our index is based on extending inverted lists, a tech-

nique widely used in Information Retrieval. In Section 6
we explain why we chose inverted lists over more database-
oriented techniques. We now quickly review how an inverted
list indexes a set of instances in a triple base by keyword.

Conceptually, an inverted list is a two-dimensional table,
where the i-th row represents indexed keyword Ki and the
j-th column represents instance Ij . The cell at the i-th row
and j-th column, denoted (Ki, Ij), records the number of
occurrences, called occurrence count, of keyword Ki in the
attributes of instance Ij . If the cell (Ki,Ij) is not zero, we
say instance Ij is indexed on Ki. The keywords are ordered
in alphabetic order, and the instances are ordered by their
identifiers. Table 1 shows the inverted list for our example
triple base.



Table 1: The inverted list for the example triple base.
a1 c1 p1 p2 p3

1996 0 1 0 0 0
birch 1 0 0 0 0
jeff 0 0 0 0 1
jie 0 0 0 0 1
raghu 0 0 0 3 0
ramakrishnan 0 0 0 1 0
sigmod 0 1 0 0 0
tian 0 0 1 0 1
wisc 0 0 0 1 0
yahoo 0 0 0 1 0
zhang 0 0 1 0 0

Note that inverted lists, as described above, do not cap-
ture any structure information: in the example inverted
list, we cannot tell that “tian” occurs as p1’s name (actu-
ally, first name) and p3’s lastName. In the subsequent sec-
tions we describe extensions to inverted lists that enable ef-
ficiently answering predicate queries and neighborhood key-
word queries.

In practice, an inverted list is seldom stored as a matrix.
There are multiple ways to store an inverted list [4], such as a
sorted array, a prefix B-tree or a Patricia trie. In addition,
[42] describes techniques for compression of inverted lists.
The extensions we describe are orthogonal to these physical
implementations.

3. INDEXING STRUCTURE
This section describes how we index attributes and asso-

ciations along with keywords to support predicate queries.
We consider hierarchies in the next section.

3.1 Indexing Attributes
Consider an attribute predicate (A, {K1, . . . , Kn}) in a

predicate query. Instances satisfy the predicate if they con-
tain some of the keywords K1, . . . , Kn in their A attribute.
To handle attribute predicates efficiently, our index should
tell us which attributes contain a given keyword.

There are several ways to capture attribute types in in-
dexing. One option is to build an index for each attribute,
but as we shall show in the experiments, it can introduce a
significant overhead to the index structure. Another option
is to specify the attribute name in the cells of the inverted
list. For example, the cell (“tian”, p1) in Table 1 could be
modified to record “name:1”. However, this method would
considerably complicate query answering. The solution we
propose captures attribute names with the indexed keywords
to save both index space and lookup time.

Attribute inverted lists (ATIL): We create an attribute
inverted list (see Table 2) as follows. Whenever the keyword
k appears in a value of the a attribute, there is a row in
the inverted list for k//a//. For each instance I , there is
a column for I . The cell (k//a//, I) records the number
of occurrences of k in I ’s a attributes. (We assume // is
a string reserved for indexing purposes only, and any other
delimiter that never occurs in the indexed keywords works
too.)

To answer a predicate query with attribute predicate (A,
{K1, . . . , Kn}), we only need to do keyword search for
{K1//A//, . . . , Kn//A//}. For example, to answer the at-
tribute predicate “lastName, ‘Tian’”, we transform it into a

Table 2: The ATIL: each indexed keyword is a concate-

nation of a keyword and an attribute.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0
birch//title// 1 0 0 0 0
jeff//nickName// 0 0 0 0 1
jie//firstName// 0 0 0 0 1
raghu//email// 0 0 0 2 0
raghu//name// 0 0 0 1 0
ramakrishnan//name// 0 0 0 1 0
sigmod//name// 0 1 0 0 0
tian//lastName// 0 0 0 0 1
tian//name// 0 0 1 0 0
wisc//email// 0 0 0 1 0
yahoo//email// 0 0 0 1 0
zhang//name// 0 0 1 0 0

keyword query “tian//lastName//”. In Table 2, the search
will yield p3 but not p1.

3.2 Indexing Associations
Consider the association predicate (R, {K1, . . . , Kn}). In-

stances satisfy the predicate if they have associations of
type R with instances that contain some of the keywords
K1, . . . , Kn in attribute values.

One naive solution here would be to perform a keyword
search on keywords {K1, . . . , Kn} and find a set of instances
{I1, . . . , Im} that contain these keywords. Then, for each in-
stance Ik, k ∈ [1, m], we find associated instances. This ap-
proach can be very expensive for two reasons. First, when m
is large, iteratively finding associated instances for each Ik

can be expensive. Second, a returned instance can be asso-
ciated with one or more instances in {I1, . . . , Im}. Ranking
the returned results requires counting the number of asso-
ciated instances for each result, which can be expensive.
We offer a solution that extends inverted lists to also cap-
ture association information, thereby avoiding the expensive
traversal of the triple base.

Attribute-association inverted lists (AAIL): We index
association information as follows. Suppose the instance I
has an association r with instances I1, . . . , In in the triple
base, and each of I1, . . . , In has the keyword k in one of its
attribute values. The inverted list will have a row for k//r//
and a column I . The cell (k//r//, I) has the value n.

An inverted list that captures both attribute and associ-
ation information is called an attribute-association inverted
list (AAIL) (see Table 3). Given an association predicate
(R, {K1, . . . , Kn}), we can answer it by posing the keyword
query {K1//R//, . . . , Kn//R//} over the AAIL. For exam-
ple, when searching for “Raghu’s papers”, the query con-
tains an association predicate “author ‘Raghu’” and so we
look up keyword “raghu//author//”. Based on the AAIL in
Table 3, we return instance a1.

Integrating association information in the inverted list in-
creases the size of the index. However, in most applica-
tions when the size of the indexed data increases, the av-
erage number of associated instances for each instance in-
creases only slightly or even remains the same, so the in-
dex typically grows linearly with the size of the data. Our
experiments show that adding association information into
an ATIL (to obtain AAIL) slows down answering attribute
predicates only slightly, but it speeds up answering associ-



Table 3: The AAIL: each index keyword is a concatena-

tion of a keyword and an attribute name, or a keyword

and an association name.

a1 c1 p1 p2 p3

1996//publishedIn// 1 0 0 0 0
1996//year// 0 1 0 0 0
birch//authoredPaper// 0 0 1 1 0
birch//publishedPaper// 0 1 0 0 0
birch//title// 1 0 0 0 0
jeff//nickName// 0 0 0 0 1
jie//firstName// 0 0 0 0 1
raghu//author// 1 0 0 0 0
raghu//email// 0 0 0 2 0
raghu//name// 0 0 0 1 0
ramakrishnan//author// 1 0 0 0 0
ramakrishnan//name// 0 0 0 1 0
sigmod//name// 0 1 0 0 0
sigmod//publishedIn// 1 0 0 0 0
tian//contactAuthor// 1 0 0 0 0
tian//lastName// 0 0 0 0 1
tian//name// 0 0 1 0 0
wisc//author// 1 0 0 0 0
wisc//email// 0 0 0 1 0
yahoo//author// 1 0 0 0 0
yahoo//email// 0 0 0 1 0
zhang//contactAuthor// 1 0 0 0 0
zhang//name// 0 0 1 0 0

ation predicates by an order of magnitude compared with
the naive method.

It is interesting to distinguish our association index from
join indexes [39], where a precomputed join R 1 S is mate-
rialized as a separate table and two copies of the table are
maintained, one clustered on R’s key columns and the other
clustered on S’s key columns. Our association index can
be viewed as a union of the original data and multiple join
results. This index structure enables us to count the occur-
rences of keywords and the numbers of associated instances
with one scanning of the index.

Finally, note that a k-ary association can be modeled as
an instance that is related to the k instances involved in the
association. Our indexing method can be easily extended to
this case and we omit the details for space considerations.

4. INDEXING HIERARCHIES
We now consider answering predicate queries in the pres-

ence of hierarchies. For example, for the query “name ‘Tian’”,
we wish to return instances p1 and p3, rather than only p1.

A simple method to incorporate hierarchies would be to
first find all descendants of the name attribute (in this ex-
ample, they are firstName, lastName and nickName), then
expand the keyword query by considering also descendant
attributes (so search “tian//name// OR tian//firstName//
OR tian//lastName// OR tian//nickName//”). However,
this method requires multiple index lookups and thus can
be expensive.

Our solution is based on integrating the hierarchy infor-
mation into the index structure. We begin by describing
two possible solutions, and then combine their features and
introduce a hybrid indexing scheme. For ease of explana-
tion, we consider only attribute hierarchies, but the same
principle applies to association hierarchies. We assume that
each attribute has at most a single parent attribute. This
covers most cases in practice and the approach can be easily
extended to multiple-inheritance cases.

Table 4: The Dup-ATIL: the difference from Table 2 is

highlighted using bold font.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0
birch//title// 1 0 0 0 0
jeff//name// 0 0 0 0 1
jeff//nickName// 0 0 0 0 1
jie//firstName// 0 0 0 0 1
jie//name// 0 0 0 0 1
raghu//email// 0 0 0 2 0
raghu//name// 0 0 0 1 0
ramakrishnan//name// 0 0 0 1 0
sigmod//name// 0 1 0 0 0
tian//lastName// 0 0 0 0 1
tian//name// 0 0 1 0 1
wisc//email// 0 0 0 1 0
yahoo//email// 0 0 0 1 0
zhang//name// 0 0 1 0 0

4.1 Index with Duplication
Our first solution duplicates a row that includes an at-

tribute name for each of its ancestors in the hierarchy.

Attribute inverted lists with duplication (Dup-ATIL):
We construct a Dup-ATIL as follows. If the keyword k ap-
pears in the value of attribute a0, and a is an ancestor of
a0 in the hierarchy (a could also be a0), then there is a row
k//a//. The cell (k//a//, I) records the number of occur-
rences of k in values of the a attribute and a’s sub-attributes
of I . We answer a predicate query with the Dup-ATIL in
the same way as we use the ATIL.

Example 4. Table 4 shows the Dup-ATIL for our ex-
ample. Consider instance p3. We index p3 not only on
“jie//firstName//”, “tian//lastName//”, and “jeff//
nickName//”, but also on “jie//name//”, “tian//name//”,
and “jeff//name//”. Thus, in the inverted list, row “tian//
name//” also records one occurrence for instance p3, and
there are new rows “jie//name//” and “jeff//name//”, each
recording one occurrence for instance p3.

Now consider searching a person with name “Tian”. We
transform the query “name ‘Tian’” into keyword search
“tian//name//” and return instances p1 and p3. 2

On the one hand, a Dup-ATIL has the benefit of simple
query answering, but on the other hand, it may consider-
ably expand the size of the index because of the duplica-
tion. The size of the Dup-ATIL will be especially affected
if the attribute hierarchy contains long paths from the root
attribute to the leaf attributes and most values in the triple
base belong to leaf attributes.

4.2 Index with Hierarchy Path
We now introduce a second solution, which does not affect

the number of rows in the inverted list. Instead, the keyword
in every row includes the entire hierarchy path.

Attribute inverted lists with hierarchies (Hier-ATIL):
We construct a Hier-ATIL by extending the attribute in-
verted list as follows (see Figure 5). Let a0, . . . , an be at-
tributes such that for each i ∈ [0, n − 1], attribute ai is
the super-attribute of ai+1, and a0 does not have super-
attribute. We call a0// . . . //an// a hierarchy path for at-
tribute an. For each keyword k in the value of attribute
an, there is a row for k//a0// . . . //an//. For each instance



Table 5: The Hier-ATIL: each row represents a concate-

nation of a keyword and a hierarchy path. The difference

from Table 2 is highlighted using bold font.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0
birch//title// 1 0 0 0 0
jeff//name//nickName// 0 0 0 0 1
jie//name//firstName// 0 0 0 0 1
raghu//email// 0 0 0 2 0
raghu//name// 0 0 0 1 0
ramakrishnan//name// 0 0 0 1 0
sigmod//name// 0 1 0 0 0
tian//name// 0 0 1 0 0
tian//name//lastName// 0 0 0 0 1
wisc//email// 0 0 0 1 0
yahoo//email// 0 0 0 1 0
zhang//name// 0 0 1 0 0

I , there is a column for I . The cell (k//a0// . . . //an//, I)
records the number of occurrences of k in I ’s an attributes.

A Hier-ATIL captures the hierarchy information using hi-
erarchy paths, which have a nice feature: the hierarchy path
of an attribute A is a prefix of the hierarchy paths of A’s
descendant attributes. Thus, we can transform an attribute
predicate into a prefix search. Specifically, consider a query
predicate (A, {K1, . . . , Kn}). We transform it into a pre-
fix search: K1//A//∗, . . . , Kn//A//∗. For example, we can
transform the query predicate “name ‘Tian’” into a prefix
search “tian//name//*” and so return both p1 and p3.

Since the indexed keywords in an inverted list are ordered,
we can answer a prefix query easily. To look up prefix P∗,
we first locate the first row where the keyword is P or starts
with P . We then scan the succeeding rows until reaching an
indexed keyword that does not start with P , and we accu-
mulate the occurrence counts in these rows for each instance.

Unlike Dup-ATIL, building a Hier-ATIL does not increase
the number of indexed keywords. Although it can lengthen
many of the indexed keywords, real indexing systems typi-
cally record a keyword only by the difference from its pre-
vious keyword (for example, given a keyword k1 and a suc-
ceeding keyword k2, where the maximal common prefix of
k1 and k2 is p, an index can record k2 by the length of p and
k2’s suffix that differs from k1). Thus, building a Hier-ATIL
introduces only a small overhead. However, with Hier-ATIL
we need to answer a predicate query by transforming it into a
prefix search, which can be more expensive than a keyword
search. Answering a prefix search is especially expensive
when a keyword occurs in many different attributes with
common ancestors.

It is interesting to compare our approach with the one pro-
posed in [16] in the context of indexing XML data, where
the focus was on answering queries with path expressions.
Whereas we index a keyword followed by the hierarchy path,
[16] indexes an XPath with the keyword in the end. Our ap-
proach has two advantages in our context. First, attribute
keywords have much higher variety than attribute names
and thus are more selective. Second, in the presence of
attribute hierarchies, using our index we can transform a
query predicate into a prefix search (e.g., “tian//name//*”),
but using their index we need to transform it into a general
regular-expression query (e.g., “name/*/tian//”), which can
be much more expensive to answer.

Table 6: The Hybrid-ATIL with threshold t=1: the

difference from Table 5 is the row for “tian//name////”.

a1 c1 p1 p2 p3

1996//year// 0 1 0 0 0
birch//title// 1 0 0 0 0
jeff//name//nickName// 0 0 0 0 1
jie//name//firstName// 0 0 0 0 1
raghu//name// 0 0 0 1 0
raghu//email// 0 0 0 2 0
ramakrishnan//name// 0 0 0 1 0
sigmod//name// 0 1 0 0 0
tian//name//// 0 0 1 0 1
tian//name//lastName// 0 0 0 0 1
wisc//email// 0 0 0 1 0
yahoo//email// 0 0 0 1 0
zhang//name// 0 0 1 0 0

procedure Lookup(L, P ) return S
//L is a Hybrid-ATIL; P is a prefix to look up;
//Return S, an array summarizing for each instance the

occurrences of keywords with prefix P ;
Initialize each value of S[] to 0;
Locate the first keyword K̄ = K +′′ //′′ with prefix P ;
while P is the prefix of K̄

Update S according to the row for K̄;
if (K̄ ends with “////”)

if K = P return S;
else Skip all succeeding keywords with prefix K;

Read the next keyword K̄ = K +′′ //′′;
return S;

Figure 3: The algorithm for looking up a prefix in a

Hybrid-ATIL.

4.3 Hybrid Index
The two solutions we have proposed have complimentary

benefits: Dup-ATIL is more suitable for the cases where
a keyword occurs in many attributes with common ances-
tors, and Hier-ATIL is more suitable for the cases where a
keyword occurs in only a few attributes with common an-
cestors. We now describe a hybrid indexing scheme that
combines the strengths of both methods.

Hybrid attribute inverted list (Hybrid-ATIL): The
goal of a Hybrid-ATIL is to build an inverted list that can
answer any prefix search (ending with “//”) by reading no
more than t rows, where t is a threshold given as input to
the algorithm.

We build the Hybrid-ATIL by starting with the Hier-ATIL
and successively adding summary rows, using a strategy we
shall describe shortly. The indexed keyword in a summary
row is of the form p//, where p = k//a0// . . . //al//, k is a
keyword, and a0// . . . //al// is a hierarchy path for attribute
al. Rows whose indexed keywords start with p are said to be
shadowed by the summary row p//. Note that keywords in
summary rows end with an additional // to be distinguished
from ordinary rows. The cell (p//, I) has the sum of the
occurrence counts of I in p//’s shadowed rows. The Hybrid-
ATIL with threshold t = 1 for the example triple base is
shown in Table 6.

To answer a prefix query of the form k//a1// . . . //am//∗,
we look at all the rows with prefix k//a1// . . . //am// ex-
cept those shadowed by summary rows. Figure 3 shows the
algorithm for prefix lookup in a Hybrid-ATIL.

Example 5. Consider two queries on the example triple



base. The query predicate “name ‘Jeff’ ” is transformed
into prefix search “jeff//name//*”. In Table 6, only key-
word “jeff//name//nickName//” contains this prefix, so we
return instance p3.

The query predicate “name ‘Tian’ ” is transformed into
prefix search “tian//name//*”. As the Hybrid-ATIL con-
tains a summary row with indexed keyword “tian//name////”,
we can directly return instances p1 and p3 without consider-
ing other keywords.

In both cases, we read no more than one row (recall that
t = 1 for the index) to answer a prefix search. 2

Creating the Hybrid-ATIL: We begin with the Hier-
ATIL and add summary rows until none can be added. We
denote by Ans(p) the number of rows we need to examine
to answer a prefix query p. We create a summary row for
a prefix p if Ans(p) > t and there is no p′, such that p is a
prefix of p′ and Ans(p′) > t. If we add a summary row for
p//, we remove the p row from the inverted list if one exists.

In Table 5, Ans(“tian//name//′′) = 2. Therefore, with
threshold t = 1, the row “tian//name//” would be replaced
by a summary row, as shown in Table 6. We can actually
show that we can construct the Hybrid-ATIL from the Hier-
ATIL with a single pass over the keyword entries.

The construction of the Hybrid-ATIL guarantees Ans(p) ≤
t for any prefix p. Note that adding summary rows can
increase the size of the index. However, by choosing an
appropriate threshold t we can trade-off index size (so the
prefix-lookup time) and occurrence-accumulation time.

Note that the Information Retrieval community has pro-
posed other types of indexes for regular-expression match-
ing, such as suffix tree [3], which indexes all suffixes of each
document, and multigram index [14], which creates k-gram
indexes for reasonable k values (e.g., k = 2, 3, . . . , 10). In
addition, HYB [6] and KISS [30] have recently been pro-
posed for general prefix matching. Compared with these
approaches, our index is oriented to prefix matching where
we know the exact prefix delimiters (“//” in our case), thus
indexing and searching can be more efficient.

4.4 Schema-Level Synonyms
Accommodating different hierarchical structures is already

an important step towards supporting data heterogeneity in
our indexing mechanism. We now briefly describe how our
techniques easily handle two other forms of heterogeneity.

The first form of heterogeneity is where an association in
one source is an attribute in another. For example, author

can be an attribute of a Paper instance with author names as
attribute values, or an association between Paper instances
and Person instances. Since our index does not distinguish
attributes and associations in the indexed keywords, it nat-
urally incorporates this kind of heterogeneity.

The second type of heterogeneity, term heterogeneity, is
where different terms represent the same attribute or asso-
ciation. For example, author and authorship can describe the
same association.

To accommodate term heterogeneity, we assume we have
a synonym table for attribute and association names. If at-
tribute a is referred to as a1, . . . , an in different data sources,
we choose the canonical name of a as one of a1, . . . , an. We
note that the synonyms are either given to us or are derived
using schema-matching techniques, and hence will typically
be approximate.

Table 7: The KIL with threshold t = 1: to save space,

we only show the rows where the indexed keywords start

with “birch”.

a1 c1 p1 p2 p3

birch//// 1 1 1 1 0
birch//authoredPaper// 0 0 1 1 0
birch//publishedPaper// 0 1 0 0 0
birch//title// 1 0 0 0 0

In our index, when a keyword k appears in a value of the ai

attribute, there is a row in the inverted list for k//a//. For
each instance I , there is a column for I . The cell (k//a//, I)
records the number of occurrences of k in I ’s a1, . . . , an at-
tributes.

To answer a predicate query with attribute predicate (ai,
{K1, . . . , Kn}), i ∈ [1, n], we transform it into a keyword
search for {K1//a//, . . . , Kn//a//}. In our example, if we
consider author as a canonical name for author and author-

ship, the attribute predicate “authorship, ‘Tian’” will be trans-
formed into “tian//author//” instead of “tian//
authorship//”.

The other form of heterogeneity that is common in prac-
tice is value heterogeneity: sources refer to the same real-
world objects in different ways (e.g., references to persons,
addresses, publications). We leave the handling of value het-
erogeneity to future work, as it raises some novel challenges.

4.5 Neighborhood Keyword Queries
The indexing methods we described so far lend them-

selves almost immediately to answering neighborhood key-
word queries. We build the Keyword Inverted List (KIL),
which is essentially a Hybrid-AAIL. In a KIL we summarize
not only prefixes that end with hierarchy paths, but also
prefixes that correspond directly to keywords. To answer a
neighborhood keyword query with keywords K1, . . . , Kn, we
transform it into a prefix search for K1//∗, . . . , Kn//∗.

Example 6. Table 7 shows a fragment of the KIL with
threshold t = 1. Given the neighborhood keyword query
“Birch”, we look up “birch//*” and return instances a1, c1, p1

and p2. 2

Note that if we wish to distinguish between the relevant
instances (those for which the keywords occur in attribute
values) and the associated instances (those for which the
keywords occur in associated instances), we can add two
special symbols as the root of all attributes and the root of
all associations, and index accordingly.

5. EXPERIMENTAL EVALUATION
We now describe a set of experiments that validate the ef-

ficiency of our indexing methods and compare them against
several alternatives. Our main result shows that by indexing
both structure information and text values, we can consider-
ably improve the performance of answering predicate queries
and neighborhood keyword queries. In addition, we exam-
ine the efficiency of updating the index and the scalability
of our index.

5.1 Experimental Setup
The main data set we use is constructed from a collec-

tion of personal data on the desktop and a few external
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Figure 4: Efficiency of answering predicate queries. In

each column, the longer bar shows the overall query-

answering time and the shorter bar shows index-lookup

time.

sources. We extract associations between disparate items
on the desktop (e.g., Latex and Bibtex files, Word docu-
ments, Powerpoint presentations, emails and contacts, and
webpages in the web cache). The instances and associations
are stored in an RDF file, managed by the Jena System [28].
The RDF file contains 105,320 object instances, 300,354 at-
tribute values, 468,402 association instances, and the size of
the file is 52.4MB. We describe additional data sets we used
in our scale-up experiment in Section 5.4.

We considered four types of queries:

• PQAS: Predicate queries with only attribute clauses
where the attributes do not have sub-attributes;

• PQAC: Predicate queries with only attribute clauses
where the attributes do have sub-attributes;

• PQR: Predicate queries with only association clauses;

• NKQ: Neighborhood keyword queries (we did not dis-
tinguish between relevant and associated instances).

We varied the number of clauses in the first three types
of queries from one to five, and each clause had a single
keyword. For NKQs, we varied the number of keywords
from one to five. The keywords, attributes, and associations
were randomly drawn from the data set.

For each query configuration, we randomly generated 100
queries, and executed each three times. We report the av-
erage execution time. To further refine our measurements
we also consider the index-lookup time, including the time
to locate the entries in the inverted list, the time to retrieve
the occurrence counts for each returned instance, and also
the time to handle succeeding rows in case of prefix lookup.

We implemented the indexing module using the Lucene
indexing tool [34], which stores an inverted list as a sorted
array. We implemented our algorithm in Java, and con-
ducted all the experiments on a machine with four 3.2GHz
and 1024KB-cache CPUs, and 1GB memory.

5.2 Indexing and Searching
We tested the efficiency of the KIL, the hybrid hierar-

chical index (see Section 4.5). It took 11.6 minutes to build
the KIL and its size is 15.2MB. The query-answering time of
predicate queries is shown in Figure 4 and that of both pred-
icate queries and neighborhood keyword queries is shown in
Table 8.

We make three observations about the results. First, an-
swering predicate queries and neighborhood keyword queries
using the KIL was very efficient: on average it took 15.2 mil-
liseconds to answer a predicate query with no more than 5

clauses, and took 224.3 milliseconds to answer a neighbor-
hood keyword query with no more than 5 keywords. Second,
answering PQASs and PQACs (where attribute hierarchies
were considered) consumed a similar amount of time, show-
ing the effectiveness of our hybrid indexing scheme. Third,
though answering PQRs (queries with associations) took
longer time than answering PQASs and PQACs, they spent
similar amount of time in index lookup. The difference was
in the time to retrieve the answers, and there were much
more of them for the PQRs than for the other two types of
queries. For the same reason, it took much longer time to
answer NKQs.

5.2.1 Comparison of methods
Next, we compare our index with several alternative ap-

proaches. We first compare the efficiency of KIL with two
other methods: Naive and SepIL. The Naive method is
based on the basic inverted list (alluded to in Section 2).
Specifically, Naive begins by looking up the set of instances
I that contain the given keywords in attribute values, and
then does the following:

• PQAS: Select from I the instances where the keywords
appear in the specified attributes;

• PQAC: The same as PQAS, but also consider descen-
dant attributes;

• PQR: Find the instances that are related to the ones
in I with the specified associations;

• NKQ: Union I with all instances that are associated
with those in I.

The SepIL method is an adaptation of the approach pro-
posed in [32] to our context (originally it was designed for
complex XML queries). Specifically, it builds three separate
indexes: the inverted list indexes each attribute value on its
text, the structured index indexes each attribute value on
the labels of the attribute and its ancestor attributes, and
the relationship index indexes each instance on its associated
instances. SepIL begins by looking up the inverted list for
a set of attribute values A that contain the query keywords,
and meanwhile getting their owner instance set I. Then
SepIL does the following:

• PQAS and PQAC: Look up the structured index for
values of the specified attributes and intersect the re-
sults with A, then return the owner instances;

• PQR: Look up the relationship index for the instances
that are related to the ones in I with the specified
associations;

• NKQ: Look up the relationship index for the instances
associated with the ones in I, and union the results
with I.

Note that unlike our approach, Naive and SepIL return
the instances without counting keyword occurrences or the
number of associated instances. Performing the count would
add a significant overhead to both of these techniques.

Table 8 shows the query-answering time using these three
different indexes. It took 1.7 minutes to build the Naive

index, whose size was 10.6MB. Query answering was inef-
ficient using the Naive index, because we had to find the
involved attributes and extract associated instances at run
time. It was especially inefficient when we had to extract
associated instances for a large number of instances that



Table 8: Comparison of search efficiency using the KIL, using separate indexes as proposed in [32], and using a simple

inverted list. The KIL improved search efficiency significantly.

(ms) 1 clause 2 clauses 5 clauses

Lookup Query-answer Lookup Query-answer Lookup Query-answer
PQAS Naive 2 22 3 53 4 129

(Predicate queries SepIL 7 9 8 11 10 15
with simple attributes) KIL 4 6 5 7 6 13

PQAC Naive 3 43 3 119 4 583
(Predicate queries SepIL 7 11 23 28 31 38

with complex attributes) KIL 4 6 8 11 9 15
PQR Naive 3 88 7 147 12 368

(Predicate queries SepIL 301 415 559 749 1397 1871
with associations) KIL 6 17 6 24 10 36

NKQ Naive 18 4174 28 5244 50 8407
(Neighborhood SepIL 365 488 717 1052 1662 2376

keyword queries) KIL 48 97 103 182 232 394

Table 9: Comparison of indexing efficiency for different

types of inverted lists. Building a Hybrid-ATIL intro-

duces little overhead compared with building an ATIL.

Index type Indexing time for Indexing time for
shallow-hierarchy deep-hierarchy

triple base (s) triple base (s)
ATIL 118 118

Dup-ATIL 125 418
Hier-ATIL 119 140

Hybrid-ATIL 125 144

contain the given keywords. Indeed, compared with KIL,
query-answering time on average increased by a factor of
15.9 and for 1-clause NKQs increased by a factor of 43. We
also observed that although KIL spent longer time in index
lookup (because the index was 1.4 times as large and more
instances were returned in each index lookup), the overall
payoff in query-answering time significantly outweighed this
additional cost.

It took 5.7 minutes to build the SepIL index. The to-
tal size of the inverted list and the structured index was
28.1MB, and the size of the relationship index was 14.2MB.
For PQAS and PQAC queries, query-answering time was
reduced on average by a factor of 6.6 compared with Naive;
however, because the inverted list is large, it still took about
twice time as much as KIL. For other queries that require
looking up the relationship index, query answering took
much longer time than KIL (by a factor of 20.7). This is be-
cause the index is large, and for each instance that contains
the keyword we need to look up the index and accumulate
its associated instances. Even when compared with Naive,
there was only a benefit to building the relationship index
for answering NKQ queries, which typically returned a large
number of instances.

We performed several other experiments to validate dif-
ferent aspects of our indexing methods. For example, we
considered only attributes and compared the efficiency of
the ATIL with a technique that creates a separate index for
each attribute. We observed that ATIL reduced indexing
time by 63% and reduced keyword-lookup time by 33%.

5.2.2 Indexing hierarchies
We now compare different methods for indexing attribute

hierarchies that were described in Section 4:

• ATIL: use the ATIL but expand a query by issuing
a query for every descendant attribute (without accu-
mulating keyword occurrences for result instances)

• Dup-ATIL: duplicate keywords for ancestors

• Hier-ATIL: attach the ancestor path

• Hybrid-ATIL: the hybrid index

In the data set we experimented on, the depth of each
attribute hierarchy is no more than 3. To examine the effect
of hierarchy depth on search efficiency, we also experimented
on a triple base where depths of attribute hierarchies are all
over 16. We call the former a shallow-hierarchy triple base
and the latter a deep-hierarchy triple base. The two triple
bases have exactly the same data but different schemas: if an
attribute does not have any parent attribute in the shallow-
hierarchy triple base, in the deep-hierarchy triple base it has
a parent attribute attr0, a grand-parent attribute attr1, and
so on, till the upmost ancestor attr15.

Table 9 shows the index-building time for these inverted
lists on both triple bases. Note that a higher hierarchy depth
had only significant effect for the construction of the Dup-
ATIL (increasing indexing time for a factor of 3.34 and the
size of the index for a factor of 4); building a Hier-ATIL
or a Hybrid-ATIL took similar amount of time as build-
ing an ATIL on both triple bases and the sizes of the in-
dexes are similar. Also note that building a Hybrid-ATIL
took only slightly longer time than building a Hier-ATIL,
which shows that our algorithm for adding summary rows
in Hybrid-ATILs is efficient.

Figure 5 shows the index-lookup time (we omit the query-
answering time as it adds the same amount of time over
the index-lookup time for all alternative methods). We ob-
serve that (1) Hier-ATIL performed poorly on NKQs, as
prefix lookup became extremely expensive; (2) Dup-ATIL
performed poorly on the deep-hierarchy triple base, as the
index size was increased a lot, and (3) Hybrid-ATIL per-
formed better than or equal to any other inverted lists for
all types of queries on both data sets.

5.3 Index Updates
Our next experiment was designed to measure the effi-

ciency of updating the KIL, both for instance updates and
for updates to the schema.

For instance updates, we randomly selected 100 instances,
divided them into groups, and interleaved insertion and dele-
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Figure 5: Efficiency of looking up different types of

indexes in answering predicate queries with attribute

clauses (a) on shallow-hierarchy triple base, and (b) on

deep-hierarchy triple base. On both triple bases looking

up the Hybrid-ATIL took the shortest time.

tion in each group. We updated a group of instances incre-
mentally; that is, we inserted or deleted the instances in
the group, and updated their associated instances in the in-
dex. We varied the size of the group: 1, 10 and 100, and
compared the average time of updating an instance in KIL.

Figure 6(a) shows the time for inserting or deleting an in-
stance in KIL. The results for insertion-only or deletion-only
updates were similar. We observed that when the group size
was increased, the update time per instance dramatically
dropped. For example, when N = 100, updating an in-
stance took on average only 0.5 seconds. In addition, when
the size of the group was increased, the speedup of the up-
dates slowed down.

We also observed that index updates in the SepIL method
were slower by a factor of 2.25 compared to updates in KIL,
but updates in Naive were considerably faster than in both
methods. This is because most of the update cost arose
from the need to update associated instances in the index.
However, as previous experiments have shown, indexing as-
sociations significantly sped up query answering at run-time
and thus was worthwhile.

For structure updates, we considered four types of op-
erations: renaming an attribute, inserting, updating, and
deleting a parent for an attribute. For each operation, we
chose three attributes that occur with different frequencies
in the data set, and reported the average time for updates.
We performed each operation by scanning the inverted list
and changing the indexed keywords appropriately. Struc-
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Figure 6: Efficiency of KIL updates: (a) instance

updates can be performed efficiently in medium-sized

groups in an incremental mode; (b) structure updates

can be performed efficiently by scanning the index and

changing the index keywords.

Table 10: Index-lookup time for answering (a) the

original queries and (b) suffix queries on 250MB data

sets with perturbed keywords. Index lookup was effi-

cient: on average it took 30.3 milliseconds for predicate

queries and 281.6 milliseconds for neighborhood keyword

queries. For the purpose of comparison, we also list the

index-lookup time on the 25MB data.

(ms) 25MB f=0 f=0.2 f=0.4 f=0.6 f=0.8
PQAS 5 25 24 23 22 24
PQAC 8 26 27 27 26 26
PQR 6 32 30 35 37 49
NKQ 103 805 628 490 318 139

(a)
(ms) f=0 f=0.2 f=0.4 f=0.6 f=0.8

PQAS 22 27 28 26 26
PQAC 24 27 28 28 27
PQR 29 43 48 49 46
NKQ 27 46 86 131 146

(b)

ture updates were performed very efficiently. As shown in
Figure 6(b), it took 2.2 seconds on average to perform each
type of structure update.

5.4 Scalability
Finally, we tested the scalability of KIL with larger data

sets. In the first experiment, we created a 250MB data set
by adding to the original data set four copies of itself and
then perturbing the result data set. Specifically, we chose
a perturbation factor f ∈ [0, 1]. When we perturbed the
keywords with factor f , we randomly selected a fraction f
of the keywords in the data set, and for those words we
added one of the suffixes in {!, @, #, %} with equal prob-
ability. (These signs do not occur in the original index.)
Hence, when f = 0, the keywords are the same as those in
the original set, and when f = 0.8, for any keyword k the
number of its occurrences is about the same as that for k!
(or k with any other suffix). We perturbed attribute and
association names in the same way.

We experimented on two sets of queries: the original queries
and suffix queries, where “!” was added to each keyword.
We considered randomly generated queries with two clauses.



Table 11: Indexing time and index-lookup time for

10GB data sets.

(ms) Wikipedia XMark w/o asso XMark with asso
Index 4.15hr 6.64hr 12.72hr
PQAS 156 94 116
PQAC - 67 93
PQR - - 217
NKQ 1646 1838 13468

We now describe our experimental results on data sets
with perturbed keywords. We observed the same trend for
data sets with perturbed attribute and association names.
As f was increased, the indexing time went up gradually
from 55.3 minutes to 58.2 minutes, and the size of the index
went up gradually from 71.2MB to 76.4MB, all roughly 5
times as much as for the original data set. Table 10 shows
the index-lookup time. We make three observations.

First, when the number of answers was small, index-lookup
time was more related to the size of the index. For all predi-
cate queries, index-lookup time was roughly 5 times as much
as that for the original data set. We note that with Lucene,
the index look-up time increases linearly with the index size.

Second, when the number of answers was large, index-
lookup time was more related to the number of the an-
swers. Although the sizes of the indexes for all different data
sets were similar, the index-lookup time for ordinary NKQ
queries dropped significantly when f was increased (so the
number of answers was decreased), and showed the opposite
trend for suffix queries. In particular, when f = 0.8, the
number of answers for ordinary NKQ queries and that for
suffix NKQ queries were similar, and also similar to that for
NKQ queries on the original data set. We indeed observed
similar index-lookup time for these three cases. This obser-
vation implies that our index scales especially well when the
number of returned answers is large.

Third, for suffix queries on the non-perturbed data set,
the answers are empty, and index lookup was still efficient
(on average took 25 milliseconds)

In the second set of experiments, we considered two XML
data sets, each of size 10GB. The first data set is from the
INEX Wikipedia collection [17] (with duplicates). It con-
tained 1.4 million instances, each with only two attributes.
The second data set was generated by XMark [38]. It con-
tained 11.4 million instances, 76.2 million attribute values,
and 58.2 million association instances. We indexed the XMark
data set in two ways: one indexed only attribute values and
one indexed associations in addition. We used these indexes
to answer randomly generated queries with two clauses.

The three indexes varied in size: the Wikipedia index was
1.13GB, the XMark index without associations was 3.04GB,
and the XMark index with associations was 4.08GB. As
shown in Table 11, our indexing technique scales well: on
average it took 123.8 milliseconds to look up the index for
predicate queries, only 4.1 times as much as for the 250MB
data. We also observed that although indexing associations
took about twice as much time as indexing only attributes,
the increase in keyword-lookup time was not significant (ex-
cept for neighborhood keyword queries, where considering
associations considerably increased the number of returned
instances); however, it significantly sped up query answering
in presence of association clauses.

6. RELATED WORK
The two bodies of work most close to ours are indexing

XML and on keyword queries in relational databases.
There have been many indexing algorithms proposed for

answering XML queries. They can be categorized into three
classes: indexing on structure, indexing on value, and index-
ing on both. The first class (e.g., [21, 35, 15, 33, 11, 31, 25])
considers supporting schema-driven queries, such as “list all
book authors”, and does not index text values. The second
class (e.g., [2, 9, 13, 29, 41, 36, 44]) is mainly oriented to
XML Twig queries [9]. It indexes text values and at the same
time encodes parent-child and ancestor-descendant relation-
ships by numbering the XML elements appropriately. The
encoding methods are tuned for tree models, and would not
apply in our context where associations between instances
form a graph.

The third class combines indexes on structure and on text.
We have already compared our approach to that of Cooper
et al. [16] (in Section 4). Kaushik et al. [32] and Chen et
al. [12] proposed building multiple indexes to capture dif-
ferent aspects of structural information and values of XML
data. If we adapt their indexing methods for our context, to
answer a query we need to visit several indexes in sequence,
looking up an index for each result returned from the previ-
ous index. As we show in Section 5.2.1, this process can be
quite time-consuming. ViST (Virtual Suffix Tree), proposed
in [40], encodes both XML documents and XML queries as
suffix sequences and answers the queries by suffix matching.
This strategy is again more suitable for tree models and falls
short in our context.

Our approach is different from the ones described above
in that it does not rely on any specific data model, and it
uses one single index to capture both structure information
and text values. In this way, our method is more oriented
to keyword search, can more easily explore associations be-
tween data items, and can more efficiently answer keyword
queries with simple structure specifications.

Several works have considered keyword queries on rela-
tional databases. The DISCOVER [26], DBXplorer [1], and
BANKS [7] systems return minimal join-networks that con-
tain all the keywords given in a query. These approaches
require building the join-network at run-time and so query
answering can be expensive. Queries in form of “SEARCH
{instance-type} NEAR {keywords}” are proposed in [20,
10], where the distances between elements are precomputed
and indexed, so the index can be quite large and hence
costly. Similar ideas were considered in the context of
XML data, returning the least common ancestors (LCA)
for the elements that contain the given keywords [43, 27].

Finally, SphereSearch [22] and Kite [37] studied search
across heterogeneous data by first conducting data trans-
formation or integration. In contrast, we take a “data-
coexistence” approach and index heterogeneous data even
if they are only loosely coupled.

7. CONCLUSIONS AND FUTURE WORK
We described a novel indexing method that is designed

to support flexible querying over dataspaces. The query-
ing mechanism allows users to specify structure when they
can, but also to fall back on keywords otherwise. Answers
to keyword queries also include objects associated with the
ones that contain the keywords. Our methods extend in-



verted lists to capture structure when it is present, includ-
ing attributes of instances, relationships between instances,
synonyms on schema elements, and hierarchies of schema
elements. We validated our techniques with a set of experi-
ments and showed that incorporating structure into inverted
lists can considerably speed up query answering.

In future work, we plan to extend our index to support
value heterogeneity and to investigate appropriate ranking
algorithms for our context. In particular, since we often
have confidence numbers on matching on schema elements
or reference reconciliation on data items, we would like to
take these confidences into account in the ranking algorithm.
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