
Online Ordering of Overlapping Data Sources

#Mariam Salloum ϕXin Luna Dong
∗

αDivesh Srivastava #Vassilis J. Tsotras
#UC Riverside ϕGoogle Inc. αAT&T Labs-Research

#(msalloum, tsotras)@cs.ucr.edu ϕ lunadong@google.com
α divesh@research.att.com

ABSTRACT
Data integration systems offer a uniform interface for querying a large num-
ber of autonomous and heterogeneous data sources. Ideally, answers are
returned as sources are queried and the answer list is updated as more an-
swers arrive. Choosing a good ordering in which the sources are queried
is critical for increasing the rate at which answers are returned. However,
this problem is challenging since we often do not have complete or precise
statistics of the sources, such as their coverage and overlap. It is further ex-
acerbated in the Big Data era, which is witnessing two trends in Deep-Web
data: first, obtaining a full coverage of data in a particular domain often
requires extracting data from thousands of sources; second, there is often a
big variation in overlap between different data sources.

In this paper we present OASIS, an Online query Answering System for
overlappIng Sources. OASIS has three key components for source order-
ing. First, the Overlap Estimation component estimates overlaps between
sources according to available statistics under the Maximum Entropy prin-
ciple. Second, the Source Ordering component orders the sources accord-
ing to the new contribution they are expected to provide, and adjusts the
ordering based on statistics collected during query answering. Third, the
Statistics Enrichment component selects critical missing statistics to en-
rich at runtime. Experimental results on both real and synthetic data show
high efficiency and scalability of our algorithm.

1. INTRODUCTION
The Big Data era requires not only the capability of managing

and querying a large volume of data, but also the capability of
querying data from a large number of sources. Dalvi et al. [3] re-
cently presented interesting observations on Deep-Web data. First,
obtaining a full coverage of data in a particular domain often re-
quires extracting data from thousands of sources. Second, there
is often a big overlap between sources. For example, with strong
head aggregators such as yelp.com, collecting homepage URLs for
70% restaurants that are mentioned by some websites required only
top-10 sources; however, collecting URLs for 90% restaurants re-
quired top-1000 sources, and collecting URLs for 95% restaurants
required top-5000 sources.
∗This work was done while the author was working at AT&T Labs-
Research.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 3
Copyright 2013 VLDB Endowment 2150-8097/13/11... $ 10.00.

Whereas it is often desirable to build a central repository that
aggregates data from all sources, this approach is not often feasi-
ble because of both the large number of sources and the continuous
updates of data in some domains. Therefore, many data integrators
query relevant Deep-Web sources, as well as other aggregators, at
runtime upon receiving a user query. Since there is often some
resource restriction, such as bandwidth for data retrieval and CPU
cycles for answer processing, an integrator cannot query all sources
and process all answers at the same time, but can only do so sequen-
tially or semi-sequentially (e.g., each time querying a few sources
in parallel). Current integrators, such as KAYAK.com and tripad-
visor.com, typically query only tens to hundreds of sources rather
than all available sources. Even so, retrieving all answers can take
a long time, so some of them display query results in an online
fashion: once the integrator retrieves answers from some sources,
it returns the partial answers to users; then, it dynamically updates
the answer list as new answers arrive.

In general, it is desirable to return as many answers as possible
right from the beginning, especially when we wish to query thou-
sands of sources. Hence, choosing a good ordering in which the
sources are queried is critical for increasing the rate at which an-
swers are returned. If all sources that an integrator queries return
distinct answers, source ordering is simple: sources are queried in
decreasing order of their coverage. However, typically different
sources contain a lot of overlapping data, and such overlaps can
make ordering much more complex.

EXAMPLE 1.1. Consider five relevant sourcesA,B,C,D, and
E shown in Figure 1 for a given query Q. Each area in the Venn
diagram is disjoint from others and represents the answers returned
by certain sources but not others. Each area contains a number
that represents the number of answer tuples for Q that reside in
that area. For example, there are 4 answers returned by source C
but not provided by any other source. Similarly, there is 1 answer
covered by both C and E.

Among the sources, A and B each returns the largest number
of answers (14 and 13 respectively); however, they have a high
overlap: there are 9 answers in common. If we query them first,
we obtain 18 distinct answers after querying 2 sources. But if we
query A and C first, we obtain 21>18 distinct answers. 2

As the example shows, overlap between sources is an impor-
tant factor to consider in source ordering. In this paper, we con-
sider Select-Project queries within each individual source, which
are typical for queries posed on Deep-Web sources. The coverage
and overlap of sources vary for different queries; thus, we need to
estimate the statistics in a query specific manner using (i) query
independent coverage and overlap of sources, (ii) statistics in the
log for answering other queries, and (iii) query specific selectiv-
ity information, much like cardinality and selectivity statistics are

Figure 1: Venn diagram for the five
sources in Example 1.1.

Figure 2: Area-under-the-curve for
various orderings. Figure 3: OASIS system architecture.

estimated in query optimization [9] (details skipped since it is or-
thogonal to this paper). The problem of ordering a large number of
sources efficiently at runtime is non-trivial. The number of over-
laps between a subset of sources is exponential in the number of
the sources and we seldom know all of these overlaps in practice.
Even the statistics we do have may not be precise for the given
query. Such incomplete and imprecise information about overlaps
makes source ordering even more challenging.

In this paper, we propose a system called OASIS (Online query
Answering System for overlappIng Sources). The key idea of OA-
SIS is to order the sources according to their coverage, overlap, and
querying time (or access and transfer cost) at runtime such that an-
swers are returned at a high rate. OASIS solves the problem of in-
complete and imprecise information about overlaps in three ways.
First, it estimates missing overlaps from the given statistics by ap-
plying the Maximum Entropy principle, which does not introduce
correlations that are unknown a priori [12]. Second, at the time of
querying, it collects statistics regarding the queried sources, such
as their precise coverage and the size of their union with respect to
the specific query, and adjusts source ordering dynamically. Third,
it also identifies critical missing overlaps, the knowledge of which
may lead to a better source ordering, and computes them from al-
ready obtained results. We design each component of the system
carefully such that it is efficient and scalable. Note that a good
caching strategy would improve query answering performance but
is orthogonal to this paper.

In this paper, we consider how to order thousands of sources at
runtime, which enables leveraging the potential of the rich informa-
tion on the Web. In particular, we make the following contributions.

1. We present an algorithm that estimates overlaps not known a
priori using the Maximum Entropy principle. Moreover, our
algorithm considers an overlap only if it is likely to have a
non-zero value, so significantly reduces the number of over-
laps we need to consider and scales to thousands of sources.

2. We propose a dynamic source-ordering strategy that orders
sources according to their coverage, cost, and overlaps.

3. We propose an algorithm that selects critical missing statis-
tics for inquiry at querying time for better source ordering.

4. We experimented on real and synthetic data sets and empir-
ically show that our source ordering algorithm is scalable
in the number of sources and can significantly increase the
speed at which answers are returned.

The rest of the paper is structured as follows. Section 2 discusses
related work. Section 3 describes the architecture of OASIS. Sec-
tions 4-6 describe key technical components of OASIS, including
overlap estimation, source ordering, and statistics enrichment. Sec-
tion 7 presents experimental results, and Section 8 concludes.

2. RELATED WORK
There has been a lot of work that considers leveraging the over-

lap or redundancy information for source selection and ordering.
Florescu et al. [5] assumed each source is categorized into one or
more domains (e.g., DB papers vs. AI papers) and leveraged prob-
abilistic information about domain overlaps to select top-k use-
ful sources for query answering. Roth et al. [10] considered both
source overlaps and source connections in a peer data manage-
ment system (PDMS) to select a subset of sources for query rewrit-
ing. Bleiholder et al [1] considered selecting sources for answering
Join queries on life science data; instead of minimizing duplicates,
they tried to maximize duplicates because they assume that differ-
ent sources would provide data on different aspects of an entity. All
of the above works assume a priori knowledge about coverage and
overlap statistics.

Chokshi et al. [2] leveraged overlap statistics to answer queries
over the most relevant set of text documents; the system learns
overlaps between collections of documents via sampling but fo-
cuses on pair-wise overlaps. Vassalos et al. [14] discussed source
selection based on source overlaps and outlined the challenges in
computing the exponential number of source overlaps and utilizing
those statistics for query answering. Whereas [14] provides useful
insights, it did not propose a concrete system to estimate source-
level overlaps.

The StatMiner system [8] considers coverage and overlap in static
source ordering and is most relevant to our work. It assumes that
both sources and queries are characterized into “class hierarchies”;
based on sample data, it learns coverage and overlap statistics be-
tween classes (rather than data sources) and decides the best query
plan accordingly. There are three major differences between Stat-
Miner and OASIS. (1) StatMiner learns statistics for all overlaps;
this strategy works for a small number of classes but does not scale
for a large number of sources. OASIS provides an algorithm to esti-
mate missing overlaps thus can handle a large number of (e.g., thou-
sands of) sources. (2) StatMiner requires a sufficient sample data
set to learn overlaps; OASIS can deal with stale, inaccurate, and
missing statistics by collecting new statistics at query answering
time and thus enriching critical statistics. (3) StatMiner learns over-
laps off-line; OASIS is able to generate overlap estimates quickly at
runtime, thus improve source ordering dynamically as more statis-
tics are collected.

Source ordering has also been studied in the presence of vary-
ing source accuracy and copying relationships between sources [7,
11]. OASIS differs from them in three aspects: (1) their goal is to
improve correctness of returned answers, while OASIS considers
scenarios where data is fairly clean and focuses on coverage of re-
turned answers; (2) they assume a priori knowledge of source accu-
racy and copying relationships, while OASIS is tolerant to impre-

cise and incomplete statistics on source overlaps; (3) they conduct
source ordering offline, while OASIS conducts source ordering at
runtime and can adjust ordering based on updated statistics from
already queried sources. We leave consideration of both source
overlap and source accuracy for future work.

Recently [9] applied the Maximum Entropy principle in estimat-
ing the cardinality of a new query based on the cardinality of a
fixed set of queries; [13] adapted the capture-recapture method in
estimating the cardinality of a query in the crowdsourcing environ-
ment. We tackle a different problem in this paper.

3. OASIS OVERVIEW
We start with an overview of the OASIS system and define the

problems we need to solve in building such a system.

3.1 Motivation
Consider a query Q and a set of data sources Ω. We wish to

answer Q on each source in Ω and return the union of the results,
denoted by Q(Ω). The main goal in building OASIS is to maxi-
mize the rate at which answers are returned. While other perfor-
mance metrics can be adopted, the rate of the retrieved answers
is best measured by the area-under-the-curve, where the X-axis is
the query-answering time, the Y-axis is the number of available
answers, and the curve plots the total number of distinct answers
available at each time during query answering [11].

Most domains have thousands of data sources, thus sources can-
not be queried at the same time because of resource restrictions
such as bandwidth limitation. When sources are queried semi-
sequentially, the order in which they are queried can significantly
affect the area-under-the-curve, as we show next.

EXAMPLE 3.1. Continue with Example 1.1. From the 120 pos-
sible orderings of these sources, we consider five of them: Lr :
ECDBA, Lc : ABDCE, Lb : ADCBE, Ls : ACDBE, and
Ld : ACDEB. In later sections, we will correlate these orderings
to different ordering strategies. Figure 2 shows the curve for each
ordering, assuming we query the sources sequentially and retriev-
ing data from each source takes one time unit. We observe that Ld
returns answers most quickly and Lr returns answers most slowly.
Indeed, Ld has the largest area-under-the-curve (118), and Lr has
the smallest one (95). 2

Determining the ordering of the sources would benefit from three
types of knowledge. First, sources that have a high coverage would
return more answers. Second, we wish to choose a source that has
a low overlap with the already queried sources: such a source will
contribute more new answers than another source with the same
coverage. Third, a source with low access and transfer time, which
we refer to as cost, will yield answers faster. We next formally
define these three measures considered in source ordering.

DEFINITION 3.2 (COVERAGE). Let S ∈ Ω be a source and
Q be a query. The coverage of S w.r.t. Q is defined as PQ(S) =
|Q(S)|
|Q(Ω)| , where |Q(S)| denotes the number of answers returned by
S and |Q(Ω)| denotes the total number of answers. 2

DEFINITION 3.3 (OVERLAP). Let Ŝ ⊆ Ω denote a subset of
sources and Q be a query. The overlap of Ŝ w.r.t. Q is defined as

PQ(∩Ŝ) =
|∩

S∈Ŝ
Q(S)|

|Q(Ω)| , where | ∩S∈Ŝ Q(S)| denotes the number

of answers returned by every source in Ŝ and |Q(Ω)| denotes the
total number of answers. 2

The coverage of a source can be thought of as the probability
that an answer is provided by the source, and similarly for over-
lap between sources (this justifies the use of the PQ(...) notation).

Note that information on coverage of unions of sources can bene-
fit source ordering as well. We skip union coverage for simplicity
because our framework and techniques can be easily extended to
directly incorporate such union information (see Section 4.2).

DEFINITION 3.4 (COST). Let S ∈ Ω be a source and Q be
a query. The cost of querying S (in terms of time) w.r.t. Q is de-
fined as CostQ(S) = CC(S) + TC(S)× |Q(S)|, where CC(S)
denotes the connection (or access) cost of S, TC(S) denotes the
per-tuple transfer overhead time of S, and |Q(S)| denotes the total
number of answers returned by S. 2

We can now formally define the key problem in building OA-
SIS, the source-ordering problem. For simplicity, our definition as-
sumes that we query relevant sources sequentially; our techniques
can be easily extended to querying a few sources in parallel and our
experiments show the effectiveness of this extension (Section 7.2).

DEFINITION 3.5 (SOURCE ORDERING). Let Ω denote a set
of sources andQ be a query. The input to the source-ordering prob-
lem includes (1) the coverage of each source C = {PQ(S)|S ∈
Ω}, (2) a subset of overlaps O = {PQ(∩Ŝ)|Ŝ ∈ Ŝ} where Ŝ ⊆
2Ω, and (3) the cost of querying each source Cost = {CostQ(S)|S
∈ Ω}. The output is an ordering of the sources such that querying
Ω in this order obtains the largest area-under-the-curve. 2

3.2 Basic solution and challenges
The source-ordering problem has been studied in [11]. A greedy

algorithm, GREEDY, was proposed: each time we select the source
with the highest ratio of its residual contribution over cost until all
sources are exhausted. Given a set of already queried sources Ŝ,
the residual contribution of S ∈ Ω\ Ŝ with respect to Ŝ is formally
defined as PQ(S \ Ŝ) = |Q(Ŝ ∪ {S})| − |Q(Ŝ)|. It is easy to
derive that

PQ(S \ Ŝ) =

|Ŝ|∑
i=0

(−1)i
∑

Ŝ0⊆Ŝ,|Ŝ0|=i

|S ∩ Ŝ0|. (1)

This greedy approach does not necessarily generate the optimal
ordering: given three sources S1 : {t1, . . . , t50}, S2 : {t51, . . . , t100}
and S3 : {t25, . . . , t75}, each with the same querying cost, the opti-
mal ordering is S1, S2, S3 (area-under-the-curve is 50+100+100=250),
whereas the greedy solution would generate an ordering of S3, S2, S1

(area-under-the-curve is 51+76+100=227). However, GREEDY has
a constant approximation bound 2; that is, the area-under-the-curve
of the solution by GREEDY is at least half of that of the optimal
solution. We re-state the relevant results from [11] as follows.

THEOREM 3.6. Assume a polynomial-time oracle for residual-
contribution computation. (1) The decision problem form of the
source-ordering problem (can a specific area-under-the-curve of A
be achieved) is in NP. (2) GREEDY finds a 2-approximation solution
in polynomial time. 2

When we apply GREEDY, we face the challenge of computing
the residual contribution for each source from the often very lim-
ited statistics: (1) we may not know some of the overlaps; in other
words, Definition 3.5 requires only Ŝ ⊆ 2Ω as input; (2) we may
only estimate the coverage and overlap w.r.t. Q according to the
overall coverage of sources and overlap between sources (not spe-
cific to the particular query), statistics in the log for answering other
queries, and some selectivity information. Such limited informa-
tion makes it impossible to precisely compute residual contribution
and so makes it even harder to find the optimal ordering.

EXAMPLE 3.7. Continue with the motivating example. If we
know all coverage and overlaps precisely, GREEDY generates the
optimal ordering Ld : ACDEB. However, assume our input is
as follows, where we have (precise) overlap information for only a
few subsets of sources.

PQ(A) = 0.47 PQ(∩{A,B}) = 0.30
PQ(B) = 0.43 PQ(∩{A,D}) = 0.20
PQ(C) = 0.30 PQ(∩{A,B,C,D}) = 0.03
PQ(D) = 0.37
PQ(E) = 0.13

Only considering coverage will generate orderingLc = ABDCE
while a careless use of existing overlaps (we give details in Sec-
tion 7 for this baseline approach) will generate ordering Lb =
ADCBE; both are sub-optimal according to Figure 2. 2

3.3 The OASIS Architecture
OASIS solves the afore-mentioned incomplete-information prob-

lem in three ways. First, to better estimate residual contribution,
OASIS estimates the unavailable overlaps from the given C (cov-
erage) and O (overlap) by applying the Maximum Entropy princi-
ple.

Second, instead of ordering the sources upfront, OASIS orders
the sources in a dynamic fashion: as OASIS queries a source S, it
updates statistics related to S, including coverage of S and union of
already queried sources including S, and takes the new information
into account in selecting the next source to query. Such statistics
are easy to collect along with query answering.

Third, OASIS finds critical missing statistics for improving or-
dering and computes them from queried sources on-the-fly.

The architecture of OASIS (Figure 3) contains three layers.

1. The bottom layer, the Statistics management layer, contains
two components. The Statistics Server component takes
charge of statistics collection. Offline it collects source cov-
erage and overlap information provided by sources (or from
the log); online it collects such statistics for the given query
according to answers from the queried sources. The collected
statistics are stored at the Statistics Repository. Since the
stored statistics may be incomplete, the Overlap Estima-
tion component estimates upon receiving a query the overlap
statistics that are unavailable.

2. The middle layer, the Planning layer, also contains two com-
ponents. The Source Ordering component decides the or-
dering in which we query the sources according to statistics
provided by the Statistics management layer. The Statistics
Enrichment component selects a set of overlaps to enrich
and sends the request to the Statistics Server.

3. The top layer, the Execution layer, contains the Source Query-
ing component, which receives a user query, queries the sources
according to the ordering decided by Source Ordering, and
returns the retrieved answers along the way.

The rest of the paper describes the key components of OASIS in
more detail: Overlap Estimation (Section 4), Source Ordering
(Section 5), and Statistics Enrichment Planning (Section 6).

4. OVERLAP ESTIMATION
This section studies the overlap-estimation problem; that is, based

on the given coverage and overlap information, how to estimate the
rest of the overlaps. We first formalize the problem (Section 4.1),
then present our basic solution by applying the maximum entropy
principle (Section 4.2), and finally describe an iterative algorithm
that is scalable to thousands of sources (Section 4.3).

4.1 Problem definition
Given a set of sources Ω, each query answer must be provided

by a particular subset Ŝ ⊆ Ω of sources; we thus consider 2|Ω|

events, each representing an answer being provided by all and only
sources in Ŝ. We associate each event with a Ω-tuple where a pos-
itive expression S indicates that S ∈ Ŝ and a negative expression
S′ indicates that S 6∈ Ŝ. Interchangeably, we denote the tuple by
VŜ . We say that the cardinality of VŜ is |Ŝ| and call VŜ a |Ŝ|-pos
tuple. For example, tuple V{A,B} = ABC′D′E′ is a 2-pos tuple
and denotes the event that A,B provide an answer but C,D,E do
not. We denote by P (T) the probability of the event represented
by tuple T . In the rest of the paper, we abuse notation and omit P
for simplicity; that is, V{A,B} denotes a 2-pos variable representing
the probability of only A,B providing an answer. We denote the
set of all variables by V(Ω); their sum is 1.

Our goal in overlap estimation is to estimate the value of each
Ω-tuple variable based on the input statistics.

DEFINITION 4.1 (OVERLAP ESTIMATION). Let Ω be a set of
sources and Q be a query. Given C and O = {PQ(∩Ŝ)|Ŝ ∈
Ŝ}, the overlap-estimation problem estimates the value for each
Ω-tuple variable v ∈ V(Ω). 2

Note that there is an exponential number of variables in V(Ω) so
the output also has an exponential size. Instead, we only output es-
timates for variables whose values are not close to 0; the number of
such variables is typically much smaller and bounded by |Q(Ω)|,
because there are at most |Q(Ω)| answers. Note also that the vari-
ables in V(Ω) do not directly represent the overlaps of subsets of
sources, but we can infer the overlaps from them. Actually, as we
show in the next section, we can infer the residual contributions
directly from V(Ω) more efficiently than from overlaps.

4.2 Basic solution
We can formulate the coverage of a source S as a linear con-

straint with 2|Ω|−1 variables where S is “positively” expressed. For
example, given five sourcesA throughE, the coverage ofA can be
formulated as
PQ(A) = AB′C′D′E′ + AB′C′D′E + AB′C′DE′ + AB′C′DE +
AB′CD′E′ + AB′CD′E + AB′CDE′ + AB′CDE + ABC′D′E′ +
ABC′D′E + ABC′DE′ + ABC′DE + ABCD′E′ + ABCD′E +
ABCDE′ + ABCDE.

Similarly, we can formulate the overlap of sources in Ŝ as a lin-
ear constraint with 2|Ω|−|Ŝ| variables where the sources in Ŝ are
“positively” expressed (similar for union). For example,
PQ(∩{A,B}) = ABC′D′E′ + ABC′D′E + ABC′DE′ + ABC′DE +
ABCD′E′ + ABCD′E + ABCDE′ + ABCDE.

There are often many more variables than constraints, so many
solutions can be generated that satisfy the constraints. Among
them, we choose the solution with the Maximum Entropy, which
essentially corresponds to the distribution with the highest likeli-
hood taking into account the provided statistics and not assuming
any extra correlation between the sources [12]. Formally, we esti-
mate the overlaps by solving the following optimization problem,
which we call MAXENT. We can apply existing technology (such
as [4]) to solve the optimization problem.

maximize −
∑

v∈V(Ω)

v log v

subject to (1)
∑

v∈V(Ω)

v = 1

(2) constraints derived from C and O

Table 1: Estimates of variables in Example 3.7. by the basic
approach.

Variable Value
A B′ C′ D′ E′ .07
A′ B C′ D′ E′ .05
A′ B′ C D′ E′ .19
A′ B′ C′ D E′ .16
A′ B′ C′ D′ E .05
A B C′ D′ E′ .27
A B′ C′ D E′ .10
A′ B C D E .08
A B C D E′ .03

EXAMPLE 4.2. Continue with Example 3.7. There are five sources
so 25 = 32 variables. We maximize −

∑
v∈V(Ω) v log v under

constraint
∑
v∈V(Ω) v = 1 and the 8 other constraints given in

Example 3.7. Table 1 shows the estimates for the variables whose
values are larger than .01 (we consider that others have a value of
0). Observe that although 32 variables were used to define the set
of constraints, only 9 were determined to be non-zero. 2

4.3 A scalable algorithm
The basic solution considers 2|Ω| variables and thus with thou-

sands of sources, the number can quickly become unmanageable.
To make it scalable, we wish to reduce the number of variables. We
observe that (1) as the number of sources in a subset increases, the
overlap quickly decreases, and (2) if there areN answers (N can be
estimated applying cardinality estimation techniques), at most N
variables have observed values corresponding to non-empty sets.
Thus, a natural approach is to exclude variables that would have
very small values in the solution.

However, before we solve the optimization problem, we cannot
know which variables would have small values. We thus start with
considering variables with low cardinality, and more likely to have
large values a priori, and iteratively add high-cardinality variables.
In particular, we expand the set of variables as follows.

1. In the first iteration, we start with variables V̄ , containing
only (1) those whose positive sources correspond to sources
in the given coverage and overlaps, and (2) the 0-pos variable
(denoting the probability that no source provides the answer).
We assume other variables all have value 0.

2. In the k-th (k > 1) iteration, for each variable VŜ added to V̄
in the (k−1)-th iteration, we examine the variables that indi-
cate one more provider than Ŝ; that is, {VŜ∪{S}|S ∈ Ω\ Ŝ}.
We say that VŜ is a parent variable of VŜ∪{S}. We add a
variable VŜ′ to V̄ only if it satisfies two conditions. First,
the sum of its parents’ values is not too small. The intu-
ition is that if VŜ′ is actually “large” but we force VŜ′ =
0, its value will “flow” to its parent variables in our solu-
tion, and so their sum should be large. Formally, we require∑
V
Ŝ
∈V̄ ,Ŝ⊂Ŝ′,|Ŝ′|−|Ŝ|=1 VŜ ≥ θ, where θ is a threshold. We

set θ to 1
N

in our implementation because a given variable
must be greater than or equal to 1

N
if it holds at least one

answer tuple. Second, existing statistics should not indicate
that the value of VŜ′ must be low. Formally, for any overlap
(similar for coverage) PQ(∩Ŝ) ∈ O and PQ(∩Ŝ) < θ, we
require Ŝ 6⊆ Ŝ′.

3. For any existing variable in V̄ , we remove it if its value is
below θ, since we deem it too small to affect source ordering.

4. We continue until there are no more variables to add. The
k-th iteration would have considered all k-pos variables so
the process would terminate in at most |Ω| iterations.

Table 2: Solution for each iteration in Ex. 4.3. The table includes only
variables that are considered in some iteration. A dash ‘-’ indicates
that the variable was not specified in any constraint for that particular
iteration.

Variable Iter. 1 Iter. 2 Iter. 3 Iter. 4
A′ B′ C′ D′ E′ 0 - - -
A B′ C′ D′ E′ 0 - - -
A′ B C′ D′ E′ .13 .04 .04 .04
A′ B′ C D′ E′ .21 .15 .23 .23
A′ B′ C′ D E′ .12 .14 .12 .13
A′ B′ C′ D′ E .13 .03 .03 .03
A B C′ D′ E′ .21 .27 .27 .27
A B′ C′ D E′ .16 .17 .17 .17
A B C D E′ .06 .03 .03 .03
A′ B C D′ E′ - .04 0 -
A′ B C′ D′ E - .05 .09 .06
A′ B′ C D E′ - .03 0 -
A′ B′ C D′ E - .05 0 -
A B′ C D′ E′ - 0 - -
A B′ C′ D′ E - 0 - -
A′ B C′ D E′ - 0 - -
A′ B′ C′ D E - 0 - -
A B C D′ E′ - 0 - -
A B C′ D E′ - 0 - -
A B C′ D′ E - 0 - -

A B′ C D E′ - 0 - -
A B′ C′ D E - 0 - -
A B C D E - 0 - -
A′ B′ C D E - - .03 0
A′ B C D E′ - - .01 -
A B′ C D′ E - - 0 -
A′ B C′ D E - - 0 -
A′ B C D′ E - - 0 -
A′ B C D E - - - .04

EXAMPLE 4.3. Reconsider Example 3.7.
Iteration 1: In the first iteration, we start with variables that

correspond to coverage and overlap constraints. Five variables
AB′C′D′E′,A′BC′D′E′,A′B′CD′E′,A′B′C′DE′,A′B′C′D′E
are defined for PQ(A), PQ(B), PQ(C), PQ(D), PQ(E), respec-
tively. Three variables ABC′D′E′, AB′C′DE′, and A B C D E′

are defined forPQ(∩{A,B}), PQ(∩{A,D}), PQ(∩{A,B,C,D}),
respectively. Finally, variable A′B′C′D′E′ represents the proba-
bility of an answer not provided by any source. Thus, in the first
iteration, we start with 9 variables (5 for coverage, 3 for overlaps,
and 1 0-pos variable). We formulate the following constraints.
PQ(A) = AB′C′D′E′ + ABC′D′E′ + AB′C′DE′ + ABCDE′
PQ(B) = A′BC′D′E′ + ABC′D′E′ + ABCDE′
PQ(C) = A′B′CD′E′ + ABCDE′
PQ(D) = A′B′C′DE′ + AB′C′DE′ + ABCDE′
PQ(E) = A′B′C′D′E
PQ(∩{A,B}) = ABC′D′E′ + ABCDE′
PQ(∩{A,D}) = AB′C′DE′ + ABCDE′
PQ(∩{A,B,C,D}) = ABCDE′
1.0 = AB′C′D′E′+A′BC′D′E′+A′B′CD′E′+A′B′C′DE′+
A′B′C′D′E+ABC′D′E′+AB′C′DE′+ABCDE′+A′B′C′D′E′

We set the threshold for considering variable expansion and re-
duction as θ = 1

N
= 0.03. Table 2 shows the solution for each

iteration of the scalable approach. Note that because of rounding,
the probabilities of each column may not sum up to 1.

At the end of the first iteration, we expand variables by adding
14 variables. Consider A′B′C′D′E as an example. We examine
its four children variables: AB′C′D′E, A′BC′D′E, A′B′CD′E,

and A′B′C′DE. Every variable is expanded since the sum of its
parent variables is above θ. In addition, we discard 2 variables
A′B′C′D′E′ and AB′C′D′E′ as their values are below θ.

Iteration 2: The problem is re-solved in the second iteration, and
10 variables are removed and 5 variables are added. Observe that
variable ABC′DE is not added because the sum of its parent vari-
ables ABC′DE′, ABC′D′E, A′BC′DE and AB′C′DE (another
parent A′ B C′ DE is not considered in this iteration) is below θ.

Iteration 3: The problem is re-solved in the third iteration; 1
additional variable is added and 7 variables are removed.

Iteration 4: The problem is re-solved once more; the algorithm
converges since no additional variables are added. 2

Since we use only a subset of variables (i.e., forcing the rest of
the variables to be 0), sometimes, especially in early iterations, we
cannot find a solution that satisfies all constraints. We do the fol-
lowing to guarantee that the problem is solvable.

1. Instead of using equality constraints, we use upper- and lower-
bound constraints; that is, if the constraint has an equality
form of · · · = p, we change it to p− δ ≤ · · · ≤ p+ δ (again,
the problem can be solved by existing technology [4]). In the
first iteration we start with a very small δ. While the problem
is not solvable, we double δ and retry. In each of the later it-
erations, we start with the δ used in the previous iteration,
and reduce it by half for the next round if we find feasible
solutions without increasing it.

2. If after increasing δ several times and the problem is still
unsolvable, we expand variables as described, without any
pruning.

3. In the convergence round, we continue reducing δ by half
and re-solving the problem until δ is close to 0.

EXAMPLE 4.4. Reconsider Example 4.3. Observe that the so-
lution generated by the first iteration in Table 2 does not add up
to one, in fact the sum of the variables is equal to 1.02. A δ=0.03
was added to form the upper and lower bounds of the constraints
since the problem was infeasible under the given constraints ex-
pressed with only nine variables. With δ=0.03 a feasible solution
was generated in the first iteration, and the delta was reduced by
half. The second iteration used δ=0.015, while the third iteration
used δ=0.0075. At the end of the fourth iteration, we reduce δ by
half and re-solve the problem until δ is close to zero.

Algorithm OVERLAPESTIMATION (Algorithm 1) gives the frame-
work for our algorithm. It proceeds in five steps.

1. First, generate the initial set of variables (Line 1).
2. Solve the maximum entropy problem accordingly. (Line 5).
3. If the problem is not solvable, double δ (Line 13) or expand

the variables (Lines 9-11).
4. Otherwise, add new variables and remove variables with small

values (Lines 16-20). If the problem is solvable without in-
creasing δ, reduce δ by half (Lines 21-22).

5. Repeat Steps 2-4 until there is no new variable to expand and
δ is reduced back to a small value (δ0) (Line 4).

PROPOSITION 4.5. Let s be the largest size of V̄ in an iteration
and θinfeasible be the number of times we double δ before variable
expansion. OVERLAPESTIMATION converges and solves the maxi-
mum entropy problem at most θinfeasible · |Ω| times, each time with
at most s variables and |O|+ |C|+ 1 constraints. 2

Algorithm 1: OVERLAPESTIMATION(Ω,C,O)
Input:

Ω /* Sources */ C,O /* Existing statistics */
Output:
V̄ /* Values for the valid variables */

1 V̄ ← INITIATEVARIABLES(Ω,C,O); ∆V̄ ← V̄ ;
2 δ = δ0; /* δ0 is a constant close to 0 */
3 ninfeasible = 0;/* number of allowed infeasible solutions */
4 while δ > δ0 OR ∆V̄ 6= ∅ do
5 MAXENTROPY(V̄ ,C,O, δ);//Solve the maximum entropy

problem with variables in V̄
6 if infeasible solution then
7 ninfeasible + +;
8 if ninfeasible > θinfeasible then
9 ∆V̄ ← EXPANDVARS(V̄ ,∆V̄ ,C,O);

10 V̄ ← V̄ ∪∆V̄ ;
11 ninfeasible ← 0;
12 else
13 δ ← δ ∗ 2;
14 end
15 else
16 if ∆V̄ 6= ∅ then
17 ∆V̄ ← EXPANDVARS(V̄ ,∆V̄ ,C,O);
18 REMOVEVARS(V̄);
19 V̄ ← V̄ ∪∆V̄ ;
20 end
21 if ninfeasible = 0 then
22 δ ← δ/2;
23 end
24 ninfeasible = 0;
25 end
26 end

Table 3: Number of variables in MaxEnt, removed and added
in each iteration of the scalable solution for Example 3.7.

Vars # Vars Removed # Vars Added
Iteration 1 9 2 14
Iteration 2 21 10 5
Iteration 3 16 7 1
Iteration 4 10 1 0

EXAMPLE 4.6. Consider applying OVERLAPESTIMATION to
Example 3.7. Table 3 shows the number of inserted variables and
deleted variables in each iteration when θ = .03 (details in Ta-
ble 2). We observe that (1) OVERLAP considers at most 21 vari-
ables in each iteration rather than all of the 32 variables (when we
have more sources, the difference is typically much larger); and (2)
OVERLAPESTIMATION obtains fairly similar results to the basic
solution–the average absolute difference between the basic solu-
tion (Table 1) and the scalable solution (Table 2) is 0.028. 2

As shown in our experiments (Section 7.3), our overlap esti-
mation algorithm significantly improves efficiency and scalability,
while still being able to find a good ordering of the sources.

5. SOURCE ORDERING
With the estimated overlap information, we can order the sources

for obtaining the largest area-under-the-curve. This section de-
scribes two ordering schemes: static ordering orders the sources
once upfront; dynamic ordering collects new statistics along with
query answering and adjusts the ordering accordingly.

Algorithm 2: STATIC(S,O,C, Q)

Input:
Ω /* Sources */ C,O /* Existing statistics */
Q /* Query */

Output:
Ā = Q(Ω) /* Answer tuples */

1 V̄ ← OVERLAPESTIMATION(Ω,C,O);
2 ~S←�;
3 while |~S| < |Ω| do
4 Add SOURCESELECTION(Ω, ~S, V̄) to ~S; /* Choose the

source with the largest ratio of residual contribution over
cost */

5 end
6 Answer Q in the ordering of ~S and return answers;

Algorithm 3: SOURCESELECTION(Ω, Ŝ, V̄)
Input:

Ω /* Sources */ Ŝ /* Already selected sources */
V̄ /* Estimated variable values */

Output:
S /* Next source to query */

1 RC[S]← 0 for each S ∈ Ω \ Ŝ;
2 foreach VŜ′ ∈ V̄ do
3 if Ŝ ∩ Ŝ′ = ∅ then
4 foreach S ∈ Ŝ′ do
5 RC[S]← RC[S] + VŜ′ ;
6 end
7 end
8 end
9 return arg maxS

RC[S]
Cost[S]

;

5.1 Static ordering
Once we know all overlap information, we can order the sources

greedily: start with the source with the highest ratio of coverage
over cost, and subsequently, select the source with the largest ratio
of residual contribution over cost to query next. Algorithm STATIC
gives the details. The key in this process is to compute residual
contribution efficiently, which we describe next.

Let Ŝ be the already queried sources and S be a remaining source.
Recall that the residual contribution of S w.r.t. Ŝ is defined as
PQ(S\Ŝ) = |Q(Ŝ∪{S})|−|Q(Ŝ)| and can be computed from the
overlap information by Eq.(1). A naive evaluation of this equation
would access 2|Ŝ| overlaps and take exponential time. In addition,
computing overlaps from V(Ω) is also expensive. However, we
can actually compute residual contributions directly from V̄ (recall
that V̄ ⊆ V(Ω) contains variables with non-zero estimated value)
by adding up the variables where the considered source S is posi-
tively expressed and every source in Ŝ is negatively expressed.

PQ(S \ Ŝ) =
∑

V
Ŝ′∈V̄ ,Ŝ∩Ŝ′=∅,S∈Ŝ′

VŜ′ . (2)

Algorithm SOURCESELECTION finds the next source to probe
according to V̄ . For each variable that expresses every source in Ŝ
negatively, the algorithm adds its (estimated) value to the residual
contribution of each of its positively expressed sources (Lines 3-7).
As a result, its running time isO(|V̄ |·|Ω|). As we noted previously,

Table 4: Solution for dynamic ordering (solution shown for
variables whose estimates are above θ).

Src A Src C Src D
Variables PQ(∪{A,C}) PQ(∪{A,C,D})

= .7 = .83

A′ B C′ D′ E′ .04 .06 -
A′ B′ C D′ E′ .23 .19 .23
A′ B′ C′ D E′ .13 .10 .13
A′ B′ C′ D′ E .03 .10 .04

A B C′ D′ E′ .27 .27 .27
A B′ C′ D E′ .17 .17 .17
A B C D E′ .03 .03 .03
A′ B C′ D′ E .06 - .08
A′ B C D E′ - .04 .04
A′ B C D E .04 .03 -

typically the set of |V̄ | is small, so we can compute each residual
contribution very efficiently.

PROPOSITION 5.1. Let fest be the complexity for overlap esti-
mation. Algorithm STATIC takes time O(fest + |V̄ | · |Ω|2). 2

EXAMPLE 5.2. Consider selecting sources according to the es-
timated overlaps in Example 4.3. We first select source A, as it has
the largest coverage (recall that we assume unit cost of all sources).
The residual contribution of the other sources, given that source A
has been probed, is computed as follows:
PQ(B \ A) = A′BC′D′E′ + A′ BC DE + A′ B C′ D′E = 0.14
PQ(C \ A) = A′B′CD′E′ + A′BC DE = 0.27
PQ(D \ A) = A′B′C′DE′ + A′BCDE = 0.17
PQ(E \ A) = A′B′C′D′E + A′BCDE + A′ BC′D′E = .13

Among them, C has the largest residual contribution and we se-
lect it to query next. Following this approach, we generate the or-
dering Ls : ACDBE. Note however that this ordering is different
from the optimal ordering Ld : ACDEB. 2

5.2 Dynamic ordering
As Example 5.2 shows, the statistics provided as input may be

imprecise and incomplete and can often lead to sub-optimal order-
ing. When we query a source, we can collect some more precise
statistics with very little additional cost. Such statistics include the
coverage of the source and the union of all queried sources. DY-
NAMIC ordering improves over STATIC ordering by incorporating
such new statistics to re-estimate the overlaps and the new results
may improve the ordering of the unprobed sources.

EXAMPLE 5.3. Continue with Example 5.2. Recall that the or-
dering according to the given statistics is ACDBE while the opti-
mal ordering isACDEB. This is because none of the given statis-
tics indicates that E is disjoint from A,B and D while B overlaps
with D significantly.

In DYNAMIC ordering, we still first query sources A and C. At
this point, we collect additional information PQ(∪{A,C}) = .7
(the union of A and C). As shown in Table 4, this additional statis-
tic changes our estimates of the variables; however, D still has the
highest residual contribution and is selected to query next. After
probing D, we know in addition PQ(∪{A,C,D}) = 0.83. Note
that according to estimates in the first round, we would compute
that PQ(∪{A,C}) = .74 and PQ(∪{A,C,D}) = 0.87.

With the knowledge that each of the two unions is actually smaller,
we would infer a much lowerA′BC′D′E′ (dropping from the orig-
inal .04 to 0) and a slightly higher A′B′C′D′E (increasing from
the original .03 to .04). At this point, we compute the residual

Algorithm 4: DYNAMIC(Ω,O,C, Q,N)

Input:
Ω /* Sources */ C,O /* Existing statistics */
Q /* Query */ N /* Expected number of answers */

Output:
Ā = Q(Ω) /* Answer tuples */

1 S←�; Ā← �;

2 S ← arg maxS∈Ω
PQ(S)

Cost(S)
;

3 while |S| < |Ω| do
4 Ā← Ā ∪Q(S);
5 Update C with PQ(S) = |Q(S)|

N
;

6 Add PQ(Ŝ ∪ S) = |Ā|
N

to O;
7 V̄ ← OVERLAPESTIMATION(Ω,C,O);
8 S ← SOURCESELECTION(Ω, S, V̄);
9 end

contribution of B as 0.08 and that of E as 0.12, so decide to
query E next instead of B. This results with the optimal ordering
Ld : ACDEB. 2

Algorithm DYNAMIC proceeds in four steps.

1. Select the source with the highest ratio of coverage over cost
to query first (Line 2).

2. As the source is queried, output new answers, compute its
coverage and the union of this source with already probed
other sources, and update the statistics (Lines 4-6).

3. Re-estimate overlaps and then select the source with the largest
residual contribution to query next by invoking SOURCESE-
LECTION (Lines 7-8).

4. Repeat Steps 2-3 until all sources are queried (Line 3).

Note that originally O contains only overlap information. As
sources are queried, the newly collected union information is added
to O; however, the framework OVERLAPESTIMATION is also ap-
plicable when O contains union information. Also note that the
coverage and union are estimated against the expected number of
answers, denoted by N . This number is taken as an input; it can
be estimated according to either a-priori domain knowledge or the
given statistics. Finally, note that Algorithm STATIC has similar
structure as DYNAMIC except that it skips Lines 5-6 in DYNAMIC
and estimates overlap only once upfront.

PROPOSITION 5.4. Let fest be the complexity for overlap esti-
mation. Algorithm DYNAMIC takes time O(fest · |V̄ | · |Ω|2). 2

Although statistics collection and overlap estimation when we
query each source introduces overhead, as shown in our experi-
ments, the extra statistics can significantly improve source ordering
and improve the rate of answer returning.

6. STATISTICS ENRICHMENT
As was shown, collecting additional statistics from each newly

queried source often leads to better orderings. Thus, it may be
desirable to collect more unknown statistics for even better order-
ing. We can compute the overlap between already probed sources
or compute overlap for unprobed sources via sampling. If possi-
ble, we can also use statistics from some third parties; an exam-
ple of third-party servers is data markets that provide profiles of
data sources. Our experiments show that even statistics only from

queried sources can already improve source ordering, and more
statistics about unqueried sources can further improve the ordering.

In this process we need to deal with resource restrictions: (1)
computing overlaps and retrieving statistics can take time (both
from our end and from third-parties) and thus will increase query-
answering time; (2) third parties may charge for each required statis-
tic. Thus, we wish to carefully select only a small portion of statis-
tics for enrichment.

EXAMPLE 6.1. Re-consider the sources in Figure 1. To illus-
trate the benefit of statistics enrichment, we assume that we know
only source coverage and one overlap statistic, PQ(∩{A,D}).
The dynamic ordering according to this input is ABDCE, which
is sub-optimal.

Although we can collect information for all remaining overlaps
(25−1−1 = 30) and accordingly obtain the optimal ordering, the
overhead can be significant. Indeed, just knowing in addition the
statistic PQ(∩{A,B}) can already lead to an optimal ordering if
we apply DYNAMIC. On the other hand, the additional statistics
for PQ(∩{A,E}) would generate a dynamic ordering ACBDE,
which cannot improve the ordering much. This shows the impor-
tance of statistics selection. 2

This section first describes how we enhance the static ordering
and dynamic ordering with enriched statistics; we call the resulting
algorithms STATIC+ and DYNAMIC+ respectively (Section 6.1).
Then, it describes how we select the set of statistics with the highest
impact to enrich (Section 6.2).

6.1 Static+ and Dynamic+
Figure 4 shows the control-flow diagram of static ordering with

statistics enrichment, which we call STATIC+. We started with
overlap estimation and then select a set of statistics to enrich. With
the new statistics, we re-do overlap estimation and apply static or-
dering, essentially running STATIC.

Figure 5 shows the control-flow diagram of DYNAMIC+, dy-
namic ordering with statistics enrichment. Dynamic ordering has
the benefit that instead of deciding the ordering upfront, each time
it selects only one source to query next. This makes it possible to
parallelize source querying and statistics enrichment. DYNAMIC+
uses two threads. Thread 1 selects a new source, queries it, and
collects statistics from it, essentially the same as DYNAMIC. Mean-
while, Thread 2 iteratively selects an unknown overlap and obtains
information for it. Once Thread 1 finishes, Thread 2 terminates.

In summary, Figure 6 shows the relationships of the four order-
ing algorithms we have presented.

6.2 Statistics selection
To save both time and cost for statistics enrichment, we assume

we select at mostK statistics, so we need to wisely select the statis-
tics to enrich. We focus on overlaps, since other statistics such as
unions can be inferred from coverage and overlaps. Intuitively, we
wish to enrich the overlap that would change the current estimated
variables most. First, such overlaps are likely to cover a lot of vari-
ables; for example, the overlap of sources A and B covers many
more variables than that of sources A,B, . . . , E, and so can af-
fect the estimation of more variables. Second, such overlaps are
likely to be fairly big so the real value for a variable it covers can
be quite different from the estimate following the Maximum En-
tropy principle (assuming no extra correlation). For example, if
we know PQ(∩{A,B}) = .8 and PQ(∩{A,C}) = .01, the esti-
mated overlap of sources A,B,D (at most .8) can be more differ-
ent from the real one than that of A,C,D (at most .01), so overlap
PQ(∩{A,B}) has a higher impact.

Figure 4: Control-flow diagram
for STATIC+. Initially O′ = ∅.

Figure 5: Control-flow diagram for DYNAMIC+.
Initially O′ = ∅.

Figure 6: Comparison of algorithms.

Table 5: Statistics for data sets.
Book I Book II

Cov 2-Way Cov 2-Way Conn. Per-tuple
Overlap Overlap Cost Cost

Avg. 0.021 0.123 0.138 0.323 478 0.035
Stdev. 0.005 0.036 0.018 0.042 187 0.041
Min 0.001 0 0.001 0 291 0.005
Max 0.562 0.665 0.562 0.886 834 0.149

When we solve the Maximum Entropy problem, we can compute
the sensitivity of a variable with little additional cost. Sensitivity is
defined as the amount of change allowed in the variable to obtain
the same value of the objective function; thus, the variables whose
values are less certain are likely to have higher sensitivity and those
with more certain values are likely to have lower sensitivity. Con-
sistently, an overlap with higher accumulated sensitivity tends to
cover more variables and the associated estimated value is often
big. Our empirical study shows that such overlaps can have higher
impact and our knowledge of them can lead to better ordering.

Specifically, we select statistics in three steps. First, we start
with 2-way overlaps and compute the sensitivity of an overlap as
the accumulated sensitivity from its contained variables in V̄ . Sec-
ond, for each overlap of Ŝ we iteratively compute sensitivity for
Ŝ’s supersets; here we use a threshold θsen, which indicates large
impact, and skip further traversal once the sensitivity for an overlap
is below θsen. Finally, we order the overlaps first by sensitivity and
then by the estimated value, and select the first up to K statistics
whose sensitivity is above θsen.

7. EXPERIMENTAL RESULTS
We proceed with an experimental study of OASIS showing that

it can significantly speed up query answering in terms of increasing
the area-under-the-curve and reducing the time of getting a large
percentage (e.g., 90%) of answers.

7.1 Experiment setup
Data: We experimented on two data sets with different character-
istics: one with more sources and higher overlaps than the other.
The first data set, referred to as Book I, was obtained by crawling
computer-science books from AbeBooks.com, an online aggregator
of bookstores. It contains 1028 bookstores (sources), 1256 unique
books, and 25347 book records in total. Each source provides from
1 to 630 books, and on average 211 books; 85% of the sources pro-
vide fewer than 5% books. We observed that the mean connection
time to a website listed in AbeBooks is 356 ms and that of transmis-
sion of one tuple is 0.3 ms, so we set them as the fixed costs across

all sources for this data set to focus the experiments on overlap es-
timation and source ordering.

The second data set, referred to as Book II, is a larger data set de-
rived from Book I. It contains all sources in Book I. In addition, we
randomly selected one third of the data sources for replication once,
twice or three times to create new data sources. When we create a
new source, we randomly decided a probability 0 < p < 1 for each
source; each record in the original data source was either copied as
is to the new source with probability p, or replaced by a randomly
selected book record in the data set. This data set contains 2150
data sources, 1256 unique books, and 58232 book records in total.
For each source we randomly chose a connection cost in [250, 850]
ms, and a per-tuple transfer cost in [.005, .15] ms. Note that Book
II considers sources with faster per-tuple transfer than Book I, as
per-tuple transfer cost is likely to be reduced substantially with net-
work speedup without significantly affecting the mean connection
time to a website. Table 5 gives statistics for the two data sets.

We computed the coverage of each source in the two data sets
and also the overlap between each subset of up to 10 sources. Since
in practice we seldom have precise information for coverage and
overlap, we perturbed each statistic randomly by increasing or de-
creasing it by 10-50%. By default we randomly selected 250 over-
laps as input; we may also range the number from 20 to 500. In
dynamic ordering, we used precise coverage and union informa-
tion for statistics collected from queried sources.

When simulating query answering, we perturbed querying cost
randomly by 10-50% for unexpected connection delay and impre-
cise knowledge. By default we assume existence of a third-party
statistics server from which we can inquire overlaps between a sub-
set of sources; we also experimented for cases when such servers
do not exist. We used perturbed overlaps as statistics returned by
such a server. By default we assume it takes 250 milliseconds (ms)
to compute one overlap from queried sources or obtain it from the
server; we also ranged this number from 50 to 500 ms.

Implementations: We implemented seven ordering algorithms.

• RANDOM: Randomly choose an order of the sources.
• COVERAGE: Order the sources in decreasing coverage order.
• BASELINE: As a very simple way of considering overlaps

in source ordering, order the sources by their residual con-
tribution computed as follows.: Let Ŝ be the set of selected
sources and S be a new source. Among the given overlaps
with S and at least one source in Ŝ, choose the highest over-
lap and subtract it from PQ(S) as S’s residual contribution;
i.e., PQ(S\Ŝ) = PQ(S)−maxPQ(Ŝ′)∈O,Ŝ∩Ŝ′ 6=∅,S∈Ŝ′ PQ(Ŝ′).
• STATIC: Algorithm STATIC.
• DYNAMIC: Algorithm DYNAMIC.

Figure 7: Area-under-the-curve for Book I and Book II.

• STATIC+: Algorithm STATIC+.
• DYNAMIC+: Algorithm DYNAMIC+.
• FULLKNOWLEDGE: Apply STATIC with precise informa-

tion for all coverage and overlaps as input. Its performance
can be considered as the upper bound we can achieve al-
though it may not obtain the optimal ordering (Theorem 3.6).

In overlap estimation, we set θ = 1
1256

= .0008, θinfeasible =
5, δ0 = 0.05. In DYNAMIC, we assumed knowledge of the total
number of answers. In statistics selection, we set θsen = 0.005;
by default we inquired up to K = 250 statistics, and we ranged K
from 50 to 500.

We implemented all algorithms in Java 1.5, and ran our experi-
ments on a Windows 7 machine with 2.40GHz Intel Core i3 CPU
and 4GB of RAM. We used the LINDO non-linear solver [6], which
is publicly available, for solving the MAXENT problem.

Measures: We used query SELECT * FROM Bookstores and
evaluated the performance of our algorithms using two measures:
(1) Area-under-the-curve is as defined in Section 3, with the only
difference that the Y-axis is the percentage of the returned answers
over all answers; (2) Execution time is the time for returning 90% of
the answers. Since we have perturbed coverage and overlap statis-
tics, we expect similar results for other queries. We measured CPU
time as real execution time, including overlap estimation, source or-
dering, statistics selection, statistics inquiry, and retrieving answers
from the sources.

7.2 Overall performance
Sequential querying: We first compared various methods under
default settings when we query the sources sequentially. Figure 7
shows the percentage of answers returned by each method at each
time point using a single thread for source querying on both data
sets. We have the following observations.

First, both naive solutions are very slow. RANDOM was the slow-
est in returning results and had the smallest area-under-the-curve;

Table 6: Time of returning 90% answers by DYNAMIC+.
M 1 2 3 4 5

Time (sec) 12.3 11.7 9.2 6.9 8.0

it spent 2.7 minutes in returning 90% answers on Book I and 6.3
minutes on Book II. COVERAGE was slightly faster than RANDOM,
by 38% and 46% for Book I and Book II, respectively.

Second, considering overlaps can speed up query answering. BASE-
LINE, which considers overlaps in a naive way, was faster than
COVERAGE by 21% and 29%. STATIC, which estimates overlaps
following the Maximum Entropy principle, was faster than BASE-
LINE despite the overhead from overlap estimation; its speed up is
by 15% and 28%.

Third, DYNAMIC, which collects statistics about the queried sources
and dynamically selects the next source to query, was faster than
STATIC by 21% and 28% for Book I and Book II, respectively,
showing that the extra statistics does help.

Fourth, STATIC+ was significantly faster than STATIC by 54%
and 75%, while DYNAMIC+ was 56% and 81% faster compared
with DYNAMIC.

Fifth, we observed that although STATIC+ spent 10 seconds up-
front selecting statistics and inquiring them (so the curve is flat at
the beginning), it quickly caught up after that and was even faster
than DYNAMIC (by 13% and 38%), showing the benefit of obtain-
ing a lot of critical statistics upfront. On the other hand, although
DYNAMIC+ does not obtain all additional statistics upfront but in-
quires them along the way, it was still faster than STATIC+ (by 38%
and 150% respectively) since (1) it uses another thread for statis-
tics inquiry and has almost no overhead, and (2) it obtains a better
ordering, as we shall discuss next.

Finally, DYNAMIC+ is the fastest, spending no more than 1.2
minutes in returning 90% answers on both data sets and was 1.6
and 9.9 times faster than RANDOM for Book I and Book II, respec-
tively. Furthermore, its performance is also very close to FULL-
KNOWLEDGE, to obtain full coverage DYNAMIC+ is slower only
by 8% and 29% for Book I and Book II, respectively.

To better understand the results, we also plotted the percentage
of returned answers with respect to the number of queried sources
on Book I (Figure 8). Our observations are consistent with the ob-
servations on Figure 7. In particular, STATIC queried 480 sources
to obtain 90% of the answers, while DYNAMIC+ queried only 200
sources. Note that at the beginning DYNAMIC+ did not obtain a
better ordering than STATIC+, because STATIC+ essentially has
more statistics to start with; however, as DYNAMIC+ queried sources,
it had more precise estimates of the overlaps and selected more crit-
ical statistics to inquire, so after querying 60 sources, it returned
more answers than STATIC+. Indeed, DYNAMIC+ queried only
200 sources to obtain 90% of the answers, while FULLKNOWL-
EDGE queried 160 sources for this purpose.

Parallel querying: Our algorithms can be easily adapted when we
have multiple threads for querying and source selection. Figure 9
plots query-answering time for returning 90% answers when vary-
ing the number of threads from 1 to 12. In DYNAMIC+, we use
M = 1 thread for statistics enrichment. We observe the same or-
dering of the various methods. In addition, we observe that (1) the
more threads, the less execution time; (2) the speedup is not lin-
ear with respect to the number of threads, as we typically observe
for parallel systems; and (3) the speedup flattens out when we have
more than 5 threads. Indeed, when we have 5 threads, we can return
90% answers from thousands of sources in only a few seconds.

Table 6 shows the time of returning 90% answers by DYNAMIC+
when there are 12 threads and when we vary M from 1 to 5. We

Figure 8: Returned answers vs. # sources
queried (Book I).

Figure 9: Parallel query answering
(Book II).

Figure 10: Scalability of various methods
(Book I).

observe that increasing M from 1 to 4 would reduce execution
time, since we get more statistics and so better ordering of the
sources. Then continuing to increase M would increase execution
time, showing that the benefit of obtaining a better ordering cannot
exceed the loss of querying fewer sources at the same time.
Scalability: To evaluate scalability of the algorithms, we generated
a pool of sources as follows. We first duplicated the sources three
times and duplicated the books two times; we then created 2000
books and assigned them to the sources randomly. We randomly
chose 1000 to 4100 sources from this pool for our experiments; as
the number of sources increased, we also increased the statistics
(#overlaps) linearly and randomly chose new statistics to add. Fig-
ure 10 reports the execution time for returning 90% answers when
we query sources sequentially. We observed quite smooth linear
growth of execution time for various methods; however, the grow-
ing rates are different. The rate is the highest for RANDOM, COV-
ERAGE, BASELINE, on average 2.4 second per 100 sources; lower
for STATIC, DYNAMIC, on average 1.5 second per 100 sources; and
lowest for STATIC+, DYNAMIC+, only .005 second per 100 sources
for DYNAMIC+. When the number of sources increased from 1000
to 4100, the execution time for DYNAMIC+ increased only from 45
seconds to 64 seconds.

We next examine various aspects of our algorithm using Book I
assuming sequential query answering.

7.3 Evaluating overlap estimation
Scalable solution vs basic solution: We first compared Algorithm
OVERLAPESTIMATION with the basic way of solving the MAX-
ENT problem, which can involve 2|Ω| variables. Since the basic
solutions cannot deal with a large number of sources, we randomly
chose 30 sources from the data set, which would require 1 bil-
lion variables. Figure 11 plots the percentage of returned answers
versus the number of queried sources for both methods. We ob-
served that the basic solution did find a slightly better ordering of
the sources, although the difference is not big. However, OVER-
LAPESTIMATION finished in milliseconds on 30 sources, whereas
the basic solution spent three days. This experiment shows that
our scalable solution for overlap estimation is much more efficient
without sacrificing the quality of the ordering too much.
Effect of initial statistics: We next considered the effect of the
number of initial overlaps on overlap estimation and source order-
ing. We varied the number of initial statistics from 20 to 500. Fig-
ure 12 shows the relative error between the true value and the es-
timated value of the variables, and Figure 13 shows the execution
time for returning 90% answers when we applied DYNAMIC. (1)
As we have more initial statistics, we do have better estimates, but
the error curve flattens out after we reach 300 statistics. (2) On
the other hand, the fewer errors do not speed up query answering

much, if any, when we increase the number of overlaps from 20 to
200; after that the big overhead for overlap estimation slows down
query answering. This experiment shows the importance of making
a balance between accuracy of estimates and execution time.

7.4 Statistics enrichment
Statistics selection: To show the effectiveness of statistics-selection,
we compared various statistics-selection strategies. We considered
three options: 1) ordering first by sensitivity and then by estimated
value; 2) ordering only by sensitivity; and 3) ordering only by es-
timated value. Recall that our algorithm adopts the first option.
Figure 14 compares these three strategies with DYNAMIC when
K ranges from 50 to 500. We have the following observations.
(1) Considering both sensitivity and estimated value obtained the
best results. (2) Considering sensitivity alone obtained better re-
sults than considering estimated size alone. (3) Even considering
only one criterion can obtain better results than DYNAMIC, show-
ing the benefit of enriched statistics. (4) As we increased K, the
area-under-the-curve for DYNAMIC+ increased at the beginning,
but flattened out when K reaches 425, as the additional statistics
may not further improve the ordering. This experiment shows the
effectiveness of our statistics-selection techniques.
Type of enriched statistics: We next examined the contribution of
the chosen statistics. We compared three options: 1) BOTH obtains
overlaps between already probed sources and overlaps involving
unprobed sources (by inquiring third-party sources); 2) PROBED
obtains only overlaps between probed sources; 3) UNPROBED ob-
tains only overlaps involving unprobed sources. Figure 15 com-
pares these three options with DYNAMIC when K is varied from
50 to 500. We have three observations. (1) PROBED improved
the performance over DYNAMIC: when k = 500, the area-under-
the-curve is increased by 20%. (2) UNPROBED has better perfor-
mance than PROBED; this is not surprising because the former ob-
tains overlaps revealing more information about unprobed sources,
therefore it leads to better ordering among them. (3) BOTH im-
proved over PROBED, but only slightly (by 8% when K = 500).
This experiment shows that even if third-party servers do not ex-
ist, enriching statistics can improve performance; existence of such
servers would further improve the performance.
Overhead of obtaining statistics: Finally, we examined the effect
of the overhead of obtaining statistics on the performance of our
algorithms. Figure 16 shows execution time for obtaining 90% of
answers when we ranged statistics-requesting time from 50ms to
500ms. Obviously, as the overhead increases, the execution time
also increases. The execution time of STATIC+ increased by 60%,
with the much larger time for statistics inquiry. The execution time
of DYNAMIC+ also increased, but only by 15%, since DYNAMIC+
parallelizes statistics enrichment with source querying; the longer

Figure 11: Basic vs. approximate estima-
tion (Book I).

Figure 12: Average relative error vs. #
statistics (Book I).

Figure 13: Query answering time vs. #
statistics (Book I).

Figure 14: Statistic Selection. Figure 15: Probed vs. Unprobed Statistics. Figure 16: Statistic request time.

execution time is due to obtaining fewer statistics so the quality of
ordering is lower. This experiment shows the robustness of DY-
NAMIC+ with respect to the overhead of statistics inquiry.

7.5 Summary
We summarize our experimental results as follows.

1. Our overlap-estimation algorithm is both scalable and effec-
tive; it can find good ordering of the sources to speed up
query answering for sequential or semi-sequential querying.

2. DYNAMIC+ is the fastest among all ordering methods, has
a low growth rate of execution time when we increase the
number of sources and statistics, and is robust against the
overhead of statistics inquiry.

3. It is important to make a balance between accuracy and exe-
cution time in overlap estimation.

4. Getting more statistics along with query answering and dy-
namically adjusting source ordering can indeed improve per-
formance. However, having too many random statistics up-
front may even slow down query answering because of the
overhead for overlap estimation.

5. Our algorithm works well when we query sources in parallel.

8. CONCLUSIONS
We presented OASIS, an online query answering system whose

core is an efficient and scalable algorithm that orders overlapping
sources at runtime such that we can return answers to users fast in
an online fashion. We empirically show the advantage of our al-
gorithm over baseline source-ordering techniques on real data sets
that contain thousands of sources. Future work includes combining
our techniques with those that consider quality measures such as
data accuracy and freshness in query answering to return answers
both at a high speed and with high quality.

9. ACKNOWLEDGMENTS
This research was partially supported by NSF grants: IIS-0910859

and CNS-1305253.

10. REFERENCES
[1] J. Bleiholder, S. Khuller, F. Naumann, L. Raschid, and Y. Wu. Query

planning in the presence of overlapping sources. In EDBT, pages
811–828, 2006.

[2] B. Chokshi, T. Hernandez, and S. Kambhampati. Relevance and
overlap aware text collection selection. In ASU TR 06-019, 2006.

[3] N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis of structured
data on the web. VLDB, 5(7):680–691, Mar. 2012.

[4] M. Dudik, S. J. Phillips, and R. E. Schapire. Performance guarantees
for regularized maximum entropy density estimation. In the 17th
Annual Conf. on Computational Learning Theory, 2004.

[5] D. Florescu, D. Koller, and A. Y. Levy. Using probabilistic
information in data integration. In VLDB, pages 216–225, 1997.

[6] Lindo systems: Optimization software. http://www.lindo.com/.
[7] X. Liu, X. L. Dong, B. C. Ooi, and D. Srivastava. Online data fusion.

PVLDB, 4(11):932–943, 2011.
[8] Z. Nie, S. Kambhampati, and U. Nambiar. Effectively mining and

using coverage and overlap statistics for data integration. TKDE,
17:638–651, 2005.

[9] C. Ré and D. Suciu. Understanding cardinality estimation using
entropy maximization. In PODS, 2010.

[10] A. Roth. Completeness-driven query answering in peer data
management systems. In VLDB, 2007.

[11] A. D. Sarma, X. L. Dong, and A. Halevy. Data integration with
dependent sources. In EDBT, 2011.

[12] D. Srivastava and S. Venkatasubramanian. Information theory for
data management. PVLDB, 2(2):1662–1663, 2009.

[13] B. Trushkowsky, T. Kraska, M. Franklin, and P. Sarkar.
Crowdsourced enumeration queries. In ICDE, 2013.

[14] V. Vassalos and Y. Papakonstantinou. Using knowledge of
redundancy for query optimization in mediators. In AAAI Workshop
on AI and Info. Integration, 1998.

