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ABSTRACT

Modern information management applications often requiemjirsiting data
from a variety of data sources, some of which may copy or buy filata
other sources. When these data sources model a dynamicallginban

world (e.g, people’s contact information changes over time, restasrant

open and go out of business, etc.), sources often providefeddate data.
Errors can also creep into data when sources are updatenl o@éven
out-of-date and erroneous data provided by different, ipsslependent,
sources, it is challenging for data integration systems avige the true
values. Straightforward ways to resolve such inconsisésne.g, voting)
may lead to noisy results, often with detrimental consequence

In this paper, we study the problem of finding true values agtérmnin-
ing the copying relationship between sources, when thetepuatory of
the sources is known. We model the quality of sources over tiynadir

coverage, exactnesmdfreshness Based on these measures, we conduct

a probabilistic analysis. First, we develop a Hidden Markéodel that
decides whether a source is a copier of another source antifiee the
specific moments at which it copies. Second, we develop a Bayesodel
that aggregates information from the sources to decide treevalue for
a data item, and the evolution of the true values over time. &xeatal
results on both real-world and synthetic data show high moyuand scal-
ability of our techniques.
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Table 1: Sources in the motivating example. We also show the number
of the out-of-business restaurants that Google Maps lists.

Source Coverage| Exactness| Freshnesg #Closed-rest
MenuPages .66 .98 .86 29
TasteSpace 44 .97 3 106
NYMagazine 43 .98 .54 59
NYTimes 43 .98 .38 72
ActiveDiner 41 .95 .86 70
TimeOut .38 .99 .68 33
SavoryCities .27 .99 A1 33
VillageVoice 22 .94 4 37
FoodBuzz .18 .92 .3 59
NewYork .13 .92 .45 28
OpenTable 12 .92 .45 9
DiningGuide 1 .9 .09 48
GoogleMaps - - - 212

First, true values can evolve over time and in many applications
we are interested in the whole history or a fragment of the history
of true values for particular item&(g, a person’s addresses in the
past five years, the history of a customer’s billing information, and
the previous chairs of an organization). However, errors can creep
into data and data can go out of date. It is challenging to determine
which values were once true and in which periods they were true.

Second, sources are often of different quality and a natural thought
is to take this into consideration when we decide true values. How-

Modern information management applications often require in- €Ver: low-quality data can be caused by many reasons: some sources
tegrating data from a variety of data sources. Among these sources Make @ lot of errors in their provided data; some provide correct
some may cite others (often without proper attribution on the web), data but fail to update according to later changes; and some, though
crawl or aggregate data from otheesd, Google), exchange data they update, do so slowly. All these reasons can lead toa low accu-
with or buy data from other sources [1]. Sources often provide "2SY _of a snapshot of data and we should treat them differently.
out-of-date and erroneous data, and such data can be propagated 'Nird, @ source may copy data from other sources and often copy
by copiers. Resolving conflicts in data from different sources and €"oneous and out-of-date data unknowingly. Straightforward ways
determining the true values is critical for improving quality of in- [0 resolve conflicts¢.g, voting) fall short in presence of copying.
tegrated data. Recent work on this topic focuses on resolving con- I @ddition, the copying relationship can evolve over time as well:
flicts from a snapshot of data [5, 13]. However, the real world js & SOurce can stop copying and become independent, can change
dynamically changinge(g, people’s contact information changes ~SOUTCeS from which it copies, and can copy at some times and pro-

over time, restaurants open and go out of business, etc.), an@sourc
often frequently update their data to capture the changes. Such evo-

lution presents new challenges to truth discovery.
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vide data independently at other times. These can make copying
detection extremely tricky.

ExamMPLE 1.1. We collected data on Manhattan restaurants from
12 web sources (listed in Table 1) weekly from 1/2009 to 3/2009
and examined opening and closing of restaurants. There are 5149
restaurants mentioned by at least 2 data sources and among them
we found that 248 went out of business recently.

We decided life period of each of the 5149 restaurants from the
data and the copying relationship between the sources (shown in
Figure 1). Accordingly, we computed for each source its cover-
age (how many existing restaurants are provided and how many
closed restaurants are removed), exactness (how many updates are
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Figure 1: Copying relationship we discovered between sources in the
motivating example. An arrow from one source to another indcates
the former is a copier of the latter.

2. OVERVIEW

This section formally defines the problem we solve in this paper
and defines quality measures of data sources.

2.1 Problem definition

Let O be a set of objects. Each obj&gte O is associated with
a value at a particular timeand can be associated with different
values at different times; i© does not exist at, we consider it as-
sociated with a special value. Formally, we define thife spanof
O as a sequence tfansitions(try, v1), ..., (try, v;), where (1)

correct at the time of being made), freshness (how quickly sourcesiS the number of periods i@s life time; (2) the value oD changes
capture changes and update), and the number of closed restaurantd0 vi at timetr;,i € [1,1]; (3) v1 # L, andv; # vy for each

they still provide in their lists (shown in Table!1)\We observe that
sources do provide stale data, their quality measures vary highly,
and some do copy from others. In particular, we found that source
FoodBuzzwhich may be an aggregator, seems to have copied from
several other sources, including some out-of-date listings, and ac-
cordingly has a lower exactness. d

1 € [1,1 —1]; and (A)tr1 < tre < --- < tr;. We denote by®
the beginning time we are interested in amgd = © if an object
already exists at that time. In our paper we focus on atomic cate-
gorical values; we can treat set (or list) of atomic values as a whole
and adapt techniques in [13] for value similarity.

Let S be a set of structured data sources. Each satireeS can
(but not necessarily) provide a value for an object at a particular

In this paper, we examine the update history of sources and studytime, and when the value of the object evolvescan change the

how to decide the evolving copying relationship between sources
and the evolving true values. Our first contribution is to propose
several quality measures of data sources, which play a key role in
our probabilistic analysis. These measures inclcoleerage-how
many values in the history a source covezsactnesshow many
updates conform to the reality, afréshnesshow quickly a source

value accordingly. We observe data provided by the sources at dif-
ferent times; by comparing an observation with its previous obser-
vation, we can infer recentpdates Formally, we denote b{l' =
{to,...,tn} the set of observation points and BY(S,t;),i €
[0,n], the updates we infer at tim; as a special casé](S, ty)
contains valuesS provides atto. Note that an update can hap-

captures a new value (Section 2). Note that these measures are orpen at any time irft;—1, ¢;] and we may miss updates that are later

thogonal and all contribute to the accuracy of the latest version of

overwritten. Our techniques can be adapted to the case where we

the data, because a low accuracy of current data can be due to eitheknow exact timestamps of each update.

a low exactness of provided data (erroneous data), or a low cover-
age or freshness for capturing recent transitions (outdated data).
Our second contribution is a set of Hidden Markov Models (HMM)

We classify data sources intodependenbnes anaopiers An
independent source updates according to its own observation of the
real world. A copier can copy from one or more other sources.

that decide whether a source copies from another source and atWhen a copier copies, it may copy only a subset of updates and

which moment it copies (Section 3). Our models consider not
only whether two sources share similar update history while one

may meanwhile observe the real world independently and conduct
updates accordingly (validating or modifying a copied value is also

often updates later than the other, but also the coverage, freshnessonsidered as independent updating). A copier may not copy all
and exactness of the sources, to avoid identifying slow updaters asthe time: it can copy at some times and update independently at

copiers. In addition, although the copying relationship between a

other times. On the other hand, a copier can stop copying from

pair of sources can evolve over time, frequent radical change is lessa particular source and vice versa. Note that the case of a source

likely; in other words, a copier is more likely to remain as a copier.
Our HMM models capture this intuition and so are able to make
more accurate decisions both on the copying relationship and on
when the copying is conducted.

Third, we develop a Bayesian model to decide when the true
value for a particular data item changes and what the new value
is (Section 4). Our model considers both source quality and data

being independent and the case of a source being a copier but not
copying at a particular moment are conceptually different, but not
distinguishable from behavior of the source at that moment.

For now we consideinstant publishingpublishing a value right
after it is observed (from the real world or from another source);
in other words, the published updates conform to the observation
at the point of publishing (though the observation may be false and

copying, and so is less affected by possible wrong updates, staledo not conform to the reality). We consider other publish patterns

data, and copied data. In addition, we consider different publish

patterns, including instant publishing and delayed batch-mode pub-

lishing (Section 5).
We describe experimental results on both real-world data and

in Section 5.

ExampPLE 2.1. Consider the (synthetic) data sources in Table 2.
They provide information on affiliations of five database researchers—

synthetic data, showing that our models are accurate and scalableStonebraker(S), Dewitt(D), Bernstein(B), Carey(C), Halevyétid

both in detection of the evolving copying relationship and discov-
ery of transitions of true values (Section 6).

We note that although we propose our techniques in the frame-
work of truth discovery, our techniques for detecting copying and
evaluating source quality are of independent interest in a variety of
data-integration tasks, including source recommendation, plagia-
rism detection, query optimization in an online query-answering
system, and so on.

IWe describe the data set, the measures, and our techniquetinin the
rest of this paper. As we show in Section 6, we have evidenseipport
some copyings we discovered.

we observe their data each year since 2000. Among the five sources,
S1 and S» are independentS; was once a copier af> and then
changed to be a copier ¢f; since 2006 (despite difference of their
latest data); S, is a copier ofSy; Ss is a copier ofS3 but copies

only periodically. O

The goal of our research is to determine the evolving copying re-
lationship between sources and the evolving true values of objects.
Formally, we decide

2\We assume a source starts providing data befgrbut our techniques can
be easily adapted for the opposite case.



Table 2: Researcher affiliation example. We emphasize the last updat
on each object by each source.

Life span S1 SQ S3 S4 S5
S(®, UCB) | (03,MIT) | (00,UCB) |(01, UCB)|(05,MIT )| (03, UCB)
(02, MIT) (06,MIT) (05,MS)
D (®, Wisc)| (00, Wisc) | (00, UW) | (01, UW)|(05,Wisc)| (03, UW)
(08, MSR) | (09,MSR) | (01, Wisc) |(02,Wisc) (05,1)

(08,MSR) (07, Wisc)
B (®, MSR)| (00,MSR) | (00,MSR) |(01,MSR)|(07,MSR)| (03, MSR)
C (®, Propel) (04, BEA) | (05,IBM) |(06,BEA)|(07,BEA)| (07,BEA)
(02, BEA) | (09,UCl)
(08, UCI)
H (®, UW) | (00, UW) | (00, Wisc) |(01, Wisc) (05,UW) | (03, Wisc)
(05, Google)(07,Google| (02, UW) | (06,UW) (05, Google|
(05,Google (07,UW)

1. copying: for every S;, S, € S andt € T, the probability
thatS; is a copier ofS; att and if so, the probability of;
actively copying fromS; att;

2. life span:for every objectO € O andt € T, the true value
(including L) of O att.

In this paper we do not consider simultaneous cyclic copying,
which happens rarely in practice.

2.2 Quality of data sources

Before we present our solutions to copying detection and life
span discovery, we first introduce three quality measures of data
sources, namelycoverage, exactnesand freshnessas a whole
referred to as th€EF-measureon which we rely heavily in our
probabilistic analysis.

Consider a sourc& € S. Intuitively, its coverage measures
the percentage of all transitions of different objects that it captures;

its (in)exactness measures the percentage of all transitions it mis-
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Figure 2: Computing CEF measure forSs.

We denote bycl(S, O), c¢(S,0),ml(S,0), andm(S, O), re-
spectively, the number of capturable, captured, mis-capturable, and
mis-captured slices fa$ on O. We define the coverage 6f, de-

noted byC'(S), as
Zogo c(S,0)

s Yoco cl(S,0)
We define the exactness §f denoted by#(S), as
B(s) =1 Zoco™50) @
2060 ml(S,O)

We define freshness ¢f by a distribution function of length of
the captured slices. If we denote b§S, A), A > 0, the number
of captured slices with length no larger than the freshness func-
tion of S, denoted byF'(S, A), can be computed as follows (thus,
F(S,400) =1).
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Note that the three different mceasures are orthogonal and all
contribute to the accuracy of data provided by the source at any
moment: low exactness causes erroneous data whereas low cover-
age or freshness causes out-of-date data.

In practice, it is often easier to capture a long slice than a short
one, and easier to make a mistake during a long slice than a short
one. We can thus compute the weighted measure, where the weight
of a capturable slice is proportional to its length and that of a mis-
capturable slice is inversely proportional to its length. Our experi-
mental results show higher accuracy with weighted CEF-measure.

3. DISCOVERING COPYING OF SOURCES

This section describes how we discover copying between data

captures (by providing a wrong value); its freshness measures howsources. As we need to reason about update pattern over time,

quickly it captures the transitions. Sourgés high-coverage, exact
and fresh, if it provides a new value for an object if and only if, and
right after, the true value of the object evolves to that value. The
definition of CEF-measure relies on two notionaptureandmis-
capture which we define next.

An update ofS on a particular objec® can be triggered either
by a transition ofO (to reflect the value change) or by a previous
update ofS (to fix a previous error). Thus, we consider all tran-
sition points ofO and update points o on O and sort them in
ascending order. These points divide the whole observation period
into a set oklices The real value 00 in each slice is the real value
at the beginning of the slice. As an example, Figure 2 depicts the
life span ofDewitts affiliation and updates bgs on it; we divide
the whole observation period into 5 slices.

A slice is capturableif at its beginning, the value provided by
S is different from the real value. A capturable slicecaptured
if it ends with an update of to the real value. A slice isis-
capturableif S can update to a wrong value; when there are more
than two values in the domain 6f, each slice is mis-capturable. A
mis-capturable slice imis-capturedf it ends with an update of
to a wrong valug Thus, a slice that does not end with an update is
neither captured nor mis-captured. In Figure 2, all 5 slices are mis-
capturable, and.1, L2, L3, and L5 are capturable. Among them,
L, and L, are mis-captured, anl; is captured.

3In the rest of the paper, when a transition and an update csathe object
occur between two consecutive observations, in absencamflkdge of
which happens earlier, we treat the update as correct aealite conforms
to the value of the new transition or that of the previousditon.

a natural choice is to use a Hidden Markov Model (we compare
with other options and validate its advantage in experiments (Fig-
ure 16)). We start from a review of the HMM model (Section 3.1),
then describe a basic HMM model for copying discovery (Sec-
tion 3.2), and next extend it for periodical copying (Section 3.3).
This section assumes knowledge of the life span of each object and
we present how we compute it in Section 4.

3.1 Review of HMM

A Hidden Markov Model (HMM) [11] contains a set bfdden
statesH = {hi,h2,...,An}, N > 1, and a set of observation
symbolsO = {o1,09,...,0m},M > 1. At each timet, the
model is in a particular hidden statg € H and we observe a
particular observation symbel € O. An HMM \ = (A, B, )
contains three components:

e the state transition probabilitied,y, x = {as;|,j € [1, N]},
wherea;; = P(qi+1 = hj|lg: = hi) is the probability that
the model transits from statg to h;;

e the observation probability distribution in each stdse; v =
{b”|7, S [I,N},j € [I,M]}, whereb;; = P(et = 0j|qt =
h;) is the probability of observing; in stateh,;

e the initial state distributiongy = {m;|: € [1, N]}, where
m = P(q1 = h;) is the initial probability of stateS,.

Given a sequence of observations, we can appiward-backward
inference to decide the probability of each state at each time point.
In addition, by applyingBaul-Welchlearning, we can decide the
parameters i, B andr from a set of observation sequences [11].
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Figure 4: An update and its previous transition.

e £;(0 < t; < 1): the probability that a pair of independent
sources remain as independent. Typically> .5.

The probabilities of transitions are computed as follows. For
convenience, we denote Y, ,/ the transition from staté to &’
and byay, 5+ its probability.

ft 1

Figure 3: Hidden states and transitions in the basic HMM model.

3.2 The basic HMM

Let S, and S2 be two data sources. We decide if one of them e TransitionT7,; happens whess, andsS; remain as indepen-
copies from the other. We apply an HMM, where the hidden states dent, so has prob?‘b”@j; Transitionsly s, andTy,s, have
correspond to whethe$, or S, is copying at a particular moment the same probability; 5.
and the observations correspond to their updates. We next describe e When S, is a copier ofSs, it transforms to be independent
our model in detail. with probability 1 — ¢.. Once this happensy; and S, be-

. come independent and remain so with probabilityother-
3.2.1 Hidden states wise, S» becomes a copier ;. Thus,aci,,r = (1—tc)-t;

We first decide the set of hidden states. As we assume acyclic andaci,,c2. = (1 —tc)(1 — t;) (similar for C2.).
copying, at each moment there can be at most one copier between o OnceS; remains as a copier ofs, it copies at a particu-
S1 andSs. In case a particular source is a copier, it can copy or lar moment with probabilityf. At stateC'1., S; remains
independently update at a particular observation point. Thus, there as a copier with probability., soac1,.c1, = f - t. and
are five hidden stated:, C1., C1-., C2., andC2-.. Statel rep- aci,ci., = (1 — f)-t.. AtstateC1-., S; has to remain
resents independence$f andS,. State<”1. andC'1-. represent as a copier, sac1_,.01, = fandaci_.c1., =1 — f
that .S, is a copier ofS2, while the former representS,; actively (similar for C2. andC'2-.).

copying fromS> and the latter represents not copying at that ] B o
moment. Similarly, state€'2. andC2-.. representS» copying or 3.2.3 Observation probability distribution

not copying while being a copier &f; . Now we consider the probability o, and.S» making particular

Note thatC'l-.., C2-., and ] are not distinguishable from the  sets of updates in a state. There are a huge number of possible
action ofS; andSs: in all casesS; andS; make independent up-  ypdates for each source at each moment; enumerating them and
dates. One may suggest we merge them into the same state; howassigning a probability for each is infeasible. Instead, we describe
ever, as we show later, the probability of transition from one of equations for computing the probability of a particular observation.

these states to stael. (or C'2.) can be different: intuitively,S: We focus our attention on three types of updates at each partic-
is more likely to actively copy frond (so in state”'1.) next when ular point: those made b§; and recently (we define “recently”
itis in stateC'l-. than in statel. To avoid ambiguity, we disallow  shortly) by S, denoted byUs, .s,; those made by, before, but
C2-.); thus, the period ob; being a copier starts from and ends cently by S,, denoted bylUs, —s,. Typically, the more updates in
after a real copying. Figure 3 shows the transition graph. Us, .s,, the more likely thatS; is copying fromsSs; the more up-

" " s dates inU-s, s, andUs, -s,, the less likely thatS; is copying.
3.2.2 Inltlal. and transmo-n p.rql.)abllltles - _ Note that we do not consider updates performed neithes;bgnd

_We now consider how to assign initial and transition probabil- g, hoth because enumerating them is often infeasible, and because
ities for the states. Note that many transitions include the same the set of updates that “should” be performed depends on previous
behavior, such as transformation between copiers and being inde-updmes and so varies for sources. We denot@ pthe distribution
pendent; thus, instead of having different transition probabilities of {75, o, Us, —s,,U-s,.s, ata particular moment and defifie

for the 15 possible transitions, we can compute them using only a ¢y g, similarly (note thal/s, .s, andUs, s, can be different, sim-

few parameters, as we describe next. . ilar for other pairs of sets). We summarize observations at each
Since the period of a source being a copier starts with a real copy- point using®2; and2..
ing, the initial state cannot b€1-.. or C2-.. Assume the a-priori Intuitively, the fact thatS; always follows updates af, can

probability of two sources being independentigparameters can  ring an alarm in copying detection. However, this fact in itself does

initial probabilities as updater (has low freshness). Sousteis more likely to be a copier
P(I) =a, (4) of Ss if in addition one of the following holds: (1y: and.S; have
1-—a only low to medium coverage but their updates highly overlap in
P(Cle) = P(C2) = ——. ®) a close time frame; (2%, andS; make a lot of common mistakes
We next define three parameters that we use to compute proba-(€-- sourceS; andSj; in Example 2.1); (3) the overlapped updates
bilities of transitions between states. are performed byS; after the real values have already changed

(e.g, sourceSs andSs’s updates ofdalevys affiliation since 2005
e f(0 < f < 1): the probability that a copier copies at a in Example 2.1). These three cases are more suspectable because
particular time point. they are low-probability events i§; and .S, are independent. We
e i.(0 < t. < 1): the probability that between a pair of  next examine the probability of an update by a source conditioned
sources, a copier remains as a copier of the other source. In-on the source independently updating or copying.
tuitively, this is more likely to happen than transformation to We first consider the case whefg is independently updating,
independence, so typicalty > .5. denoted byS; 4 S2, and compute the probability that makes



an updatd’ at timet. AssumelU updates the value @ to v and

the last transition oi® by timet is (¢r, vo) (Figure 4). Ifv = v,

the update is correct; does not make a mistake and captures the
correct value within time — ¢r, so the probability is

P(U, S1,t‘S1 + Sa, Utrue) = E(SI)C(Sl)F(Sl,t— t’l’). (6)

If instead,v # vo, S makes a mistake. Leh be the number of
wrong values in the domain. Not assuming a-priori knowledge on
which wrong values are more likely to be provided, we have

P(U, 51,tS1 /> Sa2, U false) = 1-B©) @
m
We denote the probability of; performingU by P(U). Ac-

cording to if U is correct or not, we apply Equation (6) or (7) to
computeP (U). Obviously,

P(U c 051,52 UUsl,ﬁS2|Sl # 52) :P(U)?
P(U € Uﬁ51,52|31 > 52) =1- P(U)

®)
)

We next consider the case whefeis copying fromS,, denoted
by S1 — S>. Then,S: copies a subset of recent updatesSayand
can also update independently. Lsetbe theselectivityof a copier
(i.e., probability of copying an update). If we denote By(U) the
probability that a copier independently performs an updatéor
S»'s recent updates, we have

P(UGUSI,S2|51 —>52):S+(1_5)PC(U)§ (10)
P(U € U-g,,5,181 — S2) = (1 — s)(1 — P.(U)). (11)

For an update not performed s recently, we have
P(U S Usly_‘sﬂsl — Sz) = PC(U). (12)

We computeP.(U) in the same way a®(U); however, we
should use different CEF-measure f&r here: that of updates by
S1 but not previously bys>. Computing such measure introduces a

big overhead, as we need to compute for every pair of sources. We

can approximate by assumiisg andS-> have the same number of
capturable and mis-capturable slices and so computing by

C(51]52) = C(S1) — sC(S2); (13)
E(51182) = E(S1) + s(1 — E(S2)); (14)
F(S1,A|S2) = F(S1, A). (15)

Our experiments show that such approximation significantly re-
duces execution time without affecting the results much.

To make our computation tractable, we assume independence of

updates by one source and can thus compite, |
S1 — S2) andP(24]S1 # S2). Then, the probability of observa-
tions 21, Q22) for each state comes along naturally:

P(Q1,Q2]I) = P(21,9Q2|Cl-c) = P(Q1,22|C2-c)

= P(Q1|S1 / S2) - P(Q2|S2 £ S1);  (16)
P(Q1,Q2]|C1:) = P(21|S1 — S2) - P(Q2]S2 /4 S1); 17)
P(Q1,Q2]C2:) = P(Q1]S1 4 S2) - P(Q2]S2 — S1). (18)

Note that since state§'1-.,C2-. and I are not distinguishable
from the behavior of the data sources, the probabilitie® pfand
Q9 conditioned on them are the same.

We now present several features of our model that conform to
the intuition presented early in our discussion.

THEOREM 3.1. Lets be the selectivity of copying amd be the
number of wrong values in the domain. The observation probability
distribution has the following properties:

1. if C(S1) < s, adding a correct update t&'s, s, at timet
increases probability of stat€'1. at¢, and adding a correct
update toU-s, s, decreases that probability;

2. if m > 1, adding a wrong update t&’s, s, at timet in-

creases ‘p_robability of staté€'l. at ¢, and adding a wrong
update toU-s, s, decreases that probability;

. if B(S1) > .5, adding a correct update t's, s, at timet
decreases probability of statél. at¢;

. adding a wrong update t0’s, s, attimet decreases prob-
ability of stateC'1. att. O

PROOF Property 1:1f U is correct, sinc&’(S1) < s,

P(U) = C(S1)E(S1)F(S1,A) < s < s + (1 — 8) Po(U).

SoP(U € Usl,sz|51 /4 S2) < P(U € USLSZ|517*> S2), and
the probability of stat€’1. increases if we add to Us, s, -
Also, sinceC(S1) < s,
C(S1)E(S1)F(S1,A) < s < s+ (14 s)Pe(U).
So

P(U € Uﬁshsz‘sl /4 S2)=1—-P(U)
>(1—38)(1—P(U)) = P(U € U-g,,5,|51 — S2).

Thus, the probability of stat€'1. decreases if we add to U, s, -
Property 2:If U is incorrect, sincen > 1, L < 5. So

1— E(S 1
1= B(5) < —<s<s+(1—s)P(U).

m m
So

P(U € Us, 5,181 # S2) < P(U € Ug, 5,151 — S2),

and the probability of stat€'1,. increases if we ad/ to Us, s, .
According to the above equation, we also have

1— E(S))
> (1= 8)(1 = Po(U)) = P(U € Uss, 5,51 — Sa).

P(U c U_.517s2‘51 7L> SQ) =1-

_ Thus, the probability of stat€'1. decreases if we add to

U-54,85-
Property 3: WhenU is correct, for the probability of stat€'1.
to increase when we add to Us, ,-~s,, we should have

C(S1E(S)F(S1,A) > Ce(S1)Ee(S1)Fe(S1, A)
> (C(S1) — sC(S2))(E(S1) + s(1 — E(S2)))F(S1, A).

The above equation holds whe#(S;) > 1 — E(S1), and so
whenE(Sy) > .5.
Property 4:Becauset(S1) < E.(S1), so

P(U € Ugl’ﬁ52|sl s SQ) =
> 1— E.(S1)

=

1— B(S1)

=P € Uslﬁs2|51 — Sa).
m

~ Thus, the probability of stat€'l. decreases if we add/ to
Us,,~s,. [



Table 3: Observation 2 for S5 with respect to S3 in Example 2.1. We
skip the years when all sets are empty.

Year USs,Ss Uﬁssys3 Uss,ﬁs3
{(S, UCB),
20031 5 MSRY), (H.Wisc} 0 {®, uW)}
{(S, MS), (D, 1),
2005 ] 0 . Google)
{(D, Wisc),
2007 (C, BEA), (H, UW)} 0 0
2009 ] (S, M)} ]
Table 4: Probabilities of hidden states forSs vs. S3.
State 03[ 04| 05| 06| 07| 08| 09
CopyCl.) | 1 | 43| 2 [ 43| 1|39 12
Idle (C'1-.) 0 b1 .89 51| 0 35| .52

Recent updates: We next define what we mean byrecentup-

date by a source. To avoid penalizing updates that are not copied

immediately, we consideraindowof sizeWW. AssumeS; makes
W +1 consecutive copyings attintg,, . . ., tx,,,0 < ko < -+ <
k. < m. Therecentupdates byS; include all of its updates at
time (t,, tx,, |, NOt overwritten byS,’s later updates on the same
objects, and not performed I8 yet. Here, we mark a time point
as a possible “copying” point if updates ISy at that time overlap
with recent updates bys.

ExampPLE 3.2. Consider source$’s and S5 in the motivating
example. Table 3 showsfor S5 with respect ta5s. Year 2003 and
2007 are considered as copying points. As an exan$gl@éas four
updates in 2003: three overlap wily's recent updates and are in
Uss,ss, and one, (Dewitt, UW), does not overlap and i$/i, s,
(Ss’s update (Dewitt, UW) in 2001 is later overwritten in 2002).

Table 5 shows the probability of statéd . and C'1-. we infer
for S5 vs. S5 (we set. = t; = .9, f = .5). Thus, our HMM model
is able to identify thafSs is a copier ofSs, copying in the years of
2003 and 2007. O

3.2.4 Algorithm

We applyForward-Backwardnference to compute the probabil-
ity of each state at each time point. The probabilitySefbeing a
copier at time is the sum of the probability of staté1. andC'1-.
(similar for Ss).

We can applyBaul-Welchlearning to learn the parametess s
and the transition probabilities. Note that to keep the symmetry of
the transition graph, we should infer, t. andts from the learned
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Figure 5: Hidden states and transitions in the timespan HMM model.

addition, our model discovers th&t; is a copier ofS3, despite the inde-
pendent updates in 2005. O

3.3 Considering time span

Once a source remains as a copiet, it copies sooner or later. Typ-
ically, the longer it has not copied yet, the more likely that it copies
next. It is also possible that a copier copies periodically: it makes
independent updates for a period of time and then copies the recent
updates by the original source.

To capture these intuitions, we need to reason about the time pe-
riod that a copier has been independently updating; however, first-
order Markov, where the probability of falling in a hidden state only
relies on the state at the previous time, cannot capture this naturally.
As we only care about the time period of stété_. andC2_., we
stick to first-order Markov, which is easy for learning and inference,
and revise our HMM model by dividing staté1-. (similar for
C2-.) into a set of state€'1' ., C1%.,...,C1%,, whereq is the
number of observations within which a copier typically will con-
duct at least one copying (we discuss how togsbon). Among
cit,,ci1?,,...,C1%,, C1. can transit only to stat€'1%; for
eachi ¢ [1,q), C1%, can transit either t€1%" or to C1.; fi-
nally, C12_. can transit to itself or ta’'1.. Essentially, for a state
C1t,,iacts as a timer to count for how loify has not copied yet.
Note that this model is more meaningful when the lengths of time

transition probabilities, and then use these parameters to re-comput@etween consecutive observatlons are similar.

the probabilities. As an example/: can be computed by Crece, %ﬁgﬁﬁm 5Shows the fevi

where thea’s are learned transition probabilities.. We can then
computef and take the average. In particular, if we defifie(x) =
then

f = Avg(div(

1+J.

aci,Ci. (2C1e e

), div ), (19)

ac1.,Cl-.

a
(22 din
ac2.,C2-.

ac1,.,Cl-¢
20%oe.Cle ), (20)
ac2_.,C2.
aci.,cl, taci.,ci_.

div

te = Avg(div(

(21)
aci,,c2, T aci.,1

(aczc,czc +aca,,c2-.. )

div )); (22)

ac2.,C1. T ace.,1

a.
Cle-L 1y din(
ac1.,C2.

ac2,,1
ac2.,C1.

t; = Avg(ar,1, div(

))- (23)

ExampLE 3.3. Consider the motivating example. We assume knowl-
edge of real life spans and set = ¢; = .9, f = .5. Table 5 shows the
computed probabilities of certain hidden states. Our matégécts trans-
formation of copying betwees$k andS; and that betweerys and Sz; in

dr MM model, whef€), i € [1, ¢],

is the transition probablllty fromC1°, to C1. and £(0) is this
probability whensS; is in stateC'1. and remains as a copier (with
probabilityt.). There are various ways to defiifé¢;) and we here
give a few examples.

e If we set them all as the same, the model is reduced to the
basic HMM model (Figure 3).

e According to the intuition that the longer a copier has not
copied, the more likely that it will copy next, we can use an
attenuation function such as

. +
iy =S

Sof(0) = fandf(q) — 1. We can set as the minimum
such thatf (z) > 1 — 60, whered is a number close to 0.

e To model periodical copying where the copier copies once
every k observations, we can set= k, f(i) = 6 for every
i€[0,k)andf(i) =1—06fori=k.

1 f €0 (24)
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Figure 6: Possibilities of the next update[J (S).

Finally, we can learry (7) by Baul-Welchlearning. As different
sources can have different copying patterns, this learnithgcil
and is performed foeachpair of sources, different from thgdobal
learning of other parameters.

4. DISCOVERING LIFE SPAN OF OBJECTS

We now present a Bayesian model that decides life span of an
object. We start by considering a set of independent sources (Sec-
tion 4.1), then extend our model by considering copiers (Section 4.2

and finally present the complete algorithm (Section 4.3).

4.1 Deciding life span

Consider an objea® € O. To discover its life span, we need

v’ tr = tr' (T'(0) andT'(O) can happen within the same obser-
vation period). We start from a simple case, where for each source
S € &8, there is an update at timg, € [tr’, tr) corresponding
to 7"(0O) (we describe other possibilities shortly). We denéte
next update by/(.S) and the observation @f (S) for eachS € S
by ®. According to the Bayes rule, we need to fincaind¢r that
maximizesP(®|T(0) = (tr,v)).

Supposel’(O) = (tr,v) exists. There are then three possibili-
ties forU(.5).

Case I.S captures the transition by updating the value-ofo v,

at time [tr, t,] (recall thatt,, is the last observation point i)
(Figure 6(a)). The probability of not making an error and capturing
the transition isE/(S)C/(.S), and the probability of capturing it at

a particular point is decided by the freshness function. Thus, (we
assumer’(S, A) = 0 whenA < 0)

P(U(S) = (tu, ), tu € [tr, ta]|T(0) = (tr, U))

— E(S)C(S) /t”_” F(S, t)dt. @7)

ty—1—tr

)Case II.S misses the transition by not updating[&t, ¢,.] (Fig-

ure 6(b)). The probability of not making an error but not capturing
the transition either is then

P (WW(O) = (tr,v)) = E(S) (1 — C(S)F(S,tn —tr)). (28)

to decide both time and value of each transition. We proceed it- Case lll. S makes an error either by updating to a different value

eratively: we first decide the value 6} at timet,, then find the

most likely time point and value faD’s next transition, and repeat

(Figure 6(c)). or by updating before (Figure 6(d)). The proba-
bility of making an error isl — E(S). The error can be made at

this process until we decide there is no more transition. Note that @ny time betweexit,./, ¢, ], so the probability of observing an error

the transition points we decide have to be some observation points;at each point,, is

by —ty 1

Among all values inV(O), the prob-

tp—ty,r

in presence of precise time stamp of updates, we can extend ourability of providing a particular wrong value is approximately.

algorithm for more fine-grained results.

Deciding the initial value We denote by¥ our observation of

which value each sourcg € S initially provides forO. Let V(O)
be the domain 0®. Then, our goal is to fing € V(O) that max-

imizes P(v| ). According to the Bayes rule, we just need to find

thev that maximizesP (¥|v).

First, suppose # L. Consider a sourcé € S. There are three

cases for the initial value it provides far:

e S provides the correct value, with probabilith(.S)C(.S)

So we have
P(U(S) = (fu, V), tu € (tyr,tr) V vy # 0|T(O) = (tr,v))
_ (= Bt~ tu-1)

As we assume independence of sources, we can compute
P(®|T(0O) = (tr,v)) as

P(@|T(0) = (tr,v)) = Tlses PU(S)|T(0) = (tr,v).  (30)

(we ignore freshness as the first observation contains updates e apply similar analysis in case there does not exist any more

accumulated over time);
e S does not provide a value f@p, with probability
E(S)(1—-C(9));

e S provides a wrong value, with probability2().
We denote by5 (v) the set of sources providingon O initially and
by S(0) the set of sources not providing any value @rinitially.
Assuming independence of sources, we have

P(¥|v) =ge 50, E(S)C(S) - Mg 50y E(S) (1 — C(5))
1— E(S)

Mses—5w)-50)— (25)
With similar analysis, whem = L, we have
1— E(S)
PUIL) = ge50)E(S) - ses_5(0) &) (26)

We can thus decide the initial value ©faccordingly.

Deciding the next transition Deciding the next transition is harder

transition after7”, denoted byl’(O). We have

PU(9)IT(0)) = E(S); (31
(1 - ES)(tu — tu—1)
M(tn — tyr) 2)

We can thus choose the pairiefandv with the maximum value
of P(®|T(O) = (tr,v)) as the next transition, or terminates when
P(®|T(0)) has the maximum value.

This Bayesian model has the following properties, conforming
to the intuition that the more sources update the valu@ @ v in
a close time frame, the more likely that the transition involves value
v and happens before their updates.

P(U(S) = (tu, vu)s tu > Ly |m) -

PROPOSITION 4.1. Let S be a source and’(O) be a transi-
tion. AmongF(S,0) and F'(S,t;) — F(S,ti—1),i € [1,n], let
Fraz(S) be the maximum one ardd,:» (S) be the minimum one.
ConsiderV¥, Uy, U3, which differ only in that/(S) conforms to
T(0O), does not exist, or does not conform@¢O), respectively.

than deciding the initial value, as we need to consider an additional Then,

dimension-the time. Essentially, we solve the following problem.
Given the last transitiof” (O) = (¢r',v") we have discovered on

O, decide the next transitiofi’(O) = (tr,v),v € V(O),v #

o I C(S) >
o If B(S) >

P(T(0)[W1) > P(T(0)[¥2);
P(T(0)[W1) > P(T(0)[¥3);

1
F(8,0)+Fmaz(S)’

1



() T(0) T'(0) T(0) LIFESPAN(S, O)

o ¢ . o - 4 1 while life span changes && no oscillation of life spalo
tr tr v tr' tr v 2 for eachS € S do
S0 L 2 s.0 > ‘ 3 Compute CEF-measure of; endfor
t tu v Y 4  HMMDEPENS, O);//Decide copying between sources
®) 5 f h updatd/ of d
Flgure 7. POSS|b|I|t|es of update(s) for the previous tran5|t|0rﬂ"(O 6 ocr: eac l:;; ?ﬁ]; a‘soug;es €odo
it B > P(T(O)| W) > P(T(O)|Ws). omputeP (U indep); endfor
T+m(1—C(9))’ 7  for eachO € O do
PROOF. This can easily verified by comparing Equations (27- 8  Decide life span o©; endfor
29). [ 9 endwhile
Finally, note thatl/(5) is defined as the update after the up- Figu.re 8: Algorith.m LIFESPAN decide copying between data sources
date corresponding 6’ (O), denoted by’ (). Intuitively, U’ () and life span of objects.
should be an update that changes the valu@ @ ' in [tr, tr). v Do
However, there can be three cases: (1) there is one and only one P L L L
such update (Figure 6), so we consider ittdg.S); (2) there is 58“' f,; (0,12)(0,, b) (O, 12") |
no such update (Figure 7(a)), so we consitié(S) not existing, Objscts &I T ¢ T ! >
U(S) as the first update after’, andt,, = tr'; (3) there are mul- ng gg lo.mo,b] |
tiple such updates (Figure 7(b)). The third case is especially tricky S.observationﬁ—f—Hf—f—>
because some of the updates may fix previous errors (so corgspon ©oyay | | ©O4a)
to 7"(0)) and some may respond to later transitions. We conduct S dumpPub (°$ 5| ' (OZ,‘ -,
a simple voting on the value of each moment siticeand find the _ 9 | b
first point when the value of changes from’ to another value. Figure 9: Different types of delayed publishing.

Accordingly, we consider updates t6 before this point as corre-  gach source to the same default value except setting the coverage

sponding tdl”(O) and choose the last one &5(S). as the percentage of objects being covered by the source; and we

4.2 Considering copiers assume each update has .5 probability to be true when applying the
HMM model for copying detection.

We next consider the case where some sources can copy from  gigre 8 shows the complete algorithm. Convergence of the al-
others. We first need to decide the probability that an uptate gorithm remains an open problem, but in our experiments we ob-

independent. At each observation painfor each pair of sources  ggpye that when the total number of transitions is far more than the
S1 andSs, we can compute the probability théit is actively copy- number of sources, the algorithm converges quickly. Time com-
ing from Sz, denoted byP(S1 — S2,t). We considerS; being a plexity of each round is shown as follows.

copier of Sy att if the probability of state att is less than .5 and

the probability ofS; being a copierP(C1.)+ P(C1-.)) is larger PROPOSITION 4.2. Let m be the number of values in the do-
than that forS.. Given an updaté/ at timet, we consider the main of an object, and be the total number of updates by sources
probability of U being copied frons,, denoted byP(S; 2 S,), as in S. We denote byX | the size of sek. Tgen complexity of one
P(S; — So,t) if (1) S is a copier ofS, att, (2) S; provides the ~ found in AlgorithmLiFesPANis O(|O| - |S|” - |T| +m - |O] - |$|

same value foD att¢, and (3)S2 makes that update no later than T +u-|S]).

U, and as 0 otherwise. We assume copying between sources are Proor Computing CEF-measure of each source takes@(j&|-
independent; thus, the probability §f independently making an IT|), and in total takes tim&®(|O| - |S| - |T|).

updatel is Deciding dependence for each pair of sources takes@®e| -
P(U indep) =1Ilg,es,5,25, (1 — P(S15.8)). (33) |'T|), and in total takes tim®(|O| - |S|? - |T|).
) ) Deciding independence probability for each update takes time
When we computé®(®|7°(O)), we revise Equgtlon (30): 0(|S|), and in total takes timé® (u - |S]).
P(B|T(0)) = lges P(U(S)|T(0)PU(S)indep (34 Finally, deciding lifespan of each object takes timém - |S| -

Finally, we note that our copying discovery techniques cannot 'T|*), and in total takes tim&(m - O] - |S| - |T?).
avoid a transitive inference of loop copying among more than two e thus have the complexity bound(]
sources, and we can end up marking the same updates at the same
time by sources in the loop all as copied (with a probability). How-
ever, such coincidence is typically rare and can be ignored.

EXAMPLE 4.3. Consider Example 2.1. Table 6 shows the life
span discovered fdlalevy. The algorithm converges in four rounds.
The CEF ofS; converges at a high coverage and exactness, whereas

4.3 Putting them all together that of S» converges at a low coverage and exactness. O
Finally, we consider how we decide life span of each object given

updates by each source. In this process, we should take into con-5- CONSIDERING DELAYED PUBLISHING
sideration copying between sources and CEF-measure of sources. Previous sections assume instant publishing. In this section we
However, discovering source copying requires knowledge of life considerdelayed publishingwhere a source can publish an update
span of each object and CEF-measure of each source, and computiater than the change is observed (from the real world or from other
ing CEF-measure requires knowledge of life spans of objects. sources). Delayed publishing can happen when a weekly newspa-
Our algorithm thus proceeds in an iterative fashion. In each per publishes news collected through the whole week, when a web
round, we first compute CEF-measure of each source (dependingportal publishes data crawled in a period of time in a batch mode,
only on life spans), then compute probability of copying between when we observe only a subset of sources each time, and so on. We
sources, and finally (re)decide the life span of each object, until the assumedump publishingwhere a source publishes all data it has
discovered life spans do not change. Note that in the first round collected since the last publishing. This is common in practice and
we do not know the life span yet; we initialize the CEF-measure of our techniques can be easily extended to the case where a source



Table 6: Discovered life span forHalevy and computed CEF-measure forS; and Ss in Example 2.1.

Round Life span forHalevy S1.C | S1.E | S1.FQO) | S1.F1) | S2.C | S2.E | S2.F(0) | S2.F(1)
0 .99 .95 a1 2 .99 .95 a1 2
1 (2000, Wisc), (2002, UW), (2003, Google) .97 .94 .27 A4 .57 .83 A7 3
2 (2000, UW), (2002, Google) .92 .99 .27 4 .64 .8 .18 .27
3 (2000, UW), (2005, Google) .92 .99 .27 A4 .64 .8 .25 42

publishes only a subset of collected data each time, but do so in anare real issues in the world, and our methods can improve quality
ordered manner. of the integrated data. Since in most cases we have no means to

In dump publishing, an update decision can be made at any pointcheck the actual copying relationship and the precise life span of
between two consecutive publishings; we revise our models ac- objects in the real world, we also experimented on synthetic data.
cordingly to consider all possibilities. We first present results on a data set that mimic complexity in the
CEF-measureFor instant publishing, we decide if a slice is cap- eal world, examining contribution of different components to our
tured or mis-captured by comparing the update at the end of the @lgorithms (Sec. 6.3.2). We then consider a harder case, where we
slice (if any) with the real value of that slice. In case of delayed Ccare aboutonly existence of sources so variety of update traces by
publishing, if a sliceL ends with an updaté/, but the previous different sources significantly reduces. We examine performance
publishing happens before the beginning.othen may actually and robustness of our models on life-span discovery (Sec. 6.3.3)
tend to capture the value éfs previous slices. As an example, in ~ and copying detection (Sec. 6.3.4).

Figure 9, the updatéO,, a’) att, is to capture the value of slice 6.1 Experiment setup

Lo, not Ls.
Formally, consider sourc§ and objecO. Let Ly, ..., L, We consider a set of data sources and objects as described in
k > 1, be a set of consecutive slices ®andO, such that., ends Sec. 2 and refer to them asiaiverse We refer to the special case

with an update/ on O, and the previous publishingub happens ~ Where each object has only two possible values, existing and non-
in slice L,. Letl; be the difference between the time of publishing €Xisting (L), asbinary universe Our goals are to decide life span

Pub and the end of slicé, and letl;, i € [2, k], be the length of ~ Of objects and copying between sources in a given universe.

L;. Then, with probability; — Zkzi i€ [1, k], U is collected For life-span discovery, our algorithm has three main compo-
177

) O j= . . nents:copy-considering copying between sourc8gFconsidering
(though not published) in slice;. Accordingly, L; is captured by cEF-measure of sources, aelay-considering publish delay. We

U with probability p; if U provides the real value df;, and mis- implemented several variants by combining different components.
captured with probability; otherwise. We then comput€sS, O)
andm (S, O) by summing up the corresponding probabilities. Sim- e NAIVE: For each object, vote for its value at each observa-
ilarly, when we compute freshness, if a slieg ¢ € [1, k], is cap- tion point.
tured, we consider equal likelihood of the update being captured at ¢ SimpLE: First apply Naive and then decide transition points
any time inL;. iteratively: for each point where the voted value changes to
Life span Deciding the next transitioff’(O) relies on computing a new valuey, find the earliest point since the last transition
the conditional probability ot/ (S) = (tu,v.). AssumesS pre- when a source providasand does not update until point
viously publishes at time,,..,pre € [0,u). Then the update is e CoPY: The same asIBIPLE except considering copying in
published at,, once the source decides to make the update at some voting (Eq. (33)).
time in (t,.., t.], S0 we should take the sum of the probabilities: e CEF: Consider CEF-measure (Eq. (25-32)).
P(U(S, T) = (tmvu)‘T(O» _ Z P(U(S) _ (ti,vu)lT(O)). e CEFDELAY: CEF+delay(Eq. .(35)).

improt1 e CoPYCEF:copyCEF. (Algorithm LIFESPAN).

(35) e COPYCEFDELAY: copy+CEF+delay(Eq. (35-36)).

Copying When deciding source copying, it is critical to compute . ) )
the probability of a source independently making an update at a par- _ FOr copying discovery, we compared static modelst) CURR,
ticular time, P(U, S1, t.|S1 # S2). In case of delayed publishing, ~ TRACE), various HMM models (HMMS, HMM, HMM3), and
an update decision actually can be made at any time after the pre-HMM with consideration of publish delay:

vious publishing . ; the probability of the decision at a particular
observation point is proportional to the length of that observation
period. We thus take the weighted average of the probabilities (note

e INIT/CURR: Consider only initial or latest values.
e TRACE: Compute); and(2, for each observation point and

the difference from computing(U(S) = (tu, vu)|T(O))): reason over the accumulat.ed results (Eq. (16-18)).
u R ¢ HMM3: An HMM model with three states, C'1., andC2.,
P(U, S1,tu|S1 £ Sa) = Z P(U, 51,t;|S1 # Sa) - Sy the same transition probabilities as Figure 3 exceptthat=
i=pre+1 bu — tpre ti — fyarc1, = arca, = = 5+ ,AC1.,I = QC2,,I =
(36) (1 —te)ti +te(1— f).

In addition, when we decide the independence probability of an e HMMS5: The basic HMM model with 5 states (Fig. 3
updateU by S;, we consider thal/ is possibly copied frond if . HMI\/lN" The timespan HMM model (Fig. 5) (wi?b.f(i;. _

the updated value is the same as a value once providéd bince itf
the last publishing of . 1 4 =9 . _
¢ HMMDELAY: HMMS5 with publish delay (Eq. (36)).
6. EXPERIMENTAL RESULTS By default, we computed weighted CEF-measure and applied

This section presents experimental results on life-span discovery HMMS5 in life-span discovery. Initially we set = f = .5,t; =
and copying detection. We first present results on a real-world datat. = 0.99,s = .8, m = 100 when apply, but may applBaul-
set (Sec. 6.2), showing that the problems we address in this papeMelchlearning to learn the parameters in some experiments.



Table 7: Discovered ever-existing restaurants (#Rest) and closing Table 8: Source-generation parameters and their settings.

restaurants in Manhattan. Parameter| p: Py fo fu | nsu | osy ay
Method | #Rest[ Prec | Rec | F-msr | #Rnds[ Time(s) Default | .75 99 [ .1 [ 5 | 8 [ .2 | .075
ALL N 54 1 7 N N Range 0-1].951] .1-1| .11 .1-1 2 0-.15
ALL2 - .82 31 .45 - -
NAIVE 1100 | .62 .92 74 1 151
CEF 5056 | .73 | .85 | .78 5 537 at least two sources as closed (referred to as 2 has low recall
CopPYCEF | 5080 | .76 | .85 8 5 1118 (-31). Finally, we observed that Google Maps lists many out-of-

GOOGLE - 77 | 15 .é4 - business restaurants, reflecting staleness of data on the web.

_ _ o _ We observed that GPYCEF and CEF both converged at the 5th
We measure lifespan-discovery resultsemit distancedefined  round and took 18.6 and 8.95 minutes respectively. Since life-span

as the Levenshtein distance between decided life-span periods andjiscovery is a one-time process, the execution time is acceptable.

real periods, where insertion or deletion of a period is penalized Among the 66 pairs of sources, we detected copying relation-

by the length of the period, and substitution of a period with the ghip between 14 pairs (Figure 1). Among the sources, it is more

same value is penalized by the difference of the beginning points. jikely that FoodBuzzand VillageVoiceare copiers an#enuPages

Ideally, the edit distance should be 0. We describe how we measuregnd TimeOutare being copied. Although we do not know the real

copying-detection results in Sec. 6.3.4. copying relationship between sources, we have the following ev-
We implemented our models in Java and conducted experimentSijgence to support some of our results. FifBbodBuzzand Vil-

on a WindowsXP machine with AMD Athlon(tm) 64 2GHz CPU  |ageVoiceeach formats addresses of different restaurants in very

and 960MB memory. different ways, so may copy them from various sources; in addi-

. tion, FoodBuzznserted restaurants even after the restaurants were
6.2 Experlments on real'world_ datfa closed, so possibly copied the data. SecdidnuPagehas been
We randomly selected 12 web sources (listed in Table 1 at the be-on the web for the longest time among the 12 sources and has the

ginning of this paperf~(0) is shown as freshness for each source) highest coverage (.66), so is possible to be copied by other sources.
that provide information on restaurants in Manhattan. We crawled

their data from 1/22/2009 to 3/12/2009, once every week, so 8 6.3 Experiments on synthetic data

times in total. For each restaurant listing, we collected name, phone  \ve next describe how we generated the synthetic data and re-
number, address, direction, neighborhood, and price range when-ported experimental results.

ever possible. We identified restaurants by their names and con-

sidered only restaurants that are mentioned by at least two data 6.3.1 Synthetic data

sources. In total there are 5149 such restaurants; among them, Sll%bjects: A universe contains 100 objects. In a multi-valued uni-
appeared in our first crawling, and 5131 appeared in our last crawl- o 56 the domain for each object contains 102 values (including

ing. In these two months, we did not notice many changes on at- 1). We have 20 periodical observationsat. . . , t19. A universe
tribute values such as phone and address, thus focused on existenc&m be eithesingle-periodor multi-period in the former an ob-

of restaura_r(ljts (55’ a binary unlvsrsle)_. . . Ject exists ato with probabilityp; =5 and att o with probability
We considered two cases as deletion of arestaurant froma source, - _ 3 1t does not change value during existence; in the latter an

the source (_ex_pllmtly marks the restaurant as “_(CL_OSED)”’ or t_he object exists ato with probabilityp; = .5, transits at each obser-
source implicitly removes the restaurant from its list. We consid- ation point with probabilitys. — .1, and once transits, disappears
ered the set of restaurants that a source provided once but delete ith probability p. = .1 or changes to another random value oth-
later. There are 463 such restaurants. For each of them, we calledy\ise ‘e note that resuits with more objects, more observations,
its phone number to verify if it is still open and used it as the golden larger domains are similar.
standard; we found that 248 of them are indeed clbs#de ran ) ) )
various algorithms to decide life span (existence periods) of each Sources:According to different types of data sources, we classify
restaurants, and reportedecision, recallandF-measuredenoted @ universe into three categories.
respectively as?, R, F'1, of our results. Formally, among the 463
restaurants, we defin@ as the set of restaurants that alesed h ) ) ) )
in the golden standard anf@ as the set of restaurants that our al- e Copier universeontains 10 independent sources and 9 copiers,
gorithm decided as closed. TheR, — \G‘%‘R\’R _ \G‘g‘R\, and all copying from the same independent source.
F1 = 2P |n addition, we searched each of the restaurants on e Random u.nlverseontalns.lo |nd¢pendent sources and a num-
ber of copiers. Each copier copies from a randomly selected

P+R"
Google Maps and reported the three measures as well. X i - .

9 P P source, either independent or being a copier as well, but there
is no loop copying.

¢ Independence universentains 10 independent sources.

Table 7 shows results of various methadg/e observed as fol-
lows. (1) GopYCEF and CEF obtain high precision and recall.
Between them, GPYCEF obtains higher precisign qnd discqvers For each independent sour§@nd objecD, ateachobservation
more restaurants that havc_e ever existed by considering copying. (2)pointS updates the value @ to a random false value with proba-
NAIVE seems to have a high F-measure; however, as most restaubi”ty s, and updates to the true value with probabifity: f(A),

rants are often mentioned by a few sources, it concludes that only,,1.ora A is the difference between the observation and the tran-
1100 out of 5149 restaurants have ever existed. (3) Considering a"sition of that true value. We defin&(A) = fo - 2° when0 <

of the 463 rea’FFurants.(?s plosedl (referred to als%/has low preci-d A A < —log fo, and f(A) = 1 whenA > —log fo,0 < fo < 1.

sion (.54), while considering only restaurants that are removed by ne that although, p; andf are related to the CEF-measure, the
450me of the 248 restaurants were closed before 1/22/2009 arel al: definitions are not exactly the same and we chose to do so to test
ready marked “(CLOSED)” by some sources on 1/22/2009. robustness of our model. Table 8 shows how we set the parameters.

SWe skip results of ©PYCEFDELAY as almost all sources update every ~ For therandom universewe randomizey, py, fo by Gaussian dis-
week, and skip results ofi@PLE and GoPY, which are similar to MIVE. tribution with mean75, .95, .1 respectively.
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Figure 10: Life-span discovery for the random universe. CoPY-

CEFDeLAY always obtains the best results. Figure 11: Life-span discovery for copier universe with instant pub-
For each copieC’ and its original sources, at each observa- lishing. CopYCEF always obtains the best results whileCopPYCEFDe-
tion point, C' copies fromS with probability f,,. For thecopier LAY obtains slightly worse results.

universe whenC' copies, with probabilityns,, it copies a value average ©PYCEF reduces the edit distance by 27.8% oven-S
provided bysS since last copying and with probability., it copies PLE and by 18.3% over CEF. (3) CERDRAY and GOPYCEFDEe-

a value provided bys earlier. For each object on which it does LAy obtain slightly worse results than CEF and&YCEF respec-
not copy, with probabilitya,, it independently provides the true tively, showing that considering publish delay in case of instant
value; Table 8 shows setting of these parameters. Foratigom publishing does lose information, but only slightly. (4) Typically,
universe we randomizef,,, ns., a,, by Gaussian distribution with CopPYCEF obtains better results with higher CEF-measure (lower
mean.5, .8, .1 respectively; when a copier does not copy on a par- py, higherp, or fo). The only exception is when the CEF-measures
ticular object, it examines the object with probability and pro- are all very high, so all sources are highly similar andFGCEF
vides a value according @, py and f. can wrongly identify an independent source as a copier.

By default we consider instant publishing and no transformation ~ We observed similar trends on thedependence universex-
between being a copier and being independent; though, we considercept that @PYCEF and CEF obtain similar results, showing no
different settings in some experiments. Inthedom universehalf negative effect in considering copying when there is no copiers.
initial independent sources and half initial copiers can transform ¢, 5ty of original source: We varied quality of the source that is
between being independent and being a copier, and the probabllltycopied while applied the default parameters for other independent
of transformation at each observation point is .1. Once a source o rces. Fig. 12 shows difference of the edit distance when all
transforms to a copier, it can chooses a source it has not copiednjependent sources have the same quality and that when the source
from before.  Among each kind of sources, half sources publish peing copied has different quality. We observe that the difference

instantly and half can delay publishing. _ for CoPYCEF is very low, and much lower than that of CEF; for
For each setting, we ran the experiments 10 times and reponedexample, whem; increases from .01 to .05 apdl decreases from
the average measure. .75t0 .1, the edit distance of the results increases only by .28, while

the difference for CEF is 1.36. Thus©o®YCEF is insensitive to
quality of the sources that are copied.

Multi-period life spans: We constructed multi-period life spans
in two ways: (1) randomly generate multiple periods observing

6.3.2 Results for multi-valued universe

Fig. 10 shows results of various methods for taedom uni-
verse which tries to mimic the complexity of the real world. We
considered both single-period life span and multi-period life span - X ;
and have several observations. (1)®YCEFDELAY obtains the ~ Pi = -5;Pc = .3; (2) randomly choose the first existence point

best results in most cases: when there are 80 copiers, it reduced” [0;! — 1], and generate life span with periods of lengtkig. 13
the edit distance by 51% compared with/8LE and by 69% com- ~ Shows the results of @y, CEF and ©PYCEF. We observe that
pared with NAIVE in the multi-period case. (2) @ YCEF obtains CoprYCEF obtains the best results in most cases. For all models,

slightly worse results, but performs better than other methods. (3) the edit distance significantly decreases when the average length
CEF and ®pY have similar results and improve oven®.LE. of the periods increases; the edit distance remains stable once the
Note that in case of multi-period life spans, the improvement by '€ngth reaches 10, as beyond this point the average length of ex-

CEF is slight, as the length of each period tends to be short and thelSting and non-existing periods remains as 10. Thusp@CEF
CEF-measure may not be computed accurately.

performs better when life-span periods are longer.

We next test robustness of our model on various settings of pa- Publish delay: We constructed sources with delayed publishing in
rameters for universe generation. We describe our results on thetwo ways: (1) each source publishes at the beginning and then pub-
binary universe, which forms a harder case, but observed similar lishes at a particular observation point with probability .5, (2) each

trend on multi-valued universe as well. source publishes at the beginning, randomly chooses the second
. . . . publish point in[1, d], and then publishes after evedyobserva-
6.3.3 Life-span discovery for binary universe tions. Fig. 14 shows the resultso8YCEFDELAY obtains the best

Quality of sources: First, we compared various methods on the results when there exists publish delay: edit distance of its results
copier universavhen we varied quality of the independent sources remains stable ag increases; on average it improves ovesry-

(Fig. 115). We make the following observations. (1) CEF obtains CEF by 26% in presence of delayed publishing; and in general,
better results than Nve and SMPLE in all different settings. (2) the higher the publish delay, the larger improvement. Thu® €
CopY obtains similar, but sometimes even worse results than S~ CEFDeLAY handles publish delay well.

PLE, showing that considering copying in itself is not enough in bi- . . . .

nary universe. Once we consider both copying and CEF-measure, 6-3.4  Copying detection for binary universe

the results are significantly improved: whep = .01, fo = .1, on We next compare different models for copying detection.

®We observed similar trends when is higher, but higher edit dis- ~ Overtime copier We start with the case when a copier does not
tance for each method. transform to be independent. We measure discovered copying by
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Figure 12: CorYCEFis robust to quality of Figure 13: CorYCEF obtains better results Figure 14: CoryCEFDELAY is robust to pub-

the source being copied. with longer-period life spans. lish delay.
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Figure 15: Copying detection of HMMS. Figure 16: HMMN obtains the highest F-measure among various copying detéeh models.

precision, recall and F-measure. l@tbe the set of ordered pairs  an idle copier (not copying). Finally, HMM obtains the highest
(S1,S2) whereS, is a copier ofS;, and R be such pairs returned ~ F-measure in most cases by asserting that the longer a copier has
by our model. We compute the three measures as we describedhot copied, the more likely it should copy next, though, it does not
earlier. Note that in theopier universeG contains only 10 pairs improve results of ©PYCEF much.
but R can potentially be much larger. To balanGeand R, we Next, we compared HMM5 and HMMELAY when there is
divide the universe into sub-universes, each containing two copiers, publish delay (Fig. 17). HMMELAY indeed improves over HMM5
their original source, and another independent source, and take theby 8.5% on recall, 4.3% on precision, and 6.5% on F-measure on
average over sub-universes. average; however, we did not observe obvious difference in life-
We further examine accuracy of copying decision for the fol- span discovery.
lowing categories: I. two independent sources, Il. a copier vs. its  Finally, we examined whether our model is robust with respect
original source, lll. a source vs. its copier, V. two co-copiersai. to different copy patterns by varying the selectivity of copyiag)(
independent source vs. a copier of another source, and VI. arcopie from .1 to 1, and changing the copy rate to 1. We observe similar
of a source vs. another independent source. Note that accuracy ofprecision and show only recall. Fig. 18 shows that if we use the
Category Il is the recall. default selectivity (.8) in our HMM model, we can obtain a low re-
We start with analysis of HMM5. Fig. 15 shows its accuracy call whens,, is low (below .5). If we learn selectivity, the recall
on various categories of source pairs. We observe that (1) HMM5 increases from .63 to .84 on average; if we learn copy rate in ad-
is good at identifying copiers: in Category Il, when the coverage dition, the recall increases further to .94 and is high for almost all
is above .2, we obtain an accuracy of above 95%; we can missdifferent values ofs,,. The results show robustness of our HMM
copiers when the coverage is low because the copiers actually con-model to different initial settings of parameters.

duct more independent updates than copied updates, so are hard te,ing transformation We considered transformation and gen-
be distinguished from m(_jepe_nd_ent sources; (2) HM MS achieves an erated copiers that are initially copiers or independent sources, and
accuracy of nearly 1 for identifying sources that are independent of then transform at a particular point. We compared the transforma-
each other (I, V, VI); (3) The only category for which we are not i, hoints our model computes with the real ones; if the copier
doing very well is between co-copiers (!V)’ as they share similar does not transform, we consider that the transformation point is 20
update patterns; however, the accuracy is still 88% on average.  (1he nymber of observations). Fig. 19 shows the average transfor-
We then compared various methods for copying detection: Fig. 16£ﬁ?ﬂion points that HMM5 computes. On average the difference
shows their F-measure and Fig. 16(b) shows their effect on resultsbetween real transformation points and those computed by HMMS5
of CopYCEF. We have several observations. First, considering ;s small: 2 when the copiers are initially copying, and .44 when
only a snapshot of data obtains very low precision and recall (on they are initially independent. '
average F1=.25 for GRR and F1=.16 for NiT). Second, TRACE ) )
obtains a low precision and significantly worsen results oP@ Summary Our experimental results on synthetic data have the fol-
CEF, especially wherf, is high; this is because it accumulates a 1owing implications:
lot of overlapped updates over time and so is likely to conclude 1. Considering CEF q ina both ibute t
copying. Third, although we cannot compare HMM3 and HMM5 - “onsidering LErF-measureé and copying both contribute 1o
directly on F-measure of copying detection, we observe that the edit improving quality of life-span discovery results.
distance of discovered life span using HMM3 is 6.7% larger than 2. Considering publish delay can significantly improve the re-
HMM5, as HMM3 does not distinguish an independent source and sults in presence of delay, and only slightly worsen the results
in absence of delay.
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Figure 17: HMMDELAY is not sensitive to Figure 18: HMM5 w. learning is robust to ini-  Figure 19: HMM5 is good at detecting trans-
publish delay. tial parameter settings. formations of copiers.

3. The basic HMM model is accurate in detecting copying; the system with knowledge of quality of sources and dependence be-
lifespan HMM model improves the results only slightly, but  tween sources.
with higher cost.

i i ot 9. REFERENCES
4. Our model is robust to different characteristics of data and [i] L. Berti-Equille, A. D. Sarma, X. Dong, A. Marian, and

initial HMM parameter settings. D. Srivastava. Sailing the information ocean with awareméss
currents: Discovery and application of source dependdncelDR,
2009.
7. RELATED WORK [2] J. Bleiholder and F. Naumann. Conflict handling stratedgiean
There are three bodies of work related to our reseatctith integrated information system. WWW 2006.
discovery, copying detecticanddata freshnessRecent work on [3] P. Buneman and J. Cheney. Provenance in databasesdnof
truth discovery considers a snapshot of data. Bleiholder and Nau- SIGMOD, 2007.

mann [2] surveyed existing strategies for resolving inconsistency [4] J- Choand H. Garcia-Molina. Synchronizing a databasmpove
in structured or semi-structured data. Yin et al. [13] considers ac- 5 ;rethnessL' IEIGMEOD.HZOOO'(‘ D. Sri | iconflicti
curacy of sources in truth discovery. We consider discovering the [°! X:Dong, L. Berti-Equille, and D. Srivastava. Integragiconflicting

. . ; data: the role of source dependence. http://www.resesttatom/
whole life span of an object from history of source updates and we ~lunadong/publication/indetechReport.pdf.

use more fine-grained source-quality measures: coverage, exact-[g] x. Dong, L. Berti-Equille, and D. Srivastava. Truth disery and

ness, and freshness. copying detection from source update history. http://wwesearch.
For copying detection, Berti-Equille et al. [1] recently sketched att.comA-lunadong/publication/lifespatechReport.pdf.

several high-level intuitions, but did not give concrete algorithms. [7] H. Guo, P.A. Larson, and R. Ramakrishnan. Caching with 'good

Dong et al. [5] proposed detecting copying from a snapshot of data _ €nough’ currency, consistency, and completenesgLDB, 2005.

by examining overlapping errors between sources; such a model, [8] A. Y. Halevy. Answering queries using views: A survé{LDB J,

however, can fall short in presence of large overlap of out-of-date 10(4):270-294, 2001,

- . . . . [9] A. Labrinidis and N. Roussopoulos. Exploring the trafiéetween
data. We consider update history of sources in copying detection performance and data freshness in database-driven webserve

e_md decide in Wh_ich p_eriod a source is a copier and at which par- VLDB J, 13(3):240-255, 2004.

ticular moments it copies. We are not aware of any other work for [10] c. Olston and J. Widom. Efficient monitoring and queryirig o

copying detection on relational data. In addition, we distinguish distributed, dynamic data via approximate replicati@EE Data

our work fromdata provenancg3], which assumes knowledge of Eng. Bull, 28(1):11-18, 2005.

provenance and focuses on management of such information. [11] L. R. Rabiner. A tutorial on hidden markov models and steléc
Finally, existing work on data freshness [12, 8, 4, 9, 7, 10] de- applications in speech recognitidProc of IEEE 77(2), 1989.

finesfreshnesas how stale the data in a materialized view are com- [12] Eét?;?zgt?gg?;oigr:jdeg. Eg;’;egaﬂguﬁégitju;‘érge’ggoq‘g’r‘gttive nf
pared with the original sources, and emphasize update propagation. Syst, 10(3):299-326 2%01 - P '
We have dlffergnt focus and COHSIqu’ ConSIStgncy of data with re- [13] X.Yin, J. Han, and P. S. Yu. Truth discovery with multiglenflicting
spect to evolution of real-world objects over time. We note that information providers on the web. Proc. of SIGKDD 2007.

the notions ofcompleteness, consisten@andcurrencyin [7] are

analog to our CEF-measure, but in different contexts.

8. CONCLUSIONS

This paper considers how we can explore update history of sources
in improving quality of integrated data. We measure quality of
source data by coverage, exactness, and freshness. Based®n the
measures, we developed an HMM model to decide whether a source
is a copier of another source and at which moment it copies. Then,
we developed a Bayesian model to decide life span of each ob-
ject, taking into consideration CEF-measure of sources, copying
between sources, and possible publish delay. Experimental results
on real-world and synthetic data show high accuracy and efficiency
of our models.

For future work, one direction is to apply our techniques in Web
2.0 applications to identify sources or users that are trustable. An-
other direction is to optimize query answering in a data integration



