Malleable-Schemas: A Preliminary Report

Xin Dong
University of Washington
Seattle, WA 98195

lunadong@cs.washington.edu

ABSTRACT

Large-scale information integration, and in particular, search
on the World Wide Web, is pushing the limits on the com-
bination of structured data and unstructured data. By its
very nature, as we combine a large number of information
sources, our ability to model the domain in a completely
structured way diminishes. We argue that in order to build
applications that combine structured and unstructured data,
there is a need for a new modeling tool. We consider the
question of modeling an application domain whose data may
be partially structured and partially unstructured. In par-
ticular, we are concerned with applications where the border
between the structured and unstructured parts of the data
is not well defined, not well known in advance, or may evolve
over time.

We propose the concept of malleable schemas as a mod-
eling tool that enables incorporating both structured and
unstructured data from the very beginning, and evolving
one’s model as it becomes more structured. A malleable
schema begins the same way as a traditional schema, but
at certain points gradually becomes vague, and we use key-
words to describe schema elements such as classes and prop-
erties. The important aspect of malleable schemas is that
a modeler can capture the important aspects of the domain
at modeling time without having to commit to a very strict
schema. The vague parts of the schema can later evolve to
have more structure, or can remain as such. Users can pose
queries in which references to schema elements can be im-
precise, and the query processor will consider closely related
schema elements as well.

1. INTRODUCTION

There has been significant interest recently in combining

*Merriam-Webster: Malleable — 1: capable of being ex-
tended or shaped by beating with a hammer or by the pres-
sure of rollers 2a: capable of being altered or controlled by
outside forces or influences b: having a capacity for adaptive
change

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

Alon Halevy
University of Washington
Seattle, WA 98195

alon@cs.washington.edu

techniques from data management and information retrieval
(as surveyed in [4]). The underlying reason is that knowl-
edge workers in enterprises are frequently required to ana-
lyze data that exist partially in structured databases and
partially in content management systems or other reposito-
ries of unstructured data. Similarly, the WWW is a repos-
itory of both structured and unstructured sources (web-
forms and webpages). To support the querying needs in
these applications we should be able to seamlessly query
both structured and unstructured data, and consider query
paradigms that involve both ranking answers and structure
based (SQL-like) conditions on query answers.

Previous work in this area focused on dealing with hy-
brid data after the fact. That is, it is assumed that we
already have some set of structured data and another set of
unstructured data, and the goal is to manage it and query
seamlessly.

This paper looks at the entire process of building an appli-
cation that involves both structured and unstructured data.
We ask the following basic question: how do we model data
for an application that will involve both structured and un-
structured data? In particular, we are concerned with the
case where the border between the structured and unstruc-
tured parts of the data is not well defined, and may evolve
over time.

When we start modeling a domain, we typically want
to model it as precisely as possible by defining its struc-
ture with a schema (or possibly a more expressive modeling
paradigm such as an ontology). However, in the process of
modeling we may realize the following. First, we may not be
able to give a precise model of the domain, either because
we don’t know what it is or because one does not exist. Sec-
ond, we may prefer not to model the domain in such level
of detail because an overly complex model may be a burden
on the users. Third, there are parts of the domain we may
want to leave unstructured for the time being.

To address these needs, we propose the concept of mal-
leable schemas as a modeling tool that enables incorporat-
ing both structured and unstructured data from the very
beginning, and evolving one’s model as it becomes more
structured. A malleable schema begins the same way as a
traditional schema, but at certain points gradually becomes
vague. The important aspect of malleable schemas is that
a modeler can capture the important aspects of the domain
at modeling time without having to commit to a very strict
schema. The vague parts of the schema can later evolve to
have more structure, or can remain as such. Users can pose
queries in which references to schema elements can be im-



Unstructured data
sources

A

Clean Schema
Malleable Schema

Structured data
sources

Figure 1: When someone is trying to create a
schema for a domain to integrate both structured
and unstructured data from a variety of data
sources, malleable schemas can help her capture the
important aspects of the domain at modeling time
without having to commit to a very strict schema.
The vague parts of the schema can later evolve to
have more structure, or can remain as such.

precise, and the query processor will consider closely related
schema elements as well. Figure 1 depicts the key idea of
malleable schemas.

The concept of malleable schemas evolved from several dif-
ferent applications we have been considering recently: (1) per-
sonal information management (PIM) [8], where we con-
stantly model both structured and unstructured data and
the model of the domain needs to be very easy to use, (2)
information integration on the web [3, 9, 18], where the di-
versity of information sources does not allow creating a sin-
gle mediated schema to which everything cleanly maps, and
(3) biomedical informatics [21], where our understanding of
the domain is constantly evolving from multiple different
views and sources.

Large-scale information integration remains one of the im-
portant challenges in web data management. By its very na-
ture, as we combine a large number of information sources,
our ability to model the domain in a completely structured
way diminishes. We argue that the marriage of structured
and unstructured data is crucial for building robust integra-
tion systems, and the modeling questions that arise are key
to the success of such systems. This paper presents our ini-
tial work on malleable schemas. We motivate the concept
with examples, present an initial formal model, and discuss
the implementation challenges.

Related wor k

There has been a significant body of work on supporting
keyword search in databases [15, 1, 16], result ranking [2,
13, 12], and approximate queries [20, 23, 10, 11, 5]. They
all assume that the model of the data is precise, but we want
to add flexibility in the queries. In contrast, our goal is to
allow the model itself to be imprecise in certain ways. Prob-
abilistic databases [24, 7] (and formalisms such as Bayesian
Networks) allow imprecision about facts in the database, but
the model of the domain is still a precise one.

The work closest to ours is the XXL Query Engine [22],
where the queries allow for imprecise references to schema
elements. The idea there is that the user will query a large

collection of XML DTDs, and there is no unifying DTD for
all of them. Malleable schemas, in contrast, offer a mid-
dle point between a collection of schemas/DTDs (or a cor-
pus [19]) in a domain and a single crisp schema for that
domain. The idea of a malleable schema is that someone is
trying to create a schema for the domain, but in the process
of doing so needs to introduce (possibly temporarily) some
imprecision into the model. We expect to leverage some of
the techniques in [22; 23] in our query processing engine.

Outline: We first present motivating examples for mal-
leable schemas. Section 3 defines a bare-bones formalism
that includes malleable classes and properties, and describes
the semantics of querying. Section 4 describes several exten-
sions to the basic model, and Section 5 discusses implemen-
tation issues. Section 6 concludes.

2. MOTIVATING EXAMPLES

We present two motivating examples for malleable schemas
taken from our application domains: information integration
on the web and personal information management. The in-
tuition underlying malleable schemas is the following. A
traditional schema is a very structured specification of the
domain of interest. It assumes that you know the structure
that you’re trying to capture and that it can be specified.
Malleable schemas are meant for contexts in which one or
more of the following hold:

e There is no obvious structure for the domain, and
therefore our model of the domain needs to be vague
at certain places.

e The structure of the domain is not completely known
at modeling time, and may become clearer as the ap-
plication evolves and the user needs clarify.

e The structure is inherently evolving over time because
the domain is extremely complicated and itself the
subject of study (e.g, biomedical informatics). Con-
sequently, by nature there will always be parts of the
domain that are not precisely modeled.

e A complete structure of the domain would be too com-
plicated for a user to interact with. For example, try-
ing to model every detail of items found on one’s desk-
top in a PIM system would be too overwhelming for a
typical user, and maintaining the model would also be
impractical.

e The borders between the structured and unstructured
parts of the data are fuzzy, and therefore the model-
ing paradigm needs to support smoother transitions
between the two parts.

The idea of malleable schemas is the following. A modeler
starts out creating a schema of a domain intending to cap-
ture the domain as precisely as possible. However, at certain
points in the modeling process, the schema can become less
precise. Malleable schemas provide a mechanism by which
the modeler can capture the imprecise aspects of the domain
during the modeling phase in a well principled fashion. Mal-
leable schemas allow the modeler to capture these aspects
using keywords, but tell the system that these keywords are
meant to capture elements of the schema, rather than being
arbitrary keyword fields.

In the discussion below we assume a very simple data
model: our domain is comprised of objects (with ID’s). Ob-
jects have properties — we distinguish between relationships



that relate pairs of objects and attributes that relate objects
with ground values. Objects are members of classes that can
form a hierarchy. We assume objects can belong to multiple
classes.

Ezample 1. Consider building an information integration
system for web sources, whose goal is to answer queries from
multiple databases available on the web (e.g., querying mul-
tiple real-estate sites).

You begin modeling the domain by trying to capture the
salient aspects of real-estate that appear in the sources, and
such that you’ll be able to pose meaningful queries on as
many sites as possible. As an example, you create the class
RealEstate, intended to denote real-estate objects for sale
or rental. In an ideal world (which seems likely when you
start building the application), there would be some obvi-
ous sub-classes of RealEstate (such as houses, condo’s) that
you would incorporate into the model. However, after in-
specting several sites you realize that there are many more
sub-classes, and the relationship between them is not clear.
Furthermore, different sites organize real-estate objects in
varying ways, and the concepts used in one place overlap but
don’t correspond directly with concepts used elsewhere. For
example, you may encounter vacation rentals, short-term
rental and sublets. As a consequence, you cannot create a
model of real-estate such that there would be a clean map-
ping between your categories and those used in the sources.
In short, there is no single way of identifying all the sub-
classes of RealEstate.

What you would like to do now is to create a set of sub-
classes, each described by words or a phrase (typically found
as menu items on a real-estate search form on the web). The
subclasses will not necessarily be disjoint from each other;
in fact, there may be overlaps between the classes. Later on
in the life of the application, after having seen many real-
estate listings and user queries, you may decide to impose
more structure on the subclasses of RealEstate.

In principle, you could do this by creating a property for
the class RealEstate called RealEstateType, and have key-
words or phrases be the content of that property. However,
while doing so could be a way of implementing malleable
schemas (see Section 5), it has several disadvantages from
the modeling perspective because the system does not know
that these keywords are identifying subclasses of RealEstate.
Specifically, (1) you would like to refer to these subclasses
in queries in the same way as you refer to other sub-classes,
(2) later on you would like to evolve the schema (possibly
with the help of the system) to create a more crisp class hi-
erarchy, and (3) you may want to create subclasses for these
classes as well. Hence, in a sense, you want to create a new
keyword property, but you want the system to know that it
is identifying subclasses of an existing class.

This type of example is extremely common in information
integration applications that involve many independently
developed sources. By nature these domains are complicated
and there is no obvious single way to model them. Differ-
ent categorizations arise because site builders have different
views of the world, and often because of natural geographical
differences. In addition, large-scale information integration
fundamentally pushes on the limits being able to model a
domain with a single structured representation. O

Ezample 2. The following example illustrates that the same

idea can be applied to properties in the schema. Consider

the domain of personal information management, where the
goal is to offer users a logical view of the information on
their desktops [8]. (Note that in practice this logical view is
created automatically without any investment by the user).

Suppose you are creating a schema for information that
people store on their desktops. You create a class called
Project, and a property called Participant. But soon you re-
alize that not all participants are equal, and you have various
kinds of participation modes. For example, you may have
a programmer on the project, a member in the initial plan-
ning phases, advice-giver, etc. You cannot anticipate all the
possible participation modes nor classify them very crisply.
Hence, you would like to create sub-properties of Participant
so you can at least capture some of the information about
the types of participation, and have these sub-properties de-
scribed by keywords. Note that in this example, even if you
could create a clear description of all the types of participa-
tion, you may not want to do so because the model will be
too complex for users to understand.

This example is not possible to implement with yet an-
other keyword attribute as we did in Example 1. Suppose
you create a text property called ParticipationType. The
question is then what object to attach it to. It does not suf-
fice to attach it to the participant object because it is not a
property of that object, but of the relationship of that object
to the project. In principle, the keyword is expressing a re-
lationship between two objects in the domain, and the only
way to do that in the object-oriented model we are consider-
ing is with a property. Of course, even if you could express
ParticipationType somehow, all the disadvantages mentioned
in Example 1 still hold. 0

Note that one of the early purported advantages of XML
is that you can add tags (corresponding to properties and
classes) at will. Even ignoring for a moment that XML has
evolved to be mostly guided by schemas, XML is, again,
a possible implementation avenue for malleable schemas.
However, our focus is on the modeling aspects — trying to
create a schema for a domain while capturing the vague as-
pects and evolving the schema with time.

3. FORMALIZINGMALLEABLESCHEMAS

We now describe a formal model for malleable schemas.
We focus on the main constructs, and then mention several
extensions in Section 4.

3.1 Thedata modd

We frame our discussion in the context of a very simple
schema formalism, close in spirit to object-oriented schemas.
There have been a plethora of object-oriented modeling lan-
guages suggested in the literature. Our goal is not to argue
for one or the other. Instead, we chose a set of features from
these languages that are important for our discussion, and
our focus is on adding malleable features to the formalism.

We model the domain using objects and properties. Each
property has a domain and a range, where the domain is a
set of classes, and the range is either a set of classes or a
set of ground values. We distinguish between two types of
properties: relationships, whose ranges are sets of classes,
and attributes, whose ranges are sets of ground values. In
other words, a relationship is a binary relation between a
pair of objects, while an attribute is a binary relation be-
tween an object and a ground value. We denote classes by



Ci,...,Cn, and properties by Pi,..., P,. In what follows,
we refer to classes and properties collectively as elements.

We support class hierarchies and property hierarchies,
which model the IS-A relationships. For example, Condo is
a sub-class of RealEstate, and programmer is a sub-property
of participant. Specifically, C; C C} denotes that C; is a sub-
class of Cj, and P; C P; denotes that P; is a sub-property
of P;. We assume that the classes form a directed acyclic
graph, as do the properties. Note that a sub-class inherits
properties from its parent classes. That is, if C' is in the do-
main (resp. range) of Pp, and Cs C C1, then C5 is also in the
domain (resp. range) of P;. The domain and range of a sub-
property can be sub-classes of those of its parent-properties.
Specifically, if Cy and C> are in the domain (resp. range) of
P, and P» respectively, and P; C P,, then Cy C Cs.

The malleable schema elements: The malleable ele-
ments look exactly the same as the other schema elements,
except for the following (mostly conceptual) differences:

e While the name of a regular class or property is typ-
ically a carefully chosen string, the names of schema
elements can be keywords or phrases, and those are
often obtained from external sources. Later we will
extend malleable schema elements to include also reg-
ular expressions (Section 4).

e For simplicity, we restrict malleable elements to ap-
pear only on the left-hand side of C inclusions. We
can easily extend and allow malleable elements on the
right-hand side (i.e., have a sub-class element for a
malleable element).

e They are marked as malleable. (This is not a require-
ment, but it may be important for future schema evo-
lution.)

We refer to malleable elements as either malleable classes
or malleable properties. Note that the same name can be
both a malleable property and a malleable class, though
they are treated as two distinct elements in the schema.

While from a formal point of view malleable schema ele-
ments are not so different from ordinary ones, the important
point to emphasize is how they are used in the modeling
process. The typical process of modeling a domain assumes
that we are trying to come up with a very clean model, and
hence choose our schema names carefully. In contrast, the
malleable schema elements are meant for the cases where we
cannot (maybe temporarily) model the domain cleanly, and
so we capture certain aspects using keywords. Hence, by
nature we may have many overlapping malleable classes or
properties (possibly even identical ones called differently),
and there will typically be relatively many malleable sub-
classes for a class (or sub-properties of a property).

Ezample 3. Continuing with example 1, suppose we de-
fine the following malleable sub-classes of RealEstate: Va-
cationRental, ShortTermRental, and Sublet. In addition, we
define the following malleable sub-properties of contactPer-
son: agent, leaseAgent, and rentalClerk. Note that it is
hard to precisely define the relationships between these mal-
leable schema elements (for example, VocationRental, Short-
TermRental and Sublet can largely overlap), but we would
like to capture them in the model. Formally, we have:

e VacationRental, ShortTermRental, Sublet C RealEstate
e agent, leaseAgent, rentalClerk C contactPerson

3.2 Queries

In our discussion of queries we do not pin down a specific
query language. Instead, we describe the principles of in-
corporating malleable schemas into a given query language.
Our goal is to modify a given query language as minimally
as possible.

There are two changes we make to the query language.
First, wherever we can refer to a class (resp. property) we
allow the query to refer to a malleable class (resp. malleable
property). Second, we distinguish between precise refer-
ences in the query and imprecise ones. We denote imprecise
references by ~ K, where K is either a class or a property.

Ezample 4. Consider the following query that asks for
short term rentals in the Tahoe area. Note that we have an
imprecise reference to ShortTermRental and to leaseAgent.

Q@ : SELECT city, price, ~ leaseAgent
FROM ~ ShortTermRental
WHERE location="Tahoe”

O

A query that only makes precise references is answered in
exactly the same way as it would be otherwise. That is, we
treat every malleable schema element as a normal schema
element.

The interesting case is when the query can make impre-
cise references to the malleable schema elements. Intuitively,
when we have a reference ~ K, we want to refer to all ele-
ments in the schema that are similar to the element K. We
do not make the definition of similarity part of the query
language, since it depends on the particular context of the
application. For example, the following types of similarities
can be employed:

e Term similarity: Schema names can be compared
by using some string distance such as the Levenstein
measure [6], or according to some lexical references,
such as Wordnet [25], or by the term usage similarity
computed with some TF/IDF measure on a corpus of
documents on the application domain, or using the
combination of any of the above.

e Instance similarity: Similarity can be estimated by
gleaning information from the instances in the database.
For example, if the instances of Apartment and Flat
tend to have very similar characteristics, we may deem
them to be similar.

e Structural similarity: Here, the similarity of two
elements can be determined by their context. We
can compare the super-elements, sub-elements, and
sibling-elements of two elements. For example, if two
elements have very similar sub-elements, chances are
higher that they are similar. Also, two sibling elements
can be similar as they might overlap.

e Schema-corpus similarity: There have been sev-
eral pieces of recent work exploring the use of schema
corpora for tasks such as schema matching and me-
diated schema creation [14, 19]. The underlying idea
in these works is to leverage statistics on large col-
lections of schemas in order to determine similarity
between attributes from disparate schemas. The same
idea can be applied here, where instead of similarity



between disparate schemas we consider similarity be-
tween terms in the same malleable schema. In fact,
a malleable schema can be viewed as an intermediate
point in the evolution of a corpus of schemas into a
traditional schema.

Note that in principle, the names of schema elements ap-
pearing in imprecise references do not even have to be in
the schema. Hence, malleable schemas are attractive in
cases where users are querying unfamiliar (or very complex)
schemas.

Reformulating queries over malleable schemas: Given
a similarity measure over malleable schema elements, the
next issue is how to expand a query over a malleable schema
to get the intended answer.

In the simplest case, query reformulation amounts to ex-
panding to a union query. For example, if in ) the reference
to leaseAgent were a precise one, then we simply need to
create a union query that considers both ShortTermRental
and VacationRental, assuming they were deemed to be sim-
ilar sub-classes. However, this is not the end of the story.
First, it may be the case that VacationRental does not have a
leaseAgent property. In that case we need to pose the query
so that the tuples coming from VacationRental do not have
the column for leaseAgent (otherwise the query will be in-
valid). Second, since @) does have an imprecise reference to
leaseAgent, we need to check several combinations, resulting
in the following query:

Q' : SELECT city, price, leaseAgent
FROM ShortTermRental
WHERE location="Tahoe”

OR

SELECT city, price, rentalClerk
FROM ShortTermRental
WHERE location="Tahoe”

OR

SELECT city, price, leaseAgent
FROM VacationRental

WHERE location="Tahoe”

OR

SELECT city, price, rentalClerk
FROM VacationRental

WHERE location="Tahoe”

Some of these subqueries may not be valid, and therefore
need to be pruned. Furthermore, some of the subqueries can
be combined (returning four attributes in each query block).

Finally, we note that there has been significant work on
trying to rank answers of queries posed over combinations
of structured and unstructured data [4]. We do not go into
that issue here, and believe that it is largely orthogonal to
the concept of malleable schemas.

Querying the schema: In addition to allowing queries on
the instances, we allow queries on the schema (e.g., in the
spirit of [17]), as the user might want to know the relation-
ship between the schema elements to help evolve the schema.
Given class C, the user can ask for C’s parent-classes and
sub-classes, and more importantly, for classes that are sim-
ilar to C'. The same queries can be posed for properties
too.

4. EXTENSIONS

We now briefly mention several extensions to our basic
model for malleable schemas.

Malleable property chains: This extension is a power-
ful generalization of malleable properties. In addition to
the imprecision that can be captured with malleable proper-
ties, malleable chains can capture varying structures of data.
For example, when we integrate information about people
from multiple sources, not only do we have different proper-
ties for people, but they may be structured differently (e.g.,
the nesting structure of name, address, etc.). Note that
in querying, the similarity among chains compares not only
each of the properties in the chain, but also global aspects of
the chain. Hence, for example, we may consider two chains
with different lengths to be similar (e.g., phoneNo with con-
tact/phone), or we may consider the concatenation of two
chains to be similar to another chain(e.g., name/firstName
and name/lastName with fullName).

Element names as regular expressions:* Often there is
more structure to the set of sub-classes (or sub-properties)
we want to define, and this structure can be described by
regular expressions. For example, we may want to create
properties *Agent to denote any kind of agent, and define
*Agent C agent to specify that they are sub-properties of
agent. In this way we may help identify various properties
that we want to be agent-related properties.

Malleable values: We often capture aspects of objects
in our model with values. For example, when modeling web
sites for an integration application, we may have an attribute
topic that is assigned one of several values (e.g., BusinessRe-
lated, KidsRelated, Shopping). Formally, these can also be
specified as sub-classes in the model, but it is sometimes
easier to model such distinctions with values. Hence, we
can also support malleable values. For example, suppose
you created a value BusinessRelated for modeling web sites
that have content related to business. However, you then re-
alize that you are not quite sure what you precisely mean by
this category. There are web sites that offer articles about
business, reviews of business and products, and sites about
business people. You can create a description attribute that
can have these values and maybe later evolve them into cat-
egorization as well.

5. IMPLEMENTATION

We are currently implementing a prototype modeling and
querying tool for malleable schemas. We are implementing
it over a relational database, though most of the principles
of the implementation should carry over to XML, object-
relational systems or data integration systems. The details
of the implementation are beyond the scope of this paper.
We briefly describe its main components below.

e Modeling: The modeling tool enables the modeler to
create a malleable schema (in terms of classes and
properties). The tool also allows to query the model
itself in the process of modeling. For example, when
the modeler creates a sub-class, she may want to query
for similar sub-classes that are already in the schema.

'We thank Gerhard Weikum for this idea.



e Translation to relational schema: We take the mal-
leable schema and create a malleable relational schema,
for storing the data.

o Query reformulation: Given a query over the relational
schema, we translate it into a set of SQL queries that
can be posed over the database. The translation pro-
cess obtains similarity measures between schema ele-
ments from an external module.

Ranking: The ranking of the answers in the result con-
siders two factors. First, the set of queries generated
by the query reformulator is ordered by the similar-
ity of the schema elements. Second, when we actually
see the tuples in the result, we may further refine the
ordering of the answers.

6. CONCLUSIONSAND FUTURE WORK

We described malleable schemas, a conceptual tool for
modeling in applications that involve both structured and

unstructured data. The key idea underlying malleable schemas

is that the modeler should be able to capture all the as-
pects of the domain without having to commit to a clean
schema immediately. We argue that such a capability is cru-
cial in applications that combine data from a large number
of sources since it is typically impossible to create a clean
single schema from the start. In fact, malleable schemas
can be viewed as an intermediate point in the evolution of
a large collection of schemas into a single coherent schema
for a domain. Malleable schemas raise several interesting
semantic issues, as well as challenges for efficient query pro-
cessing and automatically evolving a malleable schema to
more structured schema.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments. The research was funded by NSF CAREER Grant
9985114, NSF ITR Grant 0205635, and DARPA Contract
03-000225.

7. REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. In ICDE, 2002.

[2] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated ranking of database query results. In Proc.
of CIDR, 2003.

[3] K. C.-C. Chang, B. He, and Z. Zhang. Toward large
scale integration: Building a metaquerier over
databases on the web. In CIDR, 2005.

[4] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.
Integrating DB and IR technologies: What is the
sound of one hand clapping? In Proc. of CIDR, 2005.

[5] W. W. Cohen. Data integration using similairty joins
and a word-based information representation
language. ACM Transactions on Information Systems,
18(3):288-321, 2000.

[6] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In IIWEB, pages 73-78, 2003.

[7] N. Dalvi and D. Suciu. Answering queries from
statistics and probabilistic views. In VLDB, 2005.

[8] X. Dong and A. Halevy. A Platform for Personal
Information Management and Integration. In Proc. of
CIDR, 2005.

[9] X. Dong, J. Madhavan, and A. Halevy. Mining
structures for semantics. ACM SIGKDD Ezxplorations
Newsletter, 6:53-60, 2004.

[10] R. Fagin. Fuzzy queries in multimedia database
systems. In PODS, 1998.

[11] L. Gravano, P. G. Ipeirotis, H.V.Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate
string joins in a database (almost) for free. In VLDB,
2001.

[12] L. Guo, J. Shanmugasundaram, K. Beyer, and
E. Shekita. Structured value ranking in
update-intensive relational databases. In ICDE, 2005.

[13] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, 2003.

[14] B. He and K. C.-C. Chang. Statistical schema
matching across web query interfaces. In Proc. of
SIGMOD, 2003.

[15] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-style keyword search over relational
databases. In VLDB, 2003.

[16] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
2002.

[17] L. V. S. Lakshmanan, F. Sadri, and S. N.
Subramanian. Schemasql: An extension to sql for
multidatabase interoperability. ACM Transactions on
Database Systems, 26(4):476-519, 2001.

[18] A.Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In Proc. of VLDB, pages 251-262,
Bombay, India, 1996.

[19] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-basd schema matching. In ICDE, 2005.

[20] A. Marian, S. Amer-Yahia, N. Koudas, and
D. Srivastava. Adaptive query processing of top-k
queries in XML. In ICDE, 2005.

[21] P. Mork, A. Halevy, and P. Tarczy-Hornoch. A model
for data integration systems of biomedical data
applied to online genetic databases. In AMIA, 2001.

[22] A. Theobald and G. Weikum. Adding relevance to
XML. Lecture Notes in Computer Science,
1997:105-124, 2000.

[23] A. Theobald and G. Weikum. The index-based XXL
search engine for querying XML data with relevance
ranking. In EDT, 2002.

[24] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In CIDR, 2005.

[25] Wordnet. http://www.cogsci.princeton.edu/ wn/.



