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ABSTRACT
Modern information management applications often require integrating data
from a variety of data sources, some of which may copy or buy datafrom
other sources. When these data sources model a dynamically changing
world (e.g., people’s contact information changes over time, restaurants
open and go out of business, etc.), sources often provide out-of-date data.
Errors can also creep into data when sources are updated often. Given
out-of-date and erroneous data provided by different, possibly dependent,
sources, it is challenging for data integration systems to provide the true
values. Straightforward ways to resolve such inconsistencies (e.g., voting)
may lead to noisy results, often with detrimental consequences.

In this paper, we study the problem of finding true values and determin-
ing the copying relationship between sources, when the update history of
the sources is known. We model the quality of sources over time by their
coverage, exactnessand freshness. Based on these measures, we conduct
a probabilistic analysis. First, we develop a Hidden MarkovModel that
decides whether a source is a copier of another source and identifies the
specific moments at which it copies. Second, we develop a Bayesian model
that aggregates information from the sources to decide the true value for
a data item, and the evolution of the true values over time. Experimental
results on both real-world and synthetic data show high accuracy and scal-
ability of our techniques.

1. INTRODUCTION
Modern information management applications often require in-

tegrating data from a variety of data sources. Among these sources,
some may cite others (often without proper attribution on the web),
crawl or aggregate data from others (e.g., Google), exchange data
with or buy data from other sources [1]. Sources often provide
out-of-date and erroneous data, and such data can be propagated
by copiers. Resolving conflicts in data from different sources and
determining the true values is critical for improving quality of in-
tegrated data. Recent work on this topic focuses on resolving con-
flicts from a snapshot of data [5, 13]. However, the real world is
dynamically changing (e.g., people’s contact information changes
over time, restaurants open and go out of business, etc.), and sources
often frequently update their data to capture the changes. Such evo-
lution presents new challenges to truth discovery.
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Table 1: Sources in the motivating example. We also show the number
of the out-of-business restaurants that Google Maps lists.

Source Coverage Exactness Freshness #Closed-rest
MenuPages .66 .98 .86 29
TasteSpace .44 .97 .3 106

NYMagazine .43 .98 .54 59
NYTimes .43 .98 .38 72

ActiveDiner .41 .95 .86 70
TimeOut .38 .99 .68 33

SavoryCities .27 .99 .41 33
VillageVoice .22 .94 .4 37
FoodBuzz .18 .92 .3 59
NewYork .13 .92 .45 28
OpenTable .12 .92 .45 9

DiningGuide .1 .9 .09 48
GoogleMaps - - - 212

First, true values can evolve over time and in many applications
we are interested in the whole history or a fragment of the history
of true values for particular items (e.g., a person’s addresses in the
past five years, the history of a customer’s billing information, and
the previous chairs of an organization). However, errors can creep
into data and data can go out of date. It is challenging to determine
which values were once true and in which periods they were true.

Second, sources are often of different quality and a natural thought
is to take this into consideration when we decide true values. How-
ever, low-quality data can be caused by many reasons: some sources
make a lot of errors in their provided data; some provide correct
data but fail to update according to later changes; and some, though
they update, do so slowly. All these reasons can lead to a low accu-
racy of a snapshot of data and we should treat them differently.

Third, a source may copy data from other sources and often copy
erroneous and out-of-date data unknowingly. Straightforward ways
to resolve conflicts (e.g., voting) fall short in presence of copying.
In addition, the copying relationship can evolve over time as well:
a source can stop copying and become independent, can change
sources from which it copies, and can copy at some times and pro-
vide data independently at other times. These can make copying
detection extremely tricky.

EXAMPLE 1.1. We collected data on Manhattan restaurants from
12 web sources (listed in Table 1) weekly from 1/2009 to 3/2009
and examined opening and closing of restaurants. There are 5149
restaurants mentioned by at least 2 data sources and among them
we found that 248 went out of business recently.

We decided life period of each of the 5149 restaurants from the
data and the copying relationship between the sources (shown in
Figure 1). Accordingly, we computed for each source its cover-
age (how many existing restaurants are provided and how many
closed restaurants are removed), exactness (how many updates are
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Figure 1: Copying relationship we discovered between sources in the
motivating example. An arrow from one source to another indicates
the former is a copier of the latter.

correct at the time of being made), freshness (how quickly sources
capture changes and update), and the number of closed restaurants
they still provide in their lists (shown in Table 1)1. We observe that
sources do provide stale data, their quality measures vary highly,
and some do copy from others. In particular, we found that source
FoodBuzz, which may be an aggregator, seems to have copied from
several other sources, including some out-of-date listings, and ac-
cordingly has a lower exactness. �

In this paper, we examine the update history of sources and study
how to decide the evolving copying relationship between sources
and the evolving true values. Our first contribution is to propose
several quality measures of data sources, which play a key role in
our probabilistic analysis. These measures includecoverage–how
many values in the history a source covers,exactness–how many
updates conform to the reality, andfreshness–how quickly a source
captures a new value (Section 2). Note that these measures are or-
thogonal and all contribute to the accuracy of the latest version of
the data, because a low accuracy of current data can be due to either
a low exactness of provided data (erroneous data), or a low cover-
age or freshness for capturing recent transitions (outdated data).

Our second contribution is a set of Hidden Markov Models (HMM)
that decide whether a source copies from another source and at
which moment it copies (Section 3). Our models consider not
only whether two sources share similar update history while one
often updates later than the other, but also the coverage, freshness
and exactness of the sources, to avoid identifying slow updaters as
copiers. In addition, although the copying relationship between a
pair of sources can evolve over time, frequent radical change is less
likely; in other words, a copier is more likely to remain as a copier.
Our HMM models capture this intuition and so are able to make
more accurate decisions both on the copying relationship and on
when the copying is conducted.

Third, we develop a Bayesian model to decide when the true
value for a particular data item changes and what the new value
is (Section 4). Our model considers both source quality and data
copying, and so is less affected by possible wrong updates, stale
data, and copied data. In addition, we consider different publish
patterns, including instant publishing and delayed batch-mode pub-
lishing (Section 5).

We describe experimental results on both real-world data and
synthetic data, showing that our models are accurate and scalable
both in detection of the evolving copying relationship and discov-
ery of transitions of true values (Section 6).

We note that although we propose our techniques in the frame-
work of truth discovery, our techniques for detecting copying and
evaluating source quality are of independent interest in a variety of
data-integration tasks, including source recommendation, plagia-
rism detection, query optimization in an online query-answering
system, and so on.
1We describe the data set, the measures, and our techniques in detail in the
rest of this paper. As we show in Section 6, we have evidence tosupport
some copyings we discovered.

2. OVERVIEW
This section formally defines the problem we solve in this paper

and defines quality measures of data sources.

2.1 Problem definition
Let O be a set of objects. Each objectO ∈ O is associated with

a value at a particular timet and can be associated with different
values at different times; ifO does not exist att, we consider it as-
sociated with a special value⊥. Formally, we define thelife spanof
O as a sequence oftransitions(tr1, v1), . . . , (trl, vl), where (1)l
is the number of periods inO’s life time; (2) the value ofO changes
to vi at timetri, i ∈ [1, l]; (3) v1 6= ⊥, andvi 6= vi+1 for each
i ∈ [1, l − 1]; and (4)tr1 < tr2 < · · · < trl. We denote by⊙
the beginning time we are interested in andtr1 = ⊙ if an object
already exists at that time. In our paper we focus on atomic cate-
gorical values; we can treat set (or list) of atomic values as a whole
and adapt techniques in [13] for value similarity.

LetS be a set of structured data sources. Each sourceS ∈ S can
(but not necessarily) provide a value for an object at a particular
time, and when the value of the object evolves,S can change the
value accordingly. We observe data provided by the sources at dif-
ferent times; by comparing an observation with its previous obser-
vation, we can infer recentupdates. Formally, we denote byT =
{t0, . . . , tn} the set of observation points and bȳU(S, ti), i ∈
[0, n], the updates we infer at timeti; as a special case,̄U(S, t0)
contains valuesS provides att02. Note that an update can hap-
pen at any time in(ti−1, ti] and we may miss updates that are later
overwritten. Our techniques can be adapted to the case where we
know exact timestamps of each update.

We classify data sources intoindependentones andcopiers. An
independent source updates according to its own observation of the
real world. A copier can copy from one or more other sources.
When a copier copies, it may copy only a subset of updates and
may meanwhile observe the real world independently and conduct
updates accordingly (validating or modifying a copied value is also
considered as independent updating). A copier may not copy all
the time: it can copy at some times and update independently at
other times. On the other hand, a copier can stop copying from
a particular source and vice versa. Note that the case of a source
being independent and the case of a source being a copier but not
copying at a particular moment are conceptually different, but not
distinguishable from behavior of the source at that moment.

For now we considerinstant publishing–publishing a value right
after it is observed (from the real world or from another source);
in other words, the published updates conform to the observation
at the point of publishing (though the observation may be false and
do not conform to the reality). We consider other publish patterns
in Section 5.

EXAMPLE 2.1. Consider the (synthetic) data sources in Table 2.
They provide information on affiliations of five database researchers–
Stonebraker(S), Dewitt(D), Bernstein(B), Carey(C), Halevy(H), and
we observe their data each year since 2000. Among the five sources,
S1 andS2 are independent;S3 was once a copier ofS2 and then
changed to be a copier ofS1 since 2006 (despite difference of their
latest data);S4 is a copier ofS1; S5 is a copier ofS3 but copies
only periodically. �

The goal of our research is to determine the evolving copying re-
lationship between sources and the evolving true values of objects.
Formally, we decide
2We assume a source starts providing data beforet0, but our techniques can
be easily adapted for the opposite case.



Table 2: Researcher affiliation example. We emphasize the last update
on each object by each source.

Life span S1 S2 S3 S4 S5

S(⊙, UCB) (03,MIT ) (00,UCB) (01, UCB) (05,MIT ) (03, UCB)
(02, MIT) (06,MIT ) (05,MS)

D (⊙, Wisc) (00, Wisc) (00, UW) (01, UW) (05,Wisc) (03, UW)
(08, MSR) (09,MSR) (01, Wisc) (02,Wisc) (05,⊥)

(08,MSR) (07,Wisc)
B (⊙, MSR) (00,MSR) (00,MSR) (01,MSR) (07,MSR) (03,MSR)
C (⊙, Propel) (04, BEA) (05, IBM ) (06,BEA) (07,BEA) (07,BEA)

(02, BEA) (09,UCI )
(08, UCI)

H (⊙, UW) (00, UW) (00, Wisc) (01, Wisc) (05,UW) (03, Wisc)
(05, Google)(07,Google) (02, UW) (06,UW) (05, Google)

(05,Google) (07,UW)

1. copying: for everyS1, S2 ∈ S andt ∈ T, the probability
thatS1 is a copier ofS2 at t and if so, the probability ofS1

actively copying fromS2 at t;

2. life span: for every objectO ∈ O andt ∈ T, the true value
(including⊥) of O at t.

In this paper we do not consider simultaneous cyclic copying,
which happens rarely in practice.

2.2 Quality of data sources
Before we present our solutions to copying detection and life

span discovery, we first introduce three quality measures of data
sources, namely,coverage, exactness, and freshness, as a whole
referred to as theCEF-measure, on which we rely heavily in our
probabilistic analysis.

Consider a sourceS ∈ S. Intuitively, its coverage measures
the percentage of all transitions of different objects that it captures;
its (in)exactness measures the percentage of all transitions it mis-
captures (by providing a wrong value); its freshness measures how
quickly it captures the transitions. SourceS is high-coverage, exact
and fresh, if it provides a new value for an object if and only if, and
right after, the true value of the object evolves to that value. The
definition of CEF-measure relies on two notions,captureandmis-
capture, which we define next.

An update ofS on a particular objectO can be triggered either
by a transition ofO (to reflect the value change) or by a previous
update ofS (to fix a previous error). Thus, we consider all tran-
sition points ofO and update points ofS on O and sort them in
ascending order. These points divide the whole observation period
into a set ofslices. The real value ofO in each slice is the real value
at the beginning of the slice. As an example, Figure 2 depicts the
life span ofDewitt’s affiliation and updates byS5 on it; we divide
the whole observation period into 5 slices.

A slice is capturableif at its beginning, the value provided by
S is different from the real value. A capturable slice iscaptured
if it ends with an update ofS to the real value. A slice ismis-
capturableif S can update to a wrong value; when there are more
than two values in the domain ofO, each slice is mis-capturable. A
mis-capturable slice ismis-capturedif it ends with an update ofS
to a wrong value3. Thus, a slice that does not end with an update is
neither captured nor mis-captured. In Figure 2, all 5 slices are mis-
capturable, andL1, L2, L3, andL5 are capturable. Among them,
L1 andL2 are mis-captured, andL3 is captured.

3In the rest of the paper, when a transition and an update on thesame object
occur between two consecutive observations, in absence of knowledge of
which happens earlier, we treat the update as correct once its value conforms
to the value of the new transition or that of the previous transition.
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Figure 2: Computing CEF measure forS5.

We denote bycl(S, O), c(S, O), ml(S, O), and m(S, O), re-
spectively, the number of capturable, captured, mis-capturable, and
mis-captured slices forS on O. We define the coverage ofS, de-
noted byC(S), as

C(S) =

P

O∈O c(S, O)
P

O∈O cl(S, O)
. (1)

We define the exactness ofS, denoted byE(S), as

E(S) = 1 −

P

O∈O m(S, O)
P

O∈O ml(S, O)
. (2)

We define freshness ofS by a distribution function of length of
the captured slices. If we denote byc(S, ∆), ∆ > 0, the number
of captured slices with length no larger than∆, the freshness func-
tion of S, denoted byF (S, ∆), can be computed as follows (thus,
F (S, +∞) = 1).

F (S, ∆) =
c(S, ∆)

c(S)
. (3)

Note that the three different measures are orthogonal and all
contribute to the accuracy of data provided by the source at any
moment: low exactness causes erroneous data whereas low cover-
age or freshness causes out-of-date data.

In practice, it is often easier to capture a long slice than a short
one, and easier to make a mistake during a long slice than a short
one. We can thus compute the weighted measure, where the weight
of a capturable slice is proportional to its length and that of a mis-
capturable slice is inversely proportional to its length. Our experi-
mental results show higher accuracy with weighted CEF-measure.

3. DISCOVERING COPYING OF SOURCES
This section describes how we discover copying between data

sources. As we need to reason about update pattern over time,
a natural choice is to use a Hidden Markov Model (we compare
with other options and validate its advantage in experiments (Fig-
ure 16)). We start from a review of the HMM model (Section 3.1),
then describe a basic HMM model for copying discovery (Sec-
tion 3.2), and next extend it for periodical copying (Section 3.3).
This section assumes knowledge of the life span of each object and
we present how we compute it in Section 4.

3.1 Review of HMM
A Hidden Markov Model (HMM) [11] contains a set ofhidden

statesH = {h1, h2, . . . , hN}, N > 1, and a set of observation
symbolsO = {o1, o2, . . . , oM}, M > 1. At each timet, the
model is in a particular hidden stateqt ∈ H and we observe a
particular observation symbolet ∈ O. An HMM λ = (A, B, π)
contains three components:

• the state transition probabilities,AN,N = {aij |i, j ∈ [1, N ]},
whereaij = P (qt+1 = hj |qt = hi) is the probability that
the model transits from statehi to hj ;

• the observation probability distribution in each state,BN,M =
{bij |i ∈ [1, N ], j ∈ [1, M ]}, wherebij = P (et = oj |qt =
hi) is the probability of observingoj in statehi;

• the initial state distribution,πN = {πi|i ∈ [1, N ]}, where
πi = P (q1 = hi) is the initial probability of stateSi.

Given a sequence of observations, we can applyForward-backward
inference to decide the probability of each state at each time point.
In addition, by applyingBaul-Welchlearning, we can decide the
parameters inA, B andπ from a set of observation sequences [11].
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Figure 3: Hidden states and transitions in the basic HMM model.

3.2 The basic HMM
Let S1 andS2 be two data sources. We decide if one of them

copies from the other. We apply an HMM, where the hidden states
correspond to whetherS1 or S2 is copying at a particular moment
and the observations correspond to their updates. We next describe
our model in detail.

3.2.1 Hidden states
We first decide the set of hidden states. As we assume acyclic

copying, at each moment there can be at most one copier between
S1 andS2. In case a particular source is a copier, it can copy or
independently update at a particular observation point. Thus, there
are five hidden states:I, C1c, C1¬c, C2c, andC2¬c. StateI rep-
resents independence ofS1 andS2. StatesC1c andC1¬c represent
thatS1 is a copier ofS2, while the former representsS1 actively
copying fromS2 and the latter representsS1 not copying at that
moment. Similarly, statesC2c andC2¬c representS2 copying or
not copying while being a copier ofS1.

Note thatC1¬c, C2¬c, andI are not distinguishable from the
action ofS1 andS2: in all casesS1 andS2 make independent up-
dates. One may suggest we merge them into the same state; how-
ever, as we show later, the probability of transition from one of
these states to stateC1c (or C2c) can be different: intuitively,S1

is more likely to actively copy fromS2 (so in stateC1c) next when
it is in stateC1¬c than in stateI. To avoid ambiguity, we disallow
transition betweenC1¬c and any ofI, C2c, andC2¬c (similar for
C2¬c); thus, the period ofS1 being a copier starts from and ends
after a real copying. Figure 3 shows the transition graph.

3.2.2 Initial and transition probabilities
We now consider how to assign initial and transition probabil-

ities for the states. Note that many transitions include the same
behavior, such as transformation between copiers and being inde-
pendent; thus, instead of having different transition probabilities
for the 15 possible transitions, we can compute them using only a
few parameters, as we describe next.

Since the period of a source being a copier starts with a real copy-
ing, the initial state cannot beC1¬c or C2¬c. Assume the a-priori
probability of two sources being independent isα (parameters can
be learned from real data byBaul-Welthlearning). Then, we have
initial probabilities as

P (I) = α, (4)

P (C1c) = P (C2c) =
1 − α

2
. (5)

We next define three parameters that we use to compute proba-
bilities of transitions between states.

• f(0 < f 6 1): the probability that a copier copies at a
particular time point.

• tc(0 6 tc 6 1): the probability that between a pair of
sources, a copier remains as a copier of the other source. In-
tuitively, this is more likely to happen than transformation to
independence, so typicallytc > .5.
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Figure 4: An update and its previous transition.

• ti(0 6 ti 6 1): the probability that a pair of independent
sources remain as independent. Typically,ti > .5.

The probabilities of transitions are computed as follows. For
convenience, we denote byTh,h′ the transition from stateh to h′

and byah,h′ its probability.

• TransitionTI,I happens whenS1 andS2 remain as indepen-
dent, so has probabilityti. TransitionsTI,S1

andTI,S2
have

the same probability,1−ti

2
.

• WhenS1 is a copier ofS2, it transforms to be independent
with probability 1 − tc. Once this happens,S1 andS2 be-
come independent and remain so with probabilityti; other-
wise,S2 becomes a copier ofS1. Thus,aC1c,I = (1−tc)·ti

andaC1c,C2c = (1 − tc)(1 − ti) (similar forC2c).

• OnceS1 remains as a copier ofS2, it copies at a particu-
lar moment with probabilityf . At stateC1c, S1 remains
as a copier with probabilitytc, so aC1c,C1c = f · tc and
aC1c,C1¬c = (1 − f) · tc. At stateC1¬c, S1 has to remain
as a copier, soaC1¬c,C1c = f andaC1¬c,C1¬c = 1 − f

(similar forC2c andC2¬c).

3.2.3 Observation probability distribution
Now we consider the probability ofS1 andS2 making particular

sets of updates in a state. There are a huge number of possible
updates for each source at each moment; enumerating them and
assigning a probability for each is infeasible. Instead, we describe
equations for computing the probability of a particular observation.

We focus our attention on three types of updates at each partic-
ular point: those made byS1 and recently (we define “recently”
shortly) byS2, denoted byŪS1,S2

; those made byS2 before, but
not byS1, denoted byŪ¬S1,S2

; and those made byS1 but not re-
cently byS2, denoted byŪS1,¬S2

. Typically, the more updates in
ŪS1,S2

, the more likely thatS1 is copying fromS2; the more up-
dates inŪ¬S1,S2

andŪS1,¬S2
, the less likely thatS1 is copying.

Note that we do not consider updates performed neither byS1 and
S2, both because enumerating them is often infeasible, and because
the set of updates that “should” be performed depends on previous
updates and so varies for sources. We denote byΩ1 the distribution
of ŪS1,S2

, ŪS1,¬S2
, Ū¬S1,S2

at a particular moment and defineΩ2

for S2 similarly (note that̄US1,S2
andŪS2,S1

can be different, sim-
ilar for other pairs of sets). We summarize observations at each
point usingΩ1 andΩ2.

Intuitively, the fact thatS1 always follows updates ofS2 can
ring an alarm in copying detection. However, this fact in itself does
not necessarily implyS1 being a copier, asS1 might just be a slow
updater (has low freshness). SourceS1 is more likely to be a copier
of S2 if in addition one of the following holds: (1)S1 andS2 have
only low to medium coverage but their updates highly overlap in
a close time frame; (2)S1 andS2 make a lot of common mistakes
(e.g., sourceS2 andS3 in Example 2.1); (3) the overlapped updates
are performed byS1 after the real values have already changed
(e.g., sourceS3 andS5’s updates onHalevy’s affiliation since 2005
in Example 2.1). These three cases are more suspectable because
they are low-probability events ifS1 andS2 are independent. We
next examine the probability of an update by a source conditioned
on the source independently updating or copying.

We first consider the case whereS1 is independently updating,
denoted byS1 6→ S2, and compute the probability thatS1 makes



an updateU at timet. AssumeU updates the value ofO to v and
the last transition onO by timet is (tr, v0) (Figure 4). Ifv = v0,
the update is correct–S1 does not make a mistake and captures the
correct value within timet − tr, so the probability is

P (U, S1, t|S1 6→ S2, U true) = E(S1)C(S1)F (S1, t − tr). (6)

If instead,v 6= v0, S makes a mistake. Letm be the number of
wrong values in the domain. Not assuming a-priori knowledge on
which wrong values are more likely to be provided, we have

P (U, S1, t|S1 6→ S2, U false) =
1 − E(S)

m
. (7)

We denote the probability ofS1 performingU by P (U). Ac-
cording to if U is correct or not, we apply Equation (6) or (7) to
computeP (U). Obviously,

P (U ∈ ŪS1,S2
∪ ŪS1,¬S2

|S1 6→ S2) = P (U); (8)

P (U ∈ Ū¬S1,S2
|S1 6→ S2) = 1 − P (U). (9)

We next consider the case whereS1 is copying fromS2, denoted
by S1 → S2. Then,S1 copies a subset of recent updates byS2 and
can also update independently. Lets be theselectivityof a copier
(i.e., probability of copying an update). If we denote byPc(U) the
probability that a copier independently performs an updateU , for
S2’s recent updates, we have

P (U ∈ ŪS1,S2
|S1 → S2) = s + (1 − s)Pc(U); (10)

P (U ∈ Ū¬S1,S2
|S1 → S2) = (1 − s)(1 − Pc(U)). (11)

For an update not performed byS2 recently, we have
P (U ∈ ŪS1,¬S2

|S1 → S2) = Pc(U). (12)

We computePc(U) in the same way asP (U); however, we
should use different CEF-measure forS1 here: that of updates by
S1 but not previously byS2. Computing such measure introduces a
big overhead, as we need to compute for every pair of sources. We
can approximate by assumingS1 andS2 have the same number of
capturable and mis-capturable slices and so computing by

C(S1|S2) = C(S1) − sC(S2); (13)

E(S1|S2) = E(S1) + s(1 − E(S2)); (14)

F (S1, ∆|S2) = F (S1, ∆). (15)

Our experiments show that such approximation significantly re-
duces execution time without affecting the results much.

To make our computation tractable, we assume independence of
updates by one source and can thus computeP (Ω1|
S1 → S2) andP (Ω1|S1 6→ S2). Then, the probability of observa-
tions (Ω1, Ω2) for each state comes along naturally:

P (Ω1, Ω2|I) = P (Ω1, Ω2|C1¬c) = P (Ω1, Ω2|C2¬c)

= P (Ω1|S1 6→ S2) · P (Ω2|S2 6→ S1); (16)

P (Ω1, Ω2|C1c) = P (Ω1|S1 → S2) · P (Ω2|S2 6→ S1); (17)

P (Ω1, Ω2|C2c) = P (Ω1|S1 6→ S2) · P (Ω2|S2 → S1). (18)

Note that since statesC1¬c, C2¬c and I are not distinguishable
from the behavior of the data sources, the probabilities ofΩ1 and
Ω2 conditioned on them are the same.

We now present several features of our model that conform to
the intuition presented early in our discussion.

THEOREM 3.1. Lets be the selectivity of copying andm be the
number of wrong values in the domain. The observation probability
distribution has the following properties:

1. if C(S1) < s, adding a correct update tōUS1,S2
at timet

increases probability of stateC1c at t, and adding a correct
update toŪ¬S1,S2

decreases that probability;

2. if m > 1
s
, adding a wrong update tōUS1,S2

at time t in-
creases probability of stateC1c at t, and adding a wrong
update toŪ¬S1,S2

decreases that probability;

3. if E(S1) > .5, adding a correct update tōUS1,¬S2
at timet

decreases probability of stateC1c at t;

4. adding a wrong update tōUS1,¬S2
at timet decreases prob-

ability of stateC1c at t. �

PROOF. Property 1:If U is correct, sinceC(S1) < s,

P (U) = C(S1)E(S1)F (S1, ∆) < s < s + (1 − s)Pc(U).

SoP (U ∈ ŪS1,S2
|S1 6→ S2) < P (U ∈ ŪS1,S2

|S1 → S2), and
the probability of stateC1c increases if we addU to ŪS1,S2

.
Also, sinceC(S1) < s,

C(S1)E(S1)F (S1, ∆) < s < s + (1 + s)Pc(U).

So

P (U ∈ Ū¬S1,S2
|S1 6→ S2) = 1 − P (U)

> (1 − s)(1 − Pc(U)) = P (U ∈ Ū¬S1,S2
|S1 → S2).

Thus, the probability of stateC1c decreases if we addU to Ū¬S1,S2
.

Property 2:If U is incorrect, sincem > 1
s
, 1

m
< s. So

1 − E(S1)

m
<

1

m
< s < s + (1 − s)Pc(U).

So

P (U ∈ ŪS1,S2
|S1 6→ S2) < P (U ∈ ŪS1,S2

|S1 → S2),

and the probability of stateC1c increases if we addU to ŪS1,S2
.

According to the above equation, we also have

P (U ∈ Ū¬S1,S2
|S1 6→ S2) = 1 −

1 − E(S1)

m

> (1 − s)(1 − Pc(U)) = P (U ∈ Ū¬S1,S2
|S1 → S2).

Thus, the probability of stateC1c decreases if we addU to
Ū¬S1,S2

.
Property 3: WhenU is correct, for the probability of stateC1c

to increase when we addU to ŪS1,¬S2
, we should have

C(S1)E(S1)F (S1, ∆) > Cc(S1)Ec(S1)Fc(S1, ∆)

> (C(S1) − sC(S2))(E(S1) + s(1 − E(S2)))F (S1, ∆).

The above equation holds whenE(S1) > 1 − E(S1), and so
whenE(S1) > .5.

Property 4:BecauseE(S1) 6 Ec(S1), so

P (U ∈ ŪS1,¬S2
|S1 6→ S2) =

1 − E(S1)

m

>
1 − Ec(S1)

m
= P (U ∈ ŪS1,¬S2

|S1 → S2).

Thus, the probability of stateC1c decreases if we addU to
ŪS1,¬S2

.



Table 3: ObservationΩ for S5 with respect toS3 in Example 2.1. We
skip the years when all sets are empty.

Year ŪS5,S3
Ū¬S5,S3

ŪS5,¬S3

{(S, UCB),2003
(B, MSR), (H,Wisc)}

∅ {(D, UW)}

{(S, MS), (D,⊥),2005 ∅ ∅
(H, Google)}

{(D, Wisc),2007
(C, BEA), (H, UW)}

∅ ∅

2009 ∅ {(S, MIT)} ∅

Table 4: Probabilities of hidden states forS5 vs. S3.
State 03 04 05 06 07 08 09

Copy (C1c) 1 .43 .2 .43 1 .39 .12
Idle (C1¬c) 0 .51 .89 .51 0 .35 .52

Recent updates:We next define what we mean by arecentup-
date by a source. To avoid penalizing updates that are not copied
immediately, we consider awindowof sizeW . AssumeS1 makes
W +1 consecutive copyings at timetk0

, . . . , tkw , 0 6 k0 < · · · <

kw 6 n. The recentupdates byS2 include all of its updates at
time (tk0

, tkw ], not overwritten byS2’s later updates on the same
objects, and not performed byS1 yet. Here, we mark a time point
as a possible “copying” point if updates byS1 at that time overlap
with recent updates byS2.

EXAMPLE 3.2. Consider sourcesS3 andS5 in the motivating
example. Table 3 showsΩ for S5 with respect toS3. Year 2003 and
2007 are considered as copying points. As an example,S5 has four
updates in 2003: three overlap withS3’s recent updates and are in
US5,S3

, and one, (Dewitt, UW), does not overlap and is inUS5,¬S3

(S3’s update (Dewitt, UW) in 2001 is later overwritten in 2002).
Table 5 shows the probability of statesC1c andC1¬c we infer

for S5 vs.S3 (we settc = ti = .9, f = .5). Thus, our HMM model
is able to identify thatS5 is a copier ofS3, copying in the years of
2003 and 2007. �

3.2.4 Algorithm
We applyForward-Backwardinference to compute the probabil-

ity of each state at each time point. The probability ofS1 being a
copier at timet is the sum of the probability of stateC1c andC1¬c

(similar forS2).
We can applyBaul-Welchlearning to learn the parametersα, s

and the transition probabilities. Note that to keep the symmetry of
the transition graph, we should inferti, tc andtf from the learned
transition probabilities, and then use these parameters to re-compute
the probabilities. As an example,f

1−f
can be computed by

aC1c,C1c

aC1c,C1¬c
,

aC1¬c,C1c

aC1¬c,C1¬c
,

aC2c,C2c

aC2c,C2¬c
,

aC2¬c,C2c

aC2¬c,C2¬c
,

where thea’s are learned transition probabilities.. We can then
computef and take the average. In particular, if we definediv(x) =

x
1+x

, then

f = Avg(div(
aC1c,C1c

aC1c,C1¬c

), div(
aC1¬c,C1c

aC1¬c,C1¬c

), (19)

div(
aC2c,C2c

aC2c,C2¬c

), div(
aC2¬c,C2c

aC2¬c,C2¬c

)); (20)

tc = Avg(div(
aC1c,C1c

+ aC1c,C1¬c

aC1c,C2c
+ aC1c,I

), (21)

div(
aC2c,C2c

+ aC2c,C2¬c

aC2c,C1c
+ aC2c,I

))); (22)

ti = Avg(aI,I , div(
aC1c,I

aC1c,C2c

), div(
aC2c,I

aC2c,C1c

)). (23)

EXAMPLE 3.3. Consider the motivating example. We assume knowl-
edge of real life spans and settc = ti = .9, f = .5. Table 5 shows the
computed probabilities of certain hidden states. Our modeldetects trans-
formation of copying betweenS3 andS1 and that betweenS3 andS2; in

Table 5: Probabilities of hidden states for Example 2.1.Year State 01 02 03 04 05 06 07 08 09
Copy .15 .62 .35 .37 .4 1 .39 .34 0S3 → S1 Idle 0 .02 .33 .37 .41 0 .35 .29 .52
Copy 1 .82 .37 .32 .28 0 .22 .2 0S3 → S2 Idle 0 .1 .32 .26 .2 .37 .18 .15 .29
Copy - - 1 .43 .2 .43 1 .39 .12S5 → S3 Idle - - 0 .51 .89 .51 0 .35 .52
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Figure 5: Hidden states and transitions in the timespan HMM model.

addition, our model discovers thatS5 is a copier ofS3, despite the inde-
pendent updates in 2005. �

3.3 Considering time span
Once a source remains as a copier, it copies sooner or later. Typ-

ically, the longer it has not copied yet, the more likely that it copies
next. It is also possible that a copier copies periodically: it makes
independent updates for a period of time and then copies the recent
updates by the original source.

To capture these intuitions, we need to reason about the time pe-
riod that a copier has been independently updating; however, first-
order Markov, where the probability of falling in a hidden state only
relies on the state at the previous time, cannot capture this naturally.
As we only care about the time period of stateC1¬c andC2¬c, we
stick to first-order Markov, which is easy for learning and inference,
and revise our HMM model by dividing stateC1¬c (similar for
C2¬c) into a set of statesC11

¬c, C12
¬c, . . . , C1q

¬c, whereq is the
number of observations within which a copier typically will con-
duct at least one copying (we discuss how to setq soon). Among
C11

¬c, C12
¬c, . . . , C1q

¬c, C1c can transit only to stateC11
¬c; for

eachi ∈ [1, q), C1i
¬c can transit either toC1i+1

¬c or to C1c; fi-
nally, C1q

¬c can transit to itself or toC1c. Essentially, for a state
C1i

¬c, i acts as a timer to count for how longS1 has not copied yet.
Note that this model is more meaningful when the lengths of time
between consecutive observations are similar.

Figure 5 shows the revised HMM model, wheref(i), i ∈ [1, q],
is the transition probability fromC1i

¬c to C1c and f(0) is this
probability whenS1 is in stateC1c and remains as a copier (with
probability tc). There are various ways to definef(i) and we here
give a few examples.

• If we set them all as the same, the model is reduced to the
basic HMM model (Figure 3).

• According to the intuition that the longer a copier has not
copied, the more likely that it will copy next, we can use an
attenuation function such as

f(i) =
i + f

i + 1
, f ∈ (0, 1). (24)

Sof(0) = f andf(q) → 1. We can setq as the minimumi

such thatf(i) > 1 − θ, whereθ is a number close to 0.

• To model periodical copying where the copier copies once
everyk observations, we can setq = k, f(i) = θ for every
i ∈ [0, k) andf(i) = 1 − θ for i = k.
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Figure 6: Possibilities of the next update,U(S).

Finally, we can learnf(i) by Baul-Welchlearning. As different
sources can have different copying patterns, this learning islocal
and is performed foreachpair of sources, different from theglobal
learning of other parameters.

4. DISCOVERING LIFE SPAN OF OBJECTS
We now present a Bayesian model that decides life span of an

object. We start by considering a set of independent sources (Sec-
tion 4.1), then extend our model by considering copiers (Section 4.2),
and finally present the complete algorithm (Section 4.3).

4.1 Deciding life span
Consider an objectO ∈ O. To discover its life span, we need

to decide both time and value of each transition. We proceed it-
eratively: we first decide the value ofO at timet0, then find the
most likely time point and value forO’s next transition, and repeat
this process until we decide there is no more transition. Note that
the transition points we decide have to be some observation points;
in presence of precise time stamp of updates, we can extend our
algorithm for more fine-grained results.

Deciding the initial value We denote byΨ our observation of
which value each sourceS ∈ S initially provides forO. LetV(O)
be the domain ofO. Then, our goal is to findv ∈ V(O) that max-
imizesP (v|Ψ). According to the Bayes rule, we just need to find
thev that maximizesP (Ψ|v).

First, supposev 6= ⊥. Consider a sourceS ∈ S. There are three
cases for the initial value it provides forO:

• S provides the correct value, with probabilityE(S)C(S)
(we ignore freshness as the first observation contains updates
accumulated over time);

• S does not provide a value forO, with probability
E(S)(1 − C(S));

• S provides a wrong value, with probability1−E(S)
m

.

We denote bȳS(v) the set of sources providingv onO initially and
by S̄(∅) the set of sources not providing any value onO initially.
Assuming independence of sources, we have

P (Ψ|v) = ΠS∈S̄(v)E(S)C(S) · ΠS∈S̄(∅)E(S)(1 − C(S))

·ΠS∈S−S̄(v)−S̄(∅)

1 − E(S)

m
. (25)

With similar analysis, whenv = ⊥, we have

P (Ψ|⊥) = ΠS∈S̄(∅)E(S) · ΠS∈S−S̄(∅)

1 − E(S)

m
. (26)

We can thus decide the initial value ofO accordingly.

Deciding the next transitionDeciding the next transition is harder
than deciding the initial value, as we need to consider an additional
dimension–the time. Essentially, we solve the following problem.
Given the last transitionT ′(O) = (tr′, v′) we have discovered on
O, decide the next transitionT (O) = (tr, v), v ∈ V(O), v 6=

v′, tr > tr′ (T ′(O) andT (O) can happen within the same obser-
vation period). We start from a simple case, where for each source
S ∈ S, there is an update at timetu′ ∈ [tr′, tr) corresponding
to T ′(O) (we describe other possibilities shortly). We denoteS’s
next update byU(S) and the observation ofU(S) for eachS ∈ S
by Φ. According to the Bayes rule, we need to findv andtr that
maximizesP (Φ|T (O) = (tr, v)).

SupposeT (O) = (tr, v) exists. There are then three possibili-
ties forU(S).

Case I.S captures the transition by updating the value ofO to vc

at time [tr, tn] (recall thattn is the last observation point inT)
(Figure 6(a)). The probability of not making an error and capturing
the transition isE(S)C(S), and the probability of capturing it at
a particular point is decided by the freshness function. Thus, (we
assumeF (S, ∆) = 0 when∆ < 0)

P
“

U(S) = (tu, v), tu ∈ [tr, tn]|T (O) = (tr, v)
”

= E(S)C(S)

Z tu−tr

tu−1−tr

F (S, t)dt. (27)

Case II.S misses the transition by not updating at[tr, tn] (Fig-
ure 6(b)). The probability of not making an error but not capturing
the transition either is then

P
“

U(S)|T (O) = (tr, v)
”

= E(S) (1 − C(S)F (S, tn − tr)) . (28)

Case III.S makes an error either by updating to a different value
(Figure 6(c)). or by updating beforetr (Figure 6(d)). The proba-
bility of making an error is1 − E(S). The error can be made at
any time between(tu′ , tn], so the probability of observing an error
at each pointtu is tu−tu−1

tn−tu′

. Among all values inV(O), the prob-

ability of providing a particular wrong value is approximately1
m

.
So we have

P
“

U(S) = (tu, vu), tu ∈ (tu′ , tr) ∨ vu 6= v|T (O) = (tr, v)
”

=
(1 − E(S))(tu − tu−1)

m(tn − tu′ )
. (29)

As we assume independence of sources, we can compute
P (Φ|T (O) = (tr, v)) as

P
“

Φ|T (O) = (tr, v)
”

= ΠS∈SP (U(S)|T (O) = (tr, v)). (30)

We apply similar analysis in case there does not exist any more
transition afterT ′, denoted byT (O). We have

P (U(S)|T (O)) = E(S); (31)

P
“

U(S) = (tu, vu), tu > tu′ |T (O)
”

=
(1 − E(S))(tu − tu−1)

m(tn − tu′ )
.(32)

We can thus choose the pair oftr andv with the maximum value
of P (Φ|T (O) = (tr, v)) as the next transition, or terminates when
P (Φ|T (O)) has the maximum value.

This Bayesian model has the following properties, conforming
to the intuition that the more sources update the value ofO to v in
a close time frame, the more likely that the transition involves value
v and happens before their updates.

PROPOSITION 4.1. Let S be a source andT (O) be a transi-
tion. AmongF (S, 0) and F (S, ti) − F (S, ti−1), i ∈ [1, n], let
Fmax(S) be the maximum one andFmin(S) be the minimum one.
ConsiderΨ1, Ψ2, Ψ3, which differ only in thatU(S) conforms to
T (O), does not exist, or does not conform toT (O), respectively.
Then,

• If C(S) > 1
F (S,0)+Fmax(S)

, P (T (O)|Ψ1) > P (T (O)|Ψ2);

• If E(S) > 1
1+mC(S)Fmin(S)

, P (T (O)|Ψ1) > P (T (O)|Ψ3);
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Figure 7: Possibilities of update(s) for the previous transitionT ′(O).
• If E(S) > 1

1+m(1−C(S))
, P (T (O)|Ψ2) > P (T (O)|Ψ3). �

PROOF. This can easily verified by comparing Equations (27-
29).

Finally, note thatU(S) is defined as the update after the up-
date corresponding toT ′(O), denoted byU ′(S). Intuitively,U ′(S)
should be an update that changes the value ofO to v′ in [tr′, tr).
However, there can be three cases: (1) there is one and only one
such update (Figure 6), so we consider it asU ′(S); (2) there is
no such update (Figure 7(a)), so we considerU ′(S) not existing,
U(S) as the first update aftertr′, andtu = tr′; (3) there are mul-
tiple such updates (Figure 7(b)). The third case is especially tricky
because some of the updates may fix previous errors (so correspond
to T ′(O)) and some may respond to later transitions. We conduct
a simple voting on the value of each moment sincetr′, and find the
first point when the value ofO changes fromv′ to another value.
Accordingly, we consider updates tov′ before this point as corre-
sponding toT ′(O) and choose the last one asU ′(S).

4.2 Considering copiers
We next consider the case where some sources can copy from

others. We first need to decide the probability that an updateU is
independent. At each observation pointt, for each pair of sources
S1 andS2, we can compute the probability thatS1 is actively copy-
ing from S2, denoted byP (S1 → S2, t). We considerS1 being a
copier ofS2 at t if the probability of stateI at t is less than .5 and
the probability ofS1 being a copier (P (C1c)+P (C1¬c)) is larger
than that forS2. Given an updateU at time t, we consider the

probability ofU being copied fromS2, denoted byP (S1
U
→S2), as

P (S1 → S2, t) if (1) S1 is a copier ofS2 at t, (2) S2 provides the
same value forO at t, and (3)S2 makes that update no later than
U , and as 0 otherwise. We assume copying between sources are
independent; thus, the probability ofS1 independently making an
updateU is

P (U indep) = ΠS2∈S,S2 6=S1
(1 − P (S1

U
→S2)). (33)

When we computeP (Φ|T (O)), we revise Equation (30):

P (Φ|T (O)) = ΠS∈SP (U(S)|T (O))P (U(S) indep). (34)

Finally, we note that our copying discovery techniques cannot
avoid a transitive inference of loop copying among more than two
sources, and we can end up marking the same updates at the same
time by sources in the loop all as copied (with a probability). How-
ever, such coincidence is typically rare and can be ignored.

4.3 Putting them all together
Finally, we consider how we decide life span of each object given

updates by each source. In this process, we should take into con-
sideration copying between sources and CEF-measure of sources.
However, discovering source copying requires knowledge of life
span of each object and CEF-measure of each source, and comput-
ing CEF-measure requires knowledge of life spans of objects.

Our algorithm thus proceeds in an iterative fashion. In each
round, we first compute CEF-measure of each source (depending
only on life spans), then compute probability of copying between
sources, and finally (re)decide the life span of each object, until the
discovered life spans do not change. Note that in the first round
we do not know the life span yet; we initialize the CEF-measure of

L IFESPAN(S,O)
1 while life span changes && no oscillation of life spando
2 for eachS ∈ S do
3 Compute CEF-measure ofS; endfor
4 HMMD EPEN(S,O); //Decide copying between sources
5 for each updateU of a sourceS ∈ S do
6 ComputeP (U indep); endfor
7 for eachO ∈ O do
8 Decide life span ofO; endfor
9 endwhile

Figure 8: Algorithm L IFESPAN: decide copying between data sources
and life span of objects.
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Figure 9: Different types of delayed publishing.

each source to the same default value except setting the coverage
as the percentage of objects being covered by the source; and we
assume each update has .5 probability to be true when applying the
HMM model for copying detection.

Figure 8 shows the complete algorithm. Convergence of the al-
gorithm remains an open problem, but in our experiments we ob-
serve that when the total number of transitions is far more than the
number of sources, the algorithm converges quickly. Time com-
plexity of each round is shown as follows.

PROPOSITION 4.2. Let m be the number of values in the do-
main of an object, andu be the total number of updates by sources
in S. We denote by|X̄| the size of set̄X. Then, complexity of one
round in AlgorithmL IFESPAN is O(|O| · |S|2 · |T|+ m · |O| · |S| ·
|T|2 + u · |S|). �

PROOF. Computing CEF-measure of each source takes timeO(|O|·
|T|), and in total takes timeO(|O| · |S| · |T|).

Deciding dependence for each pair of sources takes timeO(|O| ·
|T|), and in total takes timeO(|O| · |S|2 · |T|).

Deciding independence probability for each update takes time
O(|S|), and in total takes timeO(u · |S|).

Finally, deciding lifespan of each object takes timeO(m · |S| ·
|T|2), and in total takes timeO(m · |O| · |S| · |T|2).

We thus have the complexity bound.

EXAMPLE 4.3. Consider Example 2.1. Table 6 shows the life
span discovered forHalevy. The algorithm converges in four rounds.
The CEF ofS1 converges at a high coverage and exactness, whereas
that ofS2 converges at a low coverage and exactness. �

5. CONSIDERING DELAYED PUBLISHING
Previous sections assume instant publishing. In this section we

considerdelayed publishing, where a source can publish an update
later than the change is observed (from the real world or from other
sources). Delayed publishing can happen when a weekly newspa-
per publishes news collected through the whole week, when a web
portal publishes data crawled in a period of time in a batch mode,
when we observe only a subset of sources each time, and so on. We
assumedump publishing, where a source publishes all data it has
collected since the last publishing. This is common in practice and
our techniques can be easily extended to the case where a source



Table 6: Discovered life span forHalevy and computed CEF-measure forS1 and S2 in Example 2.1.
Round Life span forHalevy S1.C S1.E S1.F(0) S1.F(1) S2.C S2.E S2.F(0) S2.F(1)

0 .99 .95 .1 .2 .99 .95 .1 .2
1 (2000, Wisc), (2002, UW), (2003, Google) .97 .94 .27 .4 .57 .83 .17 .3
2 (2000, UW), (2002, Google) .92 .99 .27 .4 .64 .8 .18 .27
3 (2000, UW), (2005, Google) .92 .99 .27 .4 .64 .8 .25 .42

publishes only a subset of collected data each time, but do so in an
ordered manner.

In dump publishing, an update decision can be made at any point
between two consecutive publishings; we revise our models ac-
cordingly to consider all possibilities.

CEF-measureFor instant publishing, we decide if a slice is cap-
tured or mis-captured by comparing the update at the end of the
slice (if any) with the real value of that slice. In case of delayed
publishing, if a sliceL ends with an updateU , but the previous
publishing happens before the beginning ofL, thenU may actually
tend to capture the value ofL’s previous slices. As an example, in
Figure 9, the update(O1, a

′) at tu is to capture the value of slice
L2, notL3.

Formally, consider sourceS and objectO. Let L1, . . . , Lk,

k > 1, be a set of consecutive slices forS andO, such thatLk ends
with an updateU on O, and the previous publishingPub happens
in sliceL1. Let l1 be the difference between the time of publishing
Pub and the end of sliceL1, and letli, i ∈ [2, k], be the length of
Li. Then, with probabilitypi = li

P

k
j=1

lj
, i ∈ [1, k], U is collected

(though not published) in sliceLi. Accordingly,Li is captured by
U with probabilitypi if U provides the real value ofLi, and mis-
captured with probabilitypi otherwise. We then computec(S, O)
andm(S, O) by summing up the corresponding probabilities. Sim-
ilarly, when we compute freshness, if a sliceLi, i ∈ [1, k], is cap-
tured, we consider equal likelihood of the update being captured at
any time inLi.

Life span Deciding the next transitionT (O) relies on computing
the conditional probability ofU(S) = (tu, vu). AssumeS pre-
viously publishes at timetpre, pre ∈ [0, u). Then the update is
published attu once the source decides to make the update at some
time in (tpre, tu], so we should take the sum of the probabilities:

P
“

U(S, T ) = (tu, vu)|T (O)
”

=
u

X

i=pre+1

P
“

U(S) = (ti, vu)|T (O)
”

.

(35)

Copying When deciding source copying, it is critical to compute
the probability of a source independently making an update at a par-
ticular time,P (U, S1, tu|S1 6→ S2). In case of delayed publishing,
an update decision actually can be made at any time after the pre-
vious publishingtpre; the probability of the decision at a particular
observation point is proportional to the length of that observation
period. We thus take the weighted average of the probabilities (note
the difference from computingP

`

U(S) = (tu, vu)|T (O)
´

):

P (U, S1, tu|S1 6→ S2) =

u
X

i=pre+1

P (U, S1, ti|S1 6→ S2) ·
ti − ti−1

tu − tpre

.

(36)
In addition, when we decide the independence probability of an

updateU by S1, we consider thatU is possibly copied fromS2 if
the updated value is the same as a value once provided byS2 since
the last publishing ofS1.

6. EXPERIMENTAL RESULTS
This section presents experimental results on life-span discovery

and copying detection. We first present results on a real-world data
set (Sec. 6.2), showing that the problems we address in this paper

are real issues in the world, and our methods can improve quality
of the integrated data. Since in most cases we have no means to
check the actual copying relationship and the precise life span of
objects in the real world, we also experimented on synthetic data.
We first present results on a data set that mimic complexity in the
real world, examining contribution of different components to our
algorithms (Sec. 6.3.2). We then consider a harder case, where we
care about only existence of sources so variety of update traces by
different sources significantly reduces. We examine performance
and robustness of our models on life-span discovery (Sec. 6.3.3)
and copying detection (Sec. 6.3.4).

6.1 Experiment setup
We consider a set of data sources and objects as described in

Sec. 2 and refer to them as auniverse. We refer to the special case
where each object has only two possible values, existing and non-
existing (⊥), asbinary universe. Our goals are to decide life span
of objects and copying between sources in a given universe.

For life-span discovery, our algorithm has three main compo-
nents:copy–considering copying between sources,CEF–considering
CEF-measure of sources, anddelay–considering publish delay. We
implemented several variants by combining different components.

• NAIVE : For each object, vote for its value at each observa-
tion point.

• SIMPLE: First apply NAIVE and then decide transition points
iteratively: for each pointt where the voted value changes to
a new valuev, find the earliest point since the last transition
when a source providesv and does not update until pointt.

• COPY: The same as SIMPLE except considering copying in
voting (Eq. (33)).

• CEF: Consider CEF-measure (Eq. (25-32)).
• CEFDELAY : CEF+delay(Eq. (35)).
• COPYCEF:copy+CEF. (Algorithm LIFESPAN).
• COPYCEFDELAY : copy+CEF+delay(Eq. (35-36)).

For copying discovery, we compared static models (INIT, CURR,
TRACE), various HMM models (HMM5, HMMN, HMM3), and
HMM with consideration of publish delay:

• INIT /CURR: Consider only initial or latest values.
• TRACE: ComputeΩ1 andΩ2 for each observation point and

reason over the accumulated results (Eq. (16-18)).
• HMM3: An HMM model with three statesI, C1c, andC2c,

the same transition probabilities as Figure 3 except thataI,I =
ti − f, aI,C1c = aI,C2c = 1−ti+f

2
, aC1c,I = aC2c,I =

(1 − tc)ti + tc(1 − f).
• HMM5: The basic HMM model with 5 states (Fig. 3).
• HMM N: The timespan HMM model (Fig. 5) withf(i) =

i+f

i+1
, q = 5.

• HMMD ELAY : HMM5 with publish delay (Eq. (36)).

By default, we computed weighted CEF-measure and applied
HMM5 in life-span discovery. Initially we setα = f = .5, ti =
tc = 0.99, s = .8, m = 100 when apply, but may applyBaul-
Welchlearning to learn the parameters in some experiments.



Table 7: Discovered ever-existing restaurants (#Rest) and closing
restaurants in Manhattan.

Method #Rest Prec Rec F-msr #Rnds Time(s)
ALL - .54 1 .7 - -
ALL 2 - .82 .31 .45 - -
NAIVE 1100 .62 .92 .74 1 151
CEF 5056 .73 .85 .78 5 537

COPYCEF 5080 .76 .85 .8 5 1118
GOOGLE - .77 .15 .24 - -

We measure lifespan-discovery results byedit distance,defined
as the Levenshtein distance between decided life-span periods and
real periods, where insertion or deletion of a period is penalized
by the length of the period, and substitution of a period with the
same value is penalized by the difference of the beginning points.
Ideally, the edit distance should be 0. We describe how we measure
copying-detection results in Sec. 6.3.4.

We implemented our models in Java and conducted experiments
on a WindowsXP machine with AMD Athlon(tm) 64 2GHz CPU
and 960MB memory.

6.2 Experiments on real-world data
We randomly selected 12 web sources (listed in Table 1 at the be-

ginning of this paper;F (0) is shown as freshness for each source)
that provide information on restaurants in Manhattan. We crawled
their data from 1/22/2009 to 3/12/2009, once every week, so 8
times in total. For each restaurant listing, we collected name, phone
number, address, direction, neighborhood, and price range when-
ever possible. We identified restaurants by their names and con-
sidered only restaurants that are mentioned by at least two data
sources. In total there are 5149 such restaurants; among them, 5113
appeared in our first crawling, and 5131 appeared in our last crawl-
ing. In these two months, we did not notice many changes on at-
tribute values such as phone and address, thus focused on existence
of restaurants (so a binary universe).

We considered two cases as deletion of a restaurant from a source:
the source explicitly marks the restaurant as “(CLOSED)”, or the
source implicitly removes the restaurant from its list. We consid-
ered the set of restaurants that a source provided once but deleted
later. There are 463 such restaurants. For each of them, we called
its phone number to verify if it is still open and used it as the golden
standard; we found that 248 of them are indeed closed4. We ran
various algorithms to decide life span (existence periods) of each
restaurants, and reportedprecision, recall,andF-measure, denoted
respectively asP, R, F1, of our results. Formally, among the 463
restaurants, we definēG as the set of restaurants that areclosed
in the golden standard and̄R as the set of restaurants that our al-
gorithm decided as closed. Then,P = |Ḡ∩R̄|

|R̄|
, R = |Ḡ∩R̄|

|Ḡ|
, and

F1 = 2PR
P+R

. In addition, we searched each of the restaurants on
Google Maps and reported the three measures as well.

Table 7 shows results of various methods5. We observed as fol-
lows. (1) COPYCEF and CEF obtain high precision and recall.
Between them, COPYCEF obtains higher precision and discovers
more restaurants that have ever existed by considering copying. (2)
NAIVE seems to have a high F-measure; however, as most restau-
rants are often mentioned by a few sources, it concludes that only
1100 out of 5149 restaurants have ever existed. (3) Considering all
of the 463 restaurants as closed (referred to as ALL ) has low preci-
sion (.54), while considering only restaurants that are removed by

4Some of the 248 restaurants were closed before 1/22/2009 and were al-
ready marked “(CLOSED)” by some sources on 1/22/2009.
5We skip results of COPYCEFDELAY as almost all sources update every
week, and skip results of SIMPLE and COPY, which are similar to NAIVE .

Table 8: Source-generation parameters and their settings.
Parameter pt pf f0 fu nsu osu au

Default .75 .99 .1 .5 .8 .2 .075
Range 0-1 .95-1 .1-1 .1-1 .1-1 .2 0-.15

at least two sources as closed (referred to as ALL 2) has low recall
(.31). Finally, we observed that Google Maps lists many out-of-
business restaurants, reflecting staleness of data on the web.

We observed that COPYCEF and CEF both converged at the 5th
round and took 18.6 and 8.95 minutes respectively. Since life-span
discovery is a one-time process, the execution time is acceptable.

Among the 66 pairs of sources, we detected copying relation-
ship between 14 pairs (Figure 1). Among the sources, it is more
likely that FoodBuzzandVillageVoiceare copiers andMenuPages
andTimeOutare being copied. Although we do not know the real
copying relationship between sources, we have the following ev-
idence to support some of our results. First,FoodBuzzand Vil-
lageVoiceeach formats addresses of different restaurants in very
different ways, so may copy them from various sources; in addi-
tion, FoodBuzzinserted restaurants even after the restaurants were
closed, so possibly copied the data. Second,MenuPageshas been
on the web for the longest time among the 12 sources and has the
highest coverage (.66), so is possible to be copied by other sources.

6.3 Experiments on synthetic data
We next describe how we generated the synthetic data and re-

ported experimental results.

6.3.1 Synthetic data
Objects: A universe contains 100 objects. In a multi-valued uni-
verse, the domain for each object contains 102 values (including
⊥). We have 20 periodical observations att0, . . . , t19. A universe
can be eithersingle-periodor multi-period: in the former an ob-
ject exists att0 with probabilitypi = .5 and att19 with probability
pe = .3, but does not change value during existence; in the latter an
object exists att0 with probabilitypi = .5, transits at each obser-
vation point with probabilitypc = .1, and once transits, disappears
with probabilitype = .1 or changes to another random value oth-
erwise. We note that results with more objects, more observations,
or larger domains are similar.

Sources:According to different types of data sources, we classify
a universe into three categories.

• Independence universecontains 10 independent sources.

• Copier universecontains 10 independent sources and 9 copiers,
all copying from the same independent source.

• Random universecontains 10 independent sources and a num-
ber of copiers. Each copier copies from a randomly selected
source, either independent or being a copier as well, but there
is no loop copying.

For each independent sourceS and objectO, ateachobservation
pointS updates the value ofO to a random false value with proba-
bility pf , and updates to the true value with probabilitypt · f(∆),
where∆ is the difference between the observation and the tran-
sition of that true value. We definef(∆) = f0 · 2∆ when0 6

∆ 6 − log f0, andf(∆) = 1 when∆ > − log f0, 0 < f0 6 1.
Note that althoughpt, pf andf are related to the CEF-measure, the
definitions are not exactly the same and we chose to do so to test
robustness of our model. Table 8 shows how we set the parameters.
For therandom universe, we randomizept, pf , f0 by Gaussian dis-
tribution with mean.75, .95, .1 respectively.



Figure 10: Life-span discovery for the random universe. COPY-
CEFDELAY always obtains the best results.

For each copierC and its original sourceS, at each observa-
tion point, C copies fromS with probability fu. For thecopier
universe, whenC copies, with probabilitynsu it copies a value
provided byS since last copying and with probabilityosu it copies
a value provided byS earlier. For each object on which it does
not copy, with probabilityau it independently provides the true
value; Table 8 shows setting of these parameters. For therandom
universe, we randomizefu, nsu, au by Gaussian distribution with
mean.5, .8, .1 respectively; when a copier does not copy on a par-
ticular object, it examines the object with probabilityau and pro-
vides a value according topt, pf andf .

By default we consider instant publishing and no transformation
between being a copier and being independent; though, we consider
different settings in some experiments. In therandom universe, half
initial independent sources and half initial copiers can transform
between being independent and being a copier, and the probability
of transformation at each observation point is .1. Once a source
transforms to a copier, it can chooses a source it has not copied
from before. Among each kind of sources, half sources publish
instantly and half can delay publishing.

For each setting, we ran the experiments 10 times and reported
the average measure.

6.3.2 Results for multi-valued universe
Fig. 10 shows results of various methods for therandom uni-

verse, which tries to mimic the complexity of the real world. We
considered both single-period life span and multi-period life span
and have several observations. (1) COPYCEFDELAY obtains the
best results in most cases: when there are 80 copiers, it reduces
the edit distance by 51% compared with SIMPLE and by 69% com-
pared with NAIVE in the multi-period case. (2) COPYCEF obtains
slightly worse results, but performs better than other methods. (3)
CEF and COPY have similar results and improve over SIMPLE.
Note that in case of multi-period life spans, the improvement by
CEF is slight, as the length of each period tends to be short and the
CEF-measure may not be computed accurately.

We next test robustness of our model on various settings of pa-
rameters for universe generation. We describe our results on the
binary universe, which forms a harder case, but observed similar
trend on multi-valued universe as well.

6.3.3 Life-span discovery for binary universe
Quality of sources: First, we compared various methods on the
copier universewhen we varied quality of the independent sources
(Fig. 116). We make the following observations. (1) CEF obtains
better results than NAIVE and SIMPLE in all different settings. (2)
COPY obtains similar, but sometimes even worse results than SIM -
PLE, showing that considering copying in itself is not enough in bi-
nary universe. Once we consider both copying and CEF-measure,
the results are significantly improved: whenpf = .01, f0 = .1, on
6We observed similar trends whenpf is higher, but higher edit dis-
tance for each method.

Figure 11: Life-span discovery for copier universe with instant pub-
lishing. COPYCEFalways obtains the best results whileCOPYCEFDE-
LAY obtains slightly worse results.

average COPYCEF reduces the edit distance by 27.8% over SIM -
PLE and by 18.3% over CEF. (3) CEFDELAY and COPYCEFDE-
LAY obtain slightly worse results than CEF and COPYCEF respec-
tively, showing that considering publish delay in case of instant
publishing does lose information, but only slightly. (4) Typically,
COPYCEF obtains better results with higher CEF-measure (lower
pf , higherpt or f0). The only exception is when the CEF-measures
are all very high, so all sources are highly similar and COPYCEF
can wrongly identify an independent source as a copier.

We observed similar trends on theindependence universe, ex-
cept that COPYCEF and CEF obtain similar results, showing no
negative effect in considering copying when there is no copiers.

Quality of original source: We varied quality of the source that is
copied while applied the default parameters for other independent
sources. Fig. 12 shows difference of the edit distance when all
independent sources have the same quality and that when the source
being copied has different quality. We observe that the difference
for COPYCEF is very low, and much lower than that of CEF; for
example, whenpf increases from .01 to .05 andpt decreases from
.75 to .1, the edit distance of the results increases only by .28, while
the difference for CEF is 1.36. Thus, COPYCEF is insensitive to
quality of the sources that are copied.

Multi-period life spans: We constructed multi-period life spans
in two ways: (1) randomly generate multiple periods observing
pi = .5, pc = .3; (2) randomly choose the first existence point
in [0, l− 1], and generate life span with periods of lengthl. Fig. 13
shows the results of COPY, CEF and COPYCEF. We observe that
COPYCEF obtains the best results in most cases. For all models,
the edit distance significantly decreases when the average length
of the periods increases; the edit distance remains stable once the
length reaches 10, as beyond this point the average length of ex-
isting and non-existing periods remains as 10. Thus, COPYCEF
performs better when life-span periods are longer.

Publish delay: We constructed sources with delayed publishing in
two ways: (1) each source publishes at the beginning and then pub-
lishes at a particular observation point with probability .5, (2) each
source publishes at the beginning, randomly chooses the second
publish point in[1, d], and then publishes after everyd observa-
tions. Fig. 14 shows the results. COPYCEFDELAY obtains the best
results when there exists publish delay: edit distance of its results
remains stable asd increases; on average it improves over COPY-
CEF by 26% in presence of delayed publishing; and in general,
the higher the publish delay, the larger improvement. Thus, COPY-
CEFDELAY handles publish delay well.

6.3.4 Copying detection for binary universe
We next compare different models for copying detection.

Overtime copier We start with the case when a copier does not
transform to be independent. We measure discovered copying by



Figure 12: COPYCEF is robust to quality of
the source being copied.

Figure 13: COPYCEF obtains better results
with longer-period life spans.

Figure 14: COPYCEFDELAY is robust to pub-
lish delay.

Figure 15: Copying detection ofHMM5.

(a)
 (b)


Figure 16: HMM N obtains the highest F-measure among various copying detection models.

precision, recall and F-measure. LetḠ be the set of ordered pairs
(S1, S2) whereS2 is a copier ofS1, andR̄ be such pairs returned
by our model. We compute the three measures as we described
earlier. Note that in thecopier universe, Ḡ contains only 10 pairs
but R̄ can potentially be much larger. To balancēG and R̄, we
divide the universe into sub-universes, each containing two copiers,
their original source, and another independent source, and take the
average over sub-universes.

We further examine accuracy of copying decision for the fol-
lowing categories: I. two independent sources, II. a copier vs. its
original source, III. a source vs. its copier, IV. two co-copiers, V.an
independent source vs. a copier of another source, and VI. a copier
of a source vs. another independent source. Note that accuracy of
Category II is the recall.

We start with analysis of HMM5. Fig. 15 shows its accuracy
on various categories of source pairs. We observe that (1) HMM5
is good at identifying copiers: in Category II, when the coverage
is above .2, we obtain an accuracy of above 95%; we can miss
copiers when the coverage is low because the copiers actually con-
duct more independent updates than copied updates, so are hard to
be distinguished from independent sources; (2) HMM5 achieves an
accuracy of nearly 1 for identifying sources that are independent of
each other (I, V, VI); (3) The only category for which we are not
doing very well is between co-copiers (IV), as they share similar
update patterns; however, the accuracy is still 88% on average.

We then compared various methods for copying detection: Fig. 16(a)
shows their F-measure and Fig. 16(b) shows their effect on results
of COPYCEF. We have several observations. First, considering
only a snapshot of data obtains very low precision and recall (on
average F1=.25 for CURR and F1=.16 for INIT). Second, TRACE
obtains a low precision and significantly worsen results of COPY-
CEF, especially whenft is high; this is because it accumulates a
lot of overlapped updates over time and so is likely to conclude
copying. Third, although we cannot compare HMM3 and HMM5
directly on F-measure of copying detection, we observe that the edit
distance of discovered life span using HMM3 is 6.7% larger than
HMM5, as HMM3 does not distinguish an independent source and

an idle copier (not copying). Finally, HMMN obtains the highest
F-measure in most cases by asserting that the longer a copier has
not copied, the more likely it should copy next, though, it does not
improve results of COPYCEF much.

Next, we compared HMM5 and HMMDELAY when there is
publish delay (Fig. 17). HMMDELAY indeed improves over HMM5
by 8.5% on recall, 4.3% on precision, and 6.5% on F-measure on
average; however, we did not observe obvious difference in life-
span discovery.

Finally, we examined whether our model is robust with respect
to different copy patterns by varying the selectivity of copying (su)
from .1 to 1, and changing the copy rate to 1. We observe similar
precision and show only recall. Fig. 18 shows that if we use the
default selectivity (.8) in our HMM model, we can obtain a low re-
call whensu is low (below .5). If we learn selectivity, the recall
increases from .63 to .84 on average; if we learn copy rate in ad-
dition, the recall increases further to .94 and is high for almost all
different values ofsu. The results show robustness of our HMM
model to different initial settings of parameters.

Copying transformation We considered transformation and gen-
erated copiers that are initially copiers or independent sources, and
then transform at a particular point. We compared the transforma-
tion points our model computes with the real ones; if the copier
does not transform, we consider that the transformation point is 20
(the number of observations). Fig. 19 shows the average transfor-
mation points that HMM5 computes. On average the difference
between real transformation points and those computed by HMM5
is small: 2 when the copiers are initially copying, and .44 when
they are initially independent.

Summary Our experimental results on synthetic data have the fol-
lowing implications:

1. Considering CEF-measure and copying both contribute to
improving quality of life-span discovery results.

2. Considering publish delay can significantly improve the re-
sults in presence of delay, and only slightly worsen the results
in absence of delay.



Figure 17: HMMD ELAY is not sensitive to
publish delay.

Figure 18: HMM5 w. learning is robust to ini-
tial parameter settings.

Figure 19: HMM5 is good at detecting trans-
formations of copiers.

3. The basic HMM model is accurate in detecting copying; the
lifespan HMM model improves the results only slightly, but
with higher cost.

4. Our model is robust to different characteristics of data and
initial HMM parameter settings.

7. RELATED WORK
There are three bodies of work related to our research:truth

discovery, copying detectionanddata freshness. Recent work on
truth discovery considers a snapshot of data. Bleiholder and Nau-
mann [2] surveyed existing strategies for resolving inconsistency
in structured or semi-structured data. Yin et al. [13] considers ac-
curacy of sources in truth discovery. We consider discovering the
whole life span of an object from history of source updates and we
use more fine-grained source-quality measures: coverage, exact-
ness, and freshness.

For copying detection, Berti-Equille et al. [1] recently sketched
several high-level intuitions, but did not give concrete algorithms.
Dong et al. [5] proposed detecting copying from a snapshot of data
by examining overlapping errors between sources; such a model,
however, can fall short in presence of large overlap of out-of-date
data. We consider update history of sources in copying detection
and decide in which period a source is a copier and at which par-
ticular moments it copies. We are not aware of any other work for
copying detection on relational data. In addition, we distinguish
our work fromdata provenance[3], which assumes knowledge of
provenance and focuses on management of such information.

Finally, existing work on data freshness [12, 8, 4, 9, 7, 10] de-
finesfreshnessas how stale the data in a materialized view are com-
pared with the original sources, and emphasize update propagation.
We have different focus and consider consistency of data with re-
spect to evolution of real-world objects over time. We note that
the notions ofcompleteness, consistency, andcurrencyin [7] are
analog to our CEF-measure, but in different contexts.

8. CONCLUSIONS
This paper considers how we can explore update history of sources

in improving quality of integrated data. We measure quality of
source data by coverage, exactness, and freshness. Based on these
measures, we developed an HMM model to decide whether a source
is a copier of another source and at which moment it copies. Then,
we developed a Bayesian model to decide life span of each ob-
ject, taking into consideration CEF-measure of sources, copying
between sources, and possible publish delay. Experimental results
on real-world and synthetic data show high accuracy and efficiency
of our models.

For future work, one direction is to apply our techniques in Web
2.0 applications to identify sources or users that are trustable. An-
other direction is to optimize query answering in a data integration

system with knowledge of quality of sources and dependence be-
tween sources.
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