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ABSTRACT
This paper reports our first set of results on managing un-
certainty in data integration. We posit that data-integration
systems need to handle uncertainty at three levels, and do
so in a principled fashion. First, the semantic mappings be-
tween the data sources and the mediated schema may be
approximate because there may be too many of them to be
created and maintained or because in some domains (e.g.,
bioinformatics) it is not clear what the mappings should be.
Second, queries to the system may be posed with keywords
rather than in a structured form. Third, the data from the
sources may be extracted using information extraction tech-
niques and so may yield imprecise data.

As a first step to building such a system, we introduce the
concept of probabilistic schema mappings and analyze their
formal foundations. We show that there are two possible
semantics for such mappings: by-table semantics assumes
that there exists a correct mapping but we don’t know what
it is; by-tuple semantics assumes that the correct mapping
may depend on the particular tuple in the source data. We
present the query complexity and algorithms for answering
queries in the presence of approximate schema mappings,
and we describe an algorithm for efficiently computing the
top-k answers to queries in such a setting.

1. INTRODUCTION
Data integration and exchange systems offer a uniform in-

terface to a multitude of data sources and the ability to share
data across multiple systems. These systems have recently
enjoyed significant research and commercial success [12, 14,
16]. Current data integration systems are essentially a natu-
ral extension of traditional database systems in that queries
are specified in a structured form and data is modeled in
one of the traditional data models (relational, XML). In ad-
dition, the data integration system has exact knowledge of
how the data in the sources map to the mediated schema
used by the data integration system.

We argue that as the scope of data integration applica-
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tions broadens, such systems need to be able to model uncer-
tainty at their core. Uncertainty can arise for multiple rea-
sons in data integration. First, the semantic mappings be-
tween the data sources and the mediated schema may be ap-
proximate. For example, in an application like Google Base
or when mapping millions of sources on the deep web [21], we
cannot imagine specifying exact mappings. In some domains
(e.g., bioinformatics), we do not necessarily know what the
exact mappings are. Second, if the intended users of the ap-
plication are not necessarily familiar with schemas, or if the
domain of the system is too broad to offer form-based query
interfaces (such as web forms), we need to support keyword
queries. Hence, a second source of uncertainty is the trans-
formation between keyword queries and a set of candidate
structured queries. Finally, data is often extracted from un-
structured sources using information extraction techniques.
Since these techniques are approximate, the data obtained
from the sources may be uncertain.

Extending data integration systems to handle uncertainty
is also a key step to realizing Dataspace Support Platforms [15].
The key idea of dataspaces is that data sources can be added
with very little (or no) effort and the system still provides
useful search, query and exploration services. Over time,
the system evolves in a pay-as-you-go fashion to improve
the quality of semantic mappings where they matter, there-
fore improving the quality of query answering. Hence, the
data integration system we describe provides the underlying
mechanisms that enable the dataspace to manage uncer-
tainty about the semantic mappings, the queries, and the
underlying data as the system evolves.

This paper takes a first step towards the goal of data
integration with uncertainty. We first describe how the ar-
chitecture of such a system differs from a traditional one
(Section 2). At the core, the system models tuples and se-
mantic mappings with probabilities associated with them.
Query answering ranks answers and typically tries to obtain
the top-k results to a query. These changes lead to a re-
quirement for a new kind of adaptivity in query processing.

We then focus on one core component of data integra-
tion with uncertainty, namely probabilistic schema map-
pings (Section 3). Semantic mappings are the component
of a data integration system that specifies the relationship
between the contents of the different sources. The mappings
enable the data integration to reformulate a query posed
over the mediated schema into queries over the sources [18,
13]. We introduce probabilistic schema mappings, and de-
scribe how to answer queries in their presence.

We define probabilistic schema mapping as a set of pos-



sible (ordinary) mappings between a source schema and a
target schema, where each possible mapping has an asso-
ciated probability. We begin by considering a simple class
of mappings, where each mapping describes a set of corre-
spondences between the attributes of a source table and the
attributes of a target table. We argue that there are two
possible interpretations of probabilistic schema mappings.
In the first, called by-table semantics, we assume there exists
a single correct mapping between the source and the target,
but we don’t know which one it is. In the second, called
by-tuple semantics, the correct mapping may depend on the
particular tuple in the source to which it is applied. In both
cases, the semantics of query answers are a generalization of
certain answers [1] for data integration systems.

We describe algorithms for answering queries in the pres-
ence of probabilistic schema mappings and then analyze the
computational complexity of answering queries (Section 4).
We show that the data complexity of answering queries in
the presence of probabilistic mappings is PTIME for by-
table semantics and #P-complete for by-tuple semantics.
We identify a large subclass of real-world queries for which
we can still obtain all the by-tuple answers in PTIME. We
then describe algorithms for finding the top-k answers to a
query (Section 5).

The size of a probabilistic mapping may be quite large,
since it essentially enumerates a probability distribution by
listing every combination of events in the probability space.
In practice, we can often encode the same probability dis-
tribution much more concisely. Our next contribution (Sec-
tion 6) is to identify two concise representations of proba-
bilistic mappings for which query answering can be done in
PTIME in the size of the mapping. We also examine the pos-
sibility of representing a probabilistic mapping as a Bayes
Net, but show that query answering may still be exponential
in the size of a Bayes Net representation of a mapping.

Finally, we consider several more powerful mapping lan-
guages, such as complex mappings, where the correspon-
dences are between sets of attributes, and conditional map-
pings, where the mapping is conditioned on properties of the
tuple to which it is applied (Section 7).

2. OVERVIEW OF THE SYSTEM
This section describes the requirements from a data in-

tegration system that supports uncertainty and the overall
architecture of the system. We frame our specific contribu-
tions in context of this architecture.

2.1 Uncertainty in Data Integration
A data integration system needs to handle uncertainty at

three levels.

Uncertain schema mappings: Data integration systems
rely on schema mappings for specifying the semantic rela-
tionships between the data in the sources and the terms used
in the mediated schema. However, schema mappings can be
inaccurate. In many applications it is impossible to create
and maintain precise mappings between data sources. This
can be because the users are not skilled enough to provide
precise mappings, such as in personal information manage-
ment [7], because people do not understand the domain well
and thus do not even know what correct mappings are, such
as in bioinformatics, or because the scale of the data pre-
vents generating and maintaining precise mappings, such as
in integrating data of the web scale [21]. Hence, in practice,
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Figure 1: Architecture of a data-integration system that

handles uncertainty.

schema mappings are often generated by semi-automatic
tools, and not necessarily verified by domain experts.

Uncertain data: By nature, data integration systems need
to handle uncertain data. One reason for uncertainty is that
data is often extracted from unstructured or semi-structured
sources by automatic methods (e.g., HTML pages, emails,
blogs). A second reason is that data may come from sources
that are unreliable or not up to date.

Uncertain queries: In some data integration applications,
especially on the web, queries will be posed as keywords
rather than as structured queries against a well defined schema.
The system needs to translate these queries into some struc-
tured form so they can be reformulated with respect to the
data sources. At this step, the system may generate multi-
ple candidate structured queries and have some uncertainty
about which is the real intent of the user.

2.2 System Architecture
Given the above requirements, we describe the architec-

ture of a data integration system that manages uncertainty
at its core. We describe the system by contrasting it to a
traditional data integration system.

The first and most fundamental characteristic of this sys-
tem is that it is based on a probabilistic data model. This
means two things. First, as we process data in the system
we attach probabilities to each tuple. Second, and the focus
of this paper, is that schema mappings are also associated
with probabilities, modeling our uncertainty about which
ones are correct. We note that the probabilities associated
with tuples, mappings, and answers are mostly internal to
the system, and are not meant to be exposed to users. Typ-
ically, we will use these probabilities to rank answers.

Second, whereas traditional data integration systems be-
gin by reformulating a query onto the schemas of the data
sources, a data integration system with uncertainty needs
to first reformulate a keyword query into a set of candidate
structured queries. We refer to this step as keyword refor-
mulation. Note that keyword reformulation is different from
techniques for keyword search on structured data (e.g., [17,
2]) in that (a) it does not assume access to all the data in
the sources or that the sources support keyword search, and
(b) it tries to distinguish different structural elements in the
query in order to pose more precise queries to the sources
(e.g., realizing that in the keyword query “chicago weather”,
“weather” is an attribute label and “chicago” is an instance



name). That being said, keyword reformulation should ben-
efit from techniques that support answering keyword search
on structured data.

Third, the query answering model is different. Instead of
necessarily finding all answers to a given query, our goal is
typically to find the top-k answers, and rank these answers
most effectively.

The final difference from traditional data integration sys-
tems is that our query processing will need to be more adap-
tive than usual. Instead of generating a query answering
plan and executing it, the steps we take in query process-
ing will depend on results of previous steps. We note that
adaptive query processing has been discussed quite a bit in
data integration [19], where the need for adaptivity arises
from the fact that data sources did not answer as quickly as
expected or that we did not have accurate statistics about
their contents to properly order our operations. In our work,
however, the goal for adaptivity is to get the answers with
high probabilities faster.

The architecture of the system is shown in Figure 1. The
system contains a number of data sources and a mediated
schema. When the user poses a query Q, which can be either
a structured query on the mediated schema, or a keyword
query, the system returns a set of answer tuples, each with
a probability. If Q is a keyword query, the system first
performs keyword reformulation to translate it into a set
of candidate structured queries on the mediated schema.
Otherwise, the candidate query is Q itself.

Consider how the system answers the candidate queries,
and assume the queries will not involve joins over multi-
ple sources. For each candidate structured query Q0 and
a data source S, the system reformulates Q0 according to
the schema mapping (which can be uncertain) between S’s
schema and the mediated schema, sends the reformulated
query (or queries) to S, retrieving the answers. If the user
asks for all the answers to the query, then the reformulated
query is typically a query with grouping and aggregation. If
S does not support grouping and aggregation, then grouping
and aggregation can be processed in the integration system.
If the user asks for top-k answers, then query processing is
more complex. The system reformulates the query into a
set of queries, and uses a middle layer to decide at runtime
which queries are critical to computing the top-k answers
and sends the appropriate queries to S. Note that there
can be multiple iterations of deciding the promising refor-
mulated queries and retrieving answers. Furthermore, the
system can even decide which data sources are more relevant
and prioritize the queries to those data sources. Finally, if
the data in the sources are uncertain, then the sources will
return answers with probabilities attached to them.

After receiving answers from different data sources, the
system combines them to get one single set of answer tu-
ples. For example, if the data sources are known to be
independent of each other, and we obtain tuple t from n
data sources with probabilities p1, . . . , pn respectively, then
in the final answer set t has probability 1−Πn

i=1(1− pi). If
we know that some data sources are duplicates or extensions
of others, a different combination function needs to be used.

2.3 Handling Uncertainty in Mappings
As a first step towards developing such a data integra-

tion system, we introduce in this paper probabilistic schema
mappings, and show how to answer queries in their pres-

Possible Mapping Prob
{(pname, name), (email-addr, email),

m1 = (current-addr, mailing-addr), 0.5
(permanent-addr, home-address)}
{(pname, name), (email-addr, email),

m2 = (permanent-addr, mailing-addr), 0.4
(current-addr, home-address)}

m3 = {(pname, name), (email-addr, mailing-addr), 0.1
(current-addr, home-addr)}

(a)
DS =

pname email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(b)
Tuple Prob

(’Sunnyvale’) 0.9
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(c)

Figure 2: The running example: (a) a probabilistic
schema mapping between S and T ; (b) a source in-
stance DS; (c) the answers of Q over DS with respect
to the probabilistic mapping.

ence. Before the formal discussion, we illustrate the main
ideas with an example.

Example 2.1. Consider a data source S, which describes
a person by her email address, current address, and perma-
nent address, and the mediated schema T , which describes a
person by her name, email, mailing address, home address
and office address:

S=(pname, email-addr, current-addr, permanent-addr)
T=(name, email, mailing-addr, home-addr, office-addr)

A semi-automatic schema-mapping tool may generate three
possible mappings between S and T , assigning each a proba-
bility. Whereas the three mappings all map pname to name,
they map other attributes in the source and the target differ-
ently. Figure 2(a) describes the three mappings using sets of
attribute correspondences. For example, mapping m1 maps
pname to name, email-addr to email, current-addr to mailing-
addr, and permanent-addr to home-addr. Because of the un-
certainty on which mapping is correct, we consider all of
these mappings in query answering.

Suppose the system receives a query Q composed on the
mediated schema and asking for people’s mailing addresses:

Q: SELECT mailing-addr FROM T

Using the possible mappings, we can reformulate Q into
different queries:

Q1: SELECT current-addr FROM S
Q2: SELECT permanent-addr FROM S
Q3: SELECT email-addr FROM S

If the user requires all possible answers, the system gen-
erates a single aggregation query based on Q1, Q2 and Q3 to
compute the probability of each returned tuple, and sends the
query to the data source. Suppose the data source contains
a table DS as shown in Figure 2(b), the system will retrieve



four answer tuples, each with a probability, as shown in Fig-
ure 2(c).

If the user requires only the top-1 answer (i.e., the an-
swer tuple with the highest probability), the system decides
at runtime which reformulated queries to execute. For ex-
ample, after executing Q1 and Q2 at the source, the system
can already conclude that (‘Sunnyvale’) is the top-1 answer
and can skip query Q3. 2

2.4 Source of probabilities
A critical issue in any system that manages uncertainty is

whether we have a reliable source of probabilities. Whereas
obtaining reliable probabilities for such a system is one of
the most interesting areas for future research, there is quite
a bit to build on. For keyword reformulation, it is possible
to train and test reformulators on large numbers of queries
such that each reformulation result is given a probability
based on its performance statistics. In the case of schema
matching, it is standard practice for schema matchers to also
associate numbers with the candidates they propose. The
issue here is that the numbers are meant only as a rank-
ing mechanism rather than true probabilities. However, as
schema matching techniques start looking a larger number
of schemas, one can imagine ascribing probabilities (or ap-
proximations thereof) to their measures. Finally, informa-
tion extraction techniques are also often based on statistical
machine learning methods, thereby lending their predictions
a probabilistic interpretation.

3. PROBABILISTIC SCHEMA MAPPING
In this section we formally define the semantics of proba-

bilistic schema mappings and the query answering problems
we consider. Our discussion is in the context of the rela-
tional data model. A schema contains a finite set of rela-
tions. Each relation contains a finite set of attributes and
is denoted by R = 〈r1, . . . , rn〉. An instance DR of R is a
finite set of tuples, where each tuple associates a value with
each attribute in the schema.

We consider select-project-join (SPJ) queries in SQL. Note
that answering such queries is in PTIME in the size of the
data.

3.1 Schema Mappings
We begin by reviewing non-probabilistic schema mappings.

The goal of a schema mapping is to specify the semantic re-
lationships between a source schema and a target schema.
We refer to the source schema as S̄, and a relation in S̄ as
S = 〈s1, . . . , sm〉. Similarly, we refer to the target schema
as T̄ , and a relation in T̄ as T = 〈t1, . . . , tn〉.

The common formalism for semantic mappings, GLAV, is
based on expressions of the form

m : ∀x(φ(x) → ∃yψ(x,y))

In the expression, φ is the body of a conjunctive query over
S̄ and ψ is the body of a conjunctive query over T̄ . A pair
of instances DS and DT satisfies a GLAV mapping m, if for
every assignment of x in DS that satisfies φ there exists an
assignment of y in DT that satisfies ψ.

We consider a limited form of GLAV mappings that in-
volve only projection queries on a single table on each side
of the mapping. These mappings have also been referred
to as schema matching in the literature [23]. Specifically,
we consider GLAV mappings where (1) φ (resp. ψ) is an

DS =
pname email-addr permanent-addr current-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(a)
name email mailing-addr home-addr office-addr
Alice alice@ Mountain View Sunnyvale office
Bob bob@ Sunnyvale Sunnyvale office

(b)
name email mailing-addr home-addr office-addr
Alice alice@ Sunnyvale Mountain View office
Bob email bob@ Sunnyvale office

(c)

Tuple Prob
(’Sunnyvale’) 0.9

(’Mountain View’) 0.5
(’alice@’) 0.1
(’bob@’) 0.1

(d)

Tuple Prob
(’Sunnyvale’) 0.94

(’Mountain View’) 0.5
(’alice@’) 0.1
(’bob@’) 0.1

(e)

Figure 3: Example 3.10: (a) a source instance DS;
(b) a target instance that is by-table consistent with
DS; (c) a target instance that is by-tuple consistent
with DS; (d) Qtable(DS); (e) Qtuple(DS).

atomic formula over S (resp. T ), (2) the GLAV mapping
does not include constants, and (3) each variable occurs at
most once on each side of the mapping. We consider this
class of mappings because they already expose many of the
novel issues involved in probabilistic mappings and because
they are quite common in practice. We also note that many
of the concepts we define apply to a broader class of map-
pings. In Section 7, we briefly discuss a set of extensions to
our mappings, such as complex mappings.

Given these restrictions, we can define our mappings in
terms of attribute correspondences. An attribute correspon-
dence is of the form cij = (si, tj), where si is a source at-
tribute in the schema S and tj is a target attribute in the
schema T . Intuitively, cij specifies that there is a rela-
tionship between si and tj . In practice, a correspondence
also involves a function that transforms the value of si to
the value of tj . For example, the correspondence (c-degree,
temperature) can be specified as temperature=c-degree∗1.8+
32, describing a transformation from Celsius to Fahrenheit.
These functions are irrelevant to our discussion, and there-
fore we omit them. Formally, we define relation mappings
and schema mappings as follows.

Definition 3.1 (Schema Mapping). Let S̄ and T̄ be
relational schemas. A relation mapping M is a triple (S, T,m),
where S is a relation in S̄, T is a relation in T̄ , and m is a
set of attribute correspondences between S and T .

When each source and target attribute occurs in at most
one correspondence in m, we call M a one-to-one relation
mapping.

A schema mapping M is a set of one-to-one relation map-
pings between relations in S̄ and in T̄ , where every relation
in either S̄ or T̄ appears at most once. 2

Example 3.2. Consider the mappings in Example 2.1.
We can view m1 as a GLAV mapping:

∀n, e, c, p(S(n, e, c, p) → ∃o(T (n, e, c, p, o)))



The database in Figure 2 (b) (repeated in Figure 3 (a)) and
the database in Figure 3 (b) satisfy m1. 2

3.2 Probabilistic Schema Mappings
Intuitively, a probabilistic schema mapping describes a

probability distribution of a set of possible schema mappings
between a source schema and a target schema.

Definition 3.3 (Probabilistic Mapping). Let S̄ and
T̄ be relational schemas. A probabilistic mapping (p-mapping),
pM , is a triple (S, T,m), where S ∈ S̄, T ∈ T̄ , and m is a
set {(m1,Pr(m1)), . . . , (ml,Pr(ml))}, such that

• for i ∈ [1, l], mi is a one-to-one mapping between S
and T , and for every i, j ∈ [1, l], i 6= j ⇒ mi 6= mj .

• Pr(mi) ∈ [0, 1] and
Pl

i=1 Pr(mi) = 1.

A schema p-mapping, pM, is a set of p-mappings between
relations in S̄ and in T̄ , where every relation in either S̄ or
T̄ appears in at most one p-mapping. 2

We refer to a non-probabilistic mapping as an ordinary
mapping. Note that a schema p-mapping may contain both
p-mappings and ordinary mappings. Example 2.1 shows a p-
mapping (see Figure 2(a)) that contains three possible map-
pings.

3.3 Semantics of Probabilistic Mappings
Intuitively, a probabilistic schema mapping models the

uncertainty about which of the mappings in pM is the cor-
rect one. When a schema matching system produces a set
of candidate matches, there are two ways to interpret the
uncertainty: (1) a single mapping in pM is the correct one
and it applies to all the data in S, or (2) multiple mappings
are correct and each suitable for a subset of tuples in S,
though it is unknown which mapping is the right one for
a specific tuple. Example 2.1 illustrates the first interpre-
tation. For the same example, the second interpretation is
equally valid: the correct mapping may depend on the par-
ticular tuple because some people use their current address
as mailing address and some people use their permanent
address as mailing address.

This paper analyzes query answering under both interpre-
tations. We refer to the first interpretation as the by-table
semantics and to the second one as the by-tuple semantics
of probabilistic mappings. We note that we are not trying
to argue for one interpretation over the other. The needs
of the application should dictate the appropriate semantics.
Furthermore, our complexity results, which will show ad-
vantages to by-table semantics, should not be taken as an
argument in the favor of by-table semantics.

We next define the semantics of p-mappings in detail; the
definitions for schema p-mappings are the obvious exten-
sions. The semantics of p-mappings is defined as a natural
extension of that of ordinary ones, which we review now. A
mapping defines a relationship between instances of S and
instances of T that are consistent with the mapping.

Definition 3.4 (Consistent Target Instance). Let
M = (S, T,m) be a relation mapping and DS be an instance
of S.

An instance DT of T is said to be consistent with DS and
M , if DS and DT satisfy m. 2

For a relation mapping M and a source instance DS , there
can be an infinite number of target instances that are con-
sistent with DS and M . We denote by TarM (DS) the set of
all such target instances. The set of answers to a query Q is
the intersection of the answers on all instances in TarM (DS).
The following definition is from [1].

Definition 3.5 (Certain Answer). Let M = (S, T,m)
be a relation mapping. Let Q be a query over T and let DS

be an instance of S.
A tuple t is said to be a certain answer of Q with respect

to DS and M , if for every instance DT ∈ TarM (DS), t ∈
Q(DT ). 2

By-table semantics: We now generalize these notions to
the probabilistic setting, beginning with the by-table seman-
tics.

Definition 3.6 (By-table Consistent Instance). Let
pM = (S, T,m) be a p-mapping and DS be an instance of
S.

An instance DT of T is said to be by-table consistent with
DS and pM , if there exists a mapping m ∈ m such that DS

and DT satisfy m. 2

Given a source instance DS and a possible mapping m ∈
m, there can be an infinite number of target instances that
are consistent with DS and m. We denote by Tarm(DS) the
set of all such instances.

In the probabilistic context, we assign a probability to
every answer. Intuitively, we consider the certain answers
with respect to each possible mapping in isolation. The
probability of an answer t is the sum of the probabilities of
the mappings for which t is deemed as a certain answer. We
define by-table answers as follows:

Definition 3.7 (By-table Answer). Let pM = (S, T,
m) be a p-mapping. Let Q be a query over T and let DS be
an instance of S.

Let t be a tuple. Let m̄(t) be the subset of m, such that for
each m ∈ m̄(t) and for each DT ∈ Tarm(DS), t ∈ Q(DT ).

Let p =
P

m∈m̄(t) Pr(m). If p > 0, then we say (t, p) is a

by-table answer of Q with respect to DS and pM . 2

By-tuple semantics: The key difference in the definition
of by-tuple semantics is that a consistent target instance is
defined by a mapping sequence that assigns a (possibly dif-
ferent) mapping in m to each tuple in DS . (Without losing
generality, in order to compare between such sequences, we
assign some order to the tuples in the instance).

Definition 3.8 (By-tuple Consistent Instance). Let
pM = (S, T,m) be a p-mapping and let DS be an instance
of S with d tuples.

An instance DT of T is said to be by-tuple consistent with
DS and pM , if there is a sequence 〈m1, . . . ,md〉 such that
for every 1 ≤ i ≤ d,

• mi ∈ m, and

• for the ith tuple of DS , ti, there exists a target tuple
t′i ∈ DT such that ti and t′i satisfy mi. 2

Given a mapping sequence seq = 〈m1, . . . ,md〉, we denote
by Tarseq(DS) the set of all target instances that are consis-
tent with DS and seq . Note that if DT is by-table consistent



with DS and m, then DT is also by-tuple consistent with DS

and a mapping sequence in which each mapping is m.
We can think of every sequence of mappings seq = 〈m1, . . . ,

md〉 as a separate event whose probability is Pr(seq) =
Πd

i=1Pr(mi). (In Section 7 we relax this independence as-
sumption and introduce conditional mappings.) If there are
l mappings in pM , then there are ld sequences of length d,
and their probabilities add up to 1. We denote by seqd(pM)
the set of mapping sequences of length d generated from pM .

Definition 3.9 (By-tuple Answer). Let pM = (S, T,
m) be a p-mapping. Let Q be a query over T and DS be an
instance of S with d tuples.

Let t be a tuple. Let seq(t) be the subset of seqd(pM), such
that for each seq ∈ seq(t) and for each DT ∈ Tar seq(DS),
t ∈ Q(DT ).

Let p =
P

seq∈seq(t) Pr(seq). If p > 0, we call (t, p) a

by-tuple answer of Q with respect to DS and pM . 2

The set of by-table (resp. by-tuple) answers for Q with
respect to DS is denoted by Qtable(DS) (resp. Qtuple(DS)).

Example 3.10. Consider the p-mapping pM , the source
instance DS , and the query Q in the motivating example.

In by-table semantics, Figure 3(b) shows a target instance
that is consistent with DS (repeated in Figure 3(a)) and pos-
sible mapping m1. Figure 3(d) shows the by-table answers
of Q with respect to DS and pM . As an example, for tuple
t =(‘Sunnyvale’), we have m̄(t) = {m1,m2}, so the possible
tuple (‘Sunnyvale’, 0.9) is an answer.

In by-tuple semantics, Figure 3(c) shows a target instance
that is by-tuple consistent with DS and the mapping sequence
< m2,m3 >. Figure 3(e) shows the by-tuple answers of Q
with respect to DS and pM . 2

4. QUERY ANSWERING COMPLEXITY
This section considers query answering in the presence of

probabilistic mappings. We describe algorithms for query
answering and study the complexity of query answering in
terms of the size of the data (data complexity) and the size of
the mapping (mapping complexity). We also consider cases
in which we are not interested in the actual probability of
an answer, just whether or not a tuple is a possible answer.

We show that returning all by-table answers is in PTIME
for both complexity measures; whereas returning all by-
tuple answers in general is #P-complete in data complex-
ity. We show that computing the probabilities is the culprit
here: even deciding the probability of a single answer tuple
under by-tuple semantics is already #P-complete, whereas
computing all by-tuple answers without returning the prob-
abilities is in PTIME. Finally, we identify a large subclass of
common queries where returning all by-tuple answers with
their probabilities is still in PTIME.

4.1 By-table Query Answering
In the case of by-table semantics, answering queries is

conceptually simple. Given a p-mapping pM = (S, T,m)
and an SPJ query Q, we can compute the certain answers
of Q under each of the mappings m ∈ m. We attach the
probability Pr(m) to every certain answer under m. If a
tuple is an answer to Q under multiple mappings in m, then
we add up the probabilities of the different mappings.

Algorithm ByTable takes as input an SPJ query Q that
mentions the relations T1, . . . , Tl in the FROM clause. Assume

Tuple Prob
(’Sunnyvale’) 0.94

(’Mountain View’) 0.5
(’alice@’) 0.1
(’bob@’) 0.1

(a)

Tuple Prob
(’Sunnyvale’) 0.8

(’Mountain View’) 0.8
(b)

Figure 4: (a) Q
tuple
1 (D) and (b) Q

tuple
2 (D).

that we have the p-mapping pMi associated with the table
Ti. The algorithm proceeds as follows.

Step 1: Generate the possible reformulations of Q by con-
sidering every combination of the form (m1, . . . ,ml), where
mi is one of the possible mappings in pMi. Denote the set
of reformulations by Q′

1, . . . , Q
′

k. The probability of a refor-
mulation Q′ = (m1, . . . ,ml) is Πl

i=1Pr(m
i).

Step 2: For each reformulation Q′, retrieve each of the
unique answers from the sources. For each answer obtained
by Q′

1 ∪ . . . ∪ Q′

k, its probability is computed by summing
the probabilities of the Q′’s in which it is returned.

Importantly, note that it is possible to express both steps
as a SQL query with grouping and aggregation. Therefore,
if the underlying sources support SQL, we can leverage their
optimizations to compute the answers.

With our restricted form of schema mapping, the algo-
rithm takes time polynomial in the size of the data and the
mappings. We thus have the following complexity result
(full proofs are given in [8]).

Theorem 4.1. Let pM be a schema p-mapping and let Q
be an SPJ query.

Answering Q with respect to pM is in PTIME in the size
of the data and the mapping. 2

GLAV mappings: It is rather straightforward to extend
the above results to arbitrary GLAV mappings. We de-
fine general p-mappings to be triples of the form pGM =
(S̄, T̄ ,gm), where gm is a set {(gmi, P r(gmi)) | i ∈ [1, n]},
such that for each i ∈ [1, n], gmi is a general GLAV mapping.
The definition of by-table semantics for such mappings is a
simple generalization of Definition 3.7. The following result
holds for general p-mappings.

Theorem 4.2. Let pGM be a general p-mapping between
a source schema S̄ and a target schema T̄ . Let DS be an
instance of S̄. Let Q be an SPJ query with only equality
conditions over T̄ . The problem of computing Qtable(DS)
with respect to pGM is in PTIME in the size of the data
and the mapping. 2

4.2 By-tuple Query Answering
To extend the by-table query answering strategy to by-

tuple semantics, we would need to compute the certain an-
swers for every mapping sequence generated by pM (see Defi-
nition 3.8). However, the number of such mapping sequences
is exponential in the size of the input data. The following
example shows that for certain queries this exponential time
complexity is not avoidable.

Example 4.3. Suppose that in addition to the tables in
Example 2.1, we also have U(city) in the source and V(hightech)
in the target. The p-mapping for V contains two possible
mappings: ({(city, hightech)}, .8) and (∅, .2).

Consider the following query Q, which decides if there are
any people living in a high-tech city.



Q: SELECT ‘true’
FROM T, V
WHERE T.mailing-addr = V.hightech

One may conjecture we can answer the query by first exe-
cuting the following two sub-queries Q1 and Q2, then joining
the answers of Q1 and Q2 and summing up the probabilities.

Q1: SELECT mailing-addr FROM T
Q2: SELECT hightech FROM V

Now consider the source instance D, where DS is shown
in Figure 2(a), and DU has two tuples (‘Mountain View’)

and (‘Sunnyvale’). Figure 4(a) and (b) show Qtuple
1 (D) and

Qtuple
2 (D). If we join the results of Q1 and Q2, we obtain for

the true tuple the following probability: 0.94∗0.8+0.5∗0.8 =
1.152. However, this is incorrect. By enumerating all con-
sistent target tables, we in fact compute 0.864 as the proba-
bility. The reason for this error is that generating the tuple
(‘Sunnyvale’) as an answer for both Q1 and Q2 and gener-
ating the tuple (‘Mountain View’) for both queries are not
independent events; thus, simply adding up their probabili-
ties leads to incorrect results. 2

In fact, we show that in general, answering SPJ queries
with by-tuple semantics with respect to schema p-mappings
is hard.

Theorem 4.4. Let Q be an SPJ query and let pM be a
schema p-mapping. The problem of finding the probabil-
ity for a by-tuple answer to Q with respect to pM is #P-
complete with respect to data complexity and is in PTIME
with respect to mapping complexity. 2

Recall that #P is the complexity class of some hard count-
ing problems (e.g., counting the number of variable assign-
ments that satisfy a boolean formula). It is believed that
we cannot solve a #P-complete problem in polynomial time,
unless P = NP . The lower bound in Theorem 4.4 is proved
by reducing the problem of counting the number of vari-
able assignments that satisfy a bipartite monotone 2DNF
boolean formula to the problem of finding the answers to Q.

In fact, the reason for the high complexity is exactly that
we are asking for the probability of the answer. The follow-
ing theorem shows that if we only want to know the possible
by-tuple answers, we can do so in polynomial time.

Theorem 4.5. Given an SPJ query and a schema p-map
ping, returning all by-tuple answers without probabilities is
in PTIME with respect to data complexity. 2

GLAV mappings: Extending by-tuple semantics to ar-
bitrary GLAV mappings is a bit trickier than by-table se-
mantics. It would involve considering Cartesian products
of mapping sequences, but the length of these products de-
pends on the number of tables in the query. We leave this
extension to future work.

4.3 Two Restricted Cases
In this section we identify two restricted but common

classes of queries for which by-tuple query answering takes
polynomial time. We conjecture that these are the only
cases where it is possible to answer a query in polynomial
time.

In our discussion we refer to subgoals of a query. The
subgoals are tables that occur in the FROM clause of a query.
Hence, even if the same table occurs twice in the FROM clause,
each occurrence is a different subgoal.

4.3.1 Queries with a single p-mapping subgoal
The first class of queries we consider are those that include

only a single subgoal being the target of a p-mapping. Re-
lations in the other subgoals are either involved in ordinary
mappings or do not require a mapping. Hence, if we only
have uncertainty with respect to one part of the domain, our
queries will typically fall in this class. We call such queries
non-p-join queries. The query Q in the motivating example
is an example non-p-join query.

Definition 4.6 (non-p-join queries). Let pM be a
schema p-mapping and let Q be an SPJ query.

If at most one subgoal in the body of Q is the target of a
p-mapping in pM, then we say Q is a non-p-join query with
respect to pM . 2

For a non-p-join query Q, the by-tuple answers of Q can
be generated from the by-table answers of Q over a set of
databases, each containing a single tuple in the source ta-
ble. Specifically, let pM = (S, T,m) be the single p-mapping
whose target is a relation in Q, and let DS be an instance
of S with d tuples. Consider the set of tuple databases
T(DS) = {D1, . . . ,Dd}, where for each i ∈ [1, d], Di is an
instance of S and contains only the i-th tuple in DS . The
following lemma shows that Qtuple(DS) can be derived from
Qtable(D1), . . . , Q

table(Dd).

Lemma 4.7. Let pM be a schema p-mapping between S̄
and T̄ . Let Q be a non-p-join query over T̄ and let DS be
an instance of S̄. Let (t, P r(t)) be a by-tuple answer with
respect to DS and pM. Let T̄ (t) be the subset of T(DS) such
that for each D ∈ T̄ (t), t ∈ Qtable(D). The following two
conditions hold:

1. T̄ (t) 6= ∅;

2. Pr(t) = 1 − ΠD∈T̄(t),(t,p)∈Qtable(D)(1 − p). 2

In practice, answering the query for each tuple database
can be expensive. We next describe Algorithm NonPJoin,
which computes the answers for all tuple databases in one
step. The key idea of the algorithm is to distinguish an-
swers generated by different source tuples. To do this, we
assume there is an identifier attribute id for the source re-
lation whose values are concatenations of values of the key
columns. We now describe the algorithm in detail.

Algorithm NonPJoin takes as input an SPJ query Q,
a schema p-mapping pM , and a source instance DS , and
proceeds in three steps to compute all by-tuple answers.

Step 1: Rewrite Q to Q′ such that it returns T .id in addi-
tion. Revise the p-mapping such that each possible mapping
contains the correspondence between S.id and T .id.

Step 2: Invoke ByTable with Q′, pM and DS . Note that
each generated result tuple contains the id column in addi-
tion to the attributes returned by Q.

Step 3: Project the answers returned in Step 2 on Q’s
returned attributes. Suppose projecting t1, . . . , tn obtains
the answer tuple t, then the probability of t is 1−Πn

i=1(1−
Pr(ti)).

Example 4.8. Consider rewriting Q in the motivating
example, repeated as follows:

Q: SELECT mailing-addr FROM T

Step 1 rewrites Q into query Q′ by adding the id column:



Q’: SELECT id, mailing-addr FROM T

In Step 2, ByTable generates the following SQL query
to compute by-table answers for Q′:

Qa: SELECT id, mailing-addr, SUM(pr)
FROM (

SELECT DISTINCT id, current-addr AS mailing-addr,
0.5 AS pr

FROM S
UNION ALL
SELECT DISTINCT id, permanant-addr AS mailing-addr,

0.4 AS pr
FROM S
UNION ALL
SELECT DISTINCT id, email-addr AS mailing-addr,

0.1 AS pr
FROM S)

GROUP BY id, mailing-addr

Step 3 then generates the results using the following query.

Qu: SELECT mailing-addr, NOR(pr) AS pr
FROM Qa
GROUP BY mailing-addr

where for a set of probabilities pr1, . . . , prn, NOR computes
1 − Πn

i=1pri. 2

An analysis of Algorithm NonPJoin leads to the following
complexity result for non-p-join queries.

Theorem 4.9. Let pM be a schema p-mapping and let Q
be a non-p-join query with respect to pM .

Answering Q with respect to pM in by-tuple semantics is
in PTIME in the size of the data and the mapping. 2

4.3.2 Projected p-join queries
We now show that query answering can be done in poly-

nomial time for a class of queries, called projected p-join
queries, that include multiple subgoals involved in p-mappings.
In such a query, we say that a join predicate is a p-join pred-
icate with respect to a schema p-mapping pM , if at least one
of the involved relations is the target of a p-mapping in pM .
We define projected p-join queries as follows.

Definition 4.10 (projected p-join query). Let pM
be a schema p-mapping and Q be an SPJ query over the tar-
get of pM . If the following conditions hold, we say Q is a
projected p-join query with respect to pM :

• at least two subgoals in the body of Q are targets of
p-mappings in pM .

• for every p-join predicate, the join attribute (or an at-
tribute that is entailed to be equal by the predicates in
Q) is returned in the SELECT clause. 2

Example 4.11. Consider the schema p-mapping in Ex-
ample 4.3. A slight revision of Q, shown as follows, is a
projected-p-join query.

Q’: SELECT V.hightech
FROM T, V
WHERE T.mailing-addr = V.hightech

2

Note that in practice, when joining data from multiple
tables in a data integration scenario, we typically project the
join attributes, thereby leading to projected p-join queries.

The key to answering a projected-p-join query Q is to
divide Q into multiple subqueries, each of which is a non-p-
join query, and compute the answer toQ from the answers to

the subqueries. We proceed by considering partitions of the
subgoals in Q. We say that a partitioning J̄ is a refinement
of a partitioning J̄ ′, denoted J̄ � J̄ ′, if for each partition
J ∈ J̄ , there is a partition J ′ ∈ J̄ ′, such that J ⊆ J ′. We
consider the following partitioning of Q, the generation of
which will be described in detail in the algorithm.

Definition 4.12 (Maximal P-Join Partitioning). Let
pM be a schema p-mapping. Let Q be an SPJ query and J̄
be a partitioning of the subgoals in Q.

We say that J̄ is a p-join partitioning of Q, if (1) each
partition J ∈ J̄ contains at most one subgoal that is the
target of a p-mapping in pM, and (2) if neither subgoal in
a join predicate is involved in p-mappings in pM , the two
subgoals belong to the same partition.

We say that J̄ is a maximal p-join partitioning of Q, if
there does not exist a p-join partitioning J̄ ′, such that J̄ �
J̄ ′. 2

For each partition J ∈ J̄ , we can define a query QJ as
follows. The FROM clause includes the subgoals in J . The
SELECT clause includes J ’s attributes that occur in (1) Q’s
SELECT clause or (2) Q’s join predicates that join subgoals
in J with subgoals in other partitions. The WHERE clause in-
cludes Q’s predicates that contain only subgoals in J . When
J is a partition in a maximal p-join partitioning of Q, we
say that QJ is a p-join component of Q.

The following is the main lemma underlying our algo-
rithm. It shows that we can compute the answers of Q
from the answers to its p-join components.

Lemma 4.13. Let pM be a schema p-mapping. Let Q be
a projected p-join query with respect to pM and let J̄ be a
maximal p-join partitioning of Q. Let QJ1, . . . , QJn be the
p-join components of Q with respect to J̄.

For any instance DS of the source schema of pM and
result tuple t ∈ Qtuple(DS), the following two conditions
hold:

1. For each i ∈ [1, n], there exists a single tuple ti ∈

Qtuple
Ji (DS), such that t1, . . . , tn generate t when joined

together.

2. Let t1, . . . , tn be the above tuples. Then, Pr(t) =
Πn

i=1Pr(ti). 2

Lemma 4.13 entails to the query-rewriting algorithm Pro-
jectedPJoin, which takes as input a projected-p-join query
Q, a schema p-mapping pM , and a source instance DS , out-
puts all by-tuple answers:

Step 1: Generate maximum p-join partitions J1, . . . , Jn as
follows. First, initialize each partition to contain one sub-
goal in Q. Then, for each join predicate with subgoals S1

and S2 that are not involved in p-mappings in pM , merge
the partitions that S1 and S2 belong to. Finally, for each
partition that contains no subgoal involved in pM , merge it
with another partition.

Step 2: For each p-join partition Ji, i ∈ [1, n], generate
the p-join component QJi, and invoke Algorithm NonPJoin
with QJi, pM and DS to compute answers for QJi.

Step 3: Join the results of QJ1, . . . , QJn. If an answer tuple
t is obtained by joining t1, . . . , tn, then the probability of t
is computed by Πn

i=1Pr(ti).
We illustrate the algorithm using the following example.



Example 4.14. Continue with Example 4.11. Its two p-
join components are Q1 and Q2 shown in Example 4.3. Sup-
pose we compute Q1 with query Qu (shown in Example 4.8)
and compute Q2 with query Q′

u. We can compute by-tuple
answers of Q′ as follows:

SELECT Qu’.hightech, Qu.pr*Qu’.pr
FROM Qu, Qu’
WHERE Qu.mailing-addr = Qu’.hightect

2

Since the number of p-join components is bounded by the
number of subgoals in a query, and for each of them we
invoke Algorithm NonPJoin, query answering for projected
p-join queries takes polynomial time.

Theorem 4.15. Let pM be a schema p-mapping and let
Q be a projected-p-join query with respect to pM.

Answering Q with respect to pM in by-tuple semantics is
in PTIME in the size of the data and the mapping. 2

4.3.3 Other SPJ queries
A natural question is whether the two classes of queries we

have identified are the only ones for which query answering
is in PTIME for by-tuple semantics. As Example 4.3 shows,
if Q contains multiple subgoals that are involved in a schema
p-mapping, but Q is not a projected-p-join query, then Con-
dition 1 in Lemma 4.13 does not hold, and query answering
needs to proceed by enumerating all mapping sequences.

We believe that the complexity of the border case, where
a query joins two relations involved in p-mappings but does
not return the join attribute, is #P-hard, but currently it
remains an open problem.

5. TOP-K QUERY ANSWERING
In this section, we consider returning the top-k query an-

swers, which are the k answer tuples with the top probabil-
ities. The main challenge in designing the algorithm is to
only perform the necessary reformulations at every step and
halt when the top-k answers are found. We first describe
our algorithm for by-table semantics. We then show the
challenges for by-tuple semantics and outline our solution,
but defer the details to the full version of the paper.

5.1 Returning Top-K By-table Answers
Recall that in by-table query answering, the probability of

an answer is the sum of the probabilities of the reformulated
queries that generate the answer. Our goal is to reduce the
number of reformulated queries we execute. Our algorithm
proceeds in a greedy fashion: we execute queries in descend-
ing order of probabilities. For each tuple t, we maintain the
upper bound pmax(t) and lower bound pmin(t) of its proba-
bility. This process halts when we find k tuples whose pmin

values are higher than pmax of the rest of the tuples.
TopKByTable takes as input an SPJ query Q, a schema

p-mapping pM , an instance DS of the source schema, and
an integer k, and outputs the top-k answers in Qtable(DS).
The algorithm proceeds in three steps.

Step 1: Rewrite Q according to pM into a set of queries
Q1, . . . , Qn, each with a probability assigned in a similar
way as stated in Algorithm ByTable.

Step 2: Execute Q1, . . . , Qn in descending order of their
probabilities. Maintain the following measures:

• The highest probability, PMax, for the tuples that
have not been generated yet. We initialize PMax to
1; after executing query Qi and updating the list of an-
swers (see third bullet), we decrease PMax by Pr(Qi);

• The threshold th determining which answers are po-
tentially in the top-k. We initialize th to 0; after ex-
ecuting Qi and updating the answer list, we set th to
the k-th largest pmin for tuples in the answer list;

• A list L of answers whose pmax is no less than th, and
bounds pmin and pmax for each answer in L. After
executing query Qi, we update the list as follows: (1)
for each t ∈ L and t ∈ Qi(DS), we increase pmin(t)
by Pr(Qi); (2) for each t ∈ L but t 6∈ Qi(DS), we
decrease pmax(t) by Pr(Qi); (3) if PMax ≥ th, for
each t 6∈ L but t ∈ Qi(DS), insert t to L, set pmin to
Pr(Qi) and pmax(t) to PMax.

• A list T of k tuples with top pmin values.

Step 3: When th > PMax and for each t 6∈ T , th >
pmax(t), halt and return T .

Example 5.1. Consider Example 2.1 where we seek the
top-1 answer. We answer the reformulated queries in order
of Q1, Q2, Q3. After answering Q1, for tuple (“Sunnyvale”)
we have pmin = .5 and pmax = 1, and for tuple (“Mountain
View”) we have the same bounds. In addition, PMax = .5
and th = .5.

In the second round, we answer Q2. Then, for tuple (“Sun-
nyvale”) we have pmin = .9 and pmax = 1, and for tuple
(“Mountain View”) we have pmin = .5 and pmax = .6. Now
PMax = .1 and th = .9.

Because th > PMax and th is above the pmax for the
(“Mountain View”) tuple, we can halt and return (“Sunny-
vale”) as the top-1 answer. 2

The next theorem states the correctness of ByTable-
TopK.

Theorem 5.2. For any schema mapping pM , SPJ query
Q, instance DS of the source schema of pM , and integer
k, Algorithm ByTableTopK correctly computes the top-k
answers in Qtable(DS). 2

Note that in the worst case we need to execute all of
Q1, . . . , Qn in Step 2, so the time complexity of TopKByTable
is the same as ByTable. However, in many cases we can
return top-k answers without executing all of the reformu-
lated queries, and thus the greedy strategy can improve the
efficiency of query answering.

Our algorithm differs from previous top-k algorithms in
the literature in two aspects. First, we execute the reformu-
lated queries only when necessary, so we can return the top-k
answers without executing all reformulated queries thereby
leading to significant performance improvements. Fagin et
al. [9] have proposed several algorithms for finding instances
with top-k scores, where each instance has m attributes and
the score of the instance is an aggregation over values of
these m attributes. However, these algorithms assume that
for each attribute there exists a sorted list on its values, and
they access the lists in parallel. In our context, this would
require executing all reformulated queries upfront. Li et
al. [20] have studied computing top-k answers for aggrega-
tion and group-by queries and optimizing query answering
by generating the groups incrementally. Although we can



also compute by-table answers using an aggregation query,
this query is different from those considered in [20] in that
the WHERE clause contains a set of sub-queries rather than
database tables. Therefore, applying [20] here also requires
evaluating all reformulated queries at the beginning.

Second, whereas maintaining upper bounds and lower
bounds for instances has been explored in the literature,
such as in Fagin’s NRA (Non-Random Access) algorithm
and in [20], our algorithm is different in that it keeps these
bounds only for tuples that have already been generated
by an executed reformulated query and that are potential
top-k answers (by judging if the upper bound is above the
threshold th). For unseen result tuples, we compute the
upper bound of their probability by exploiting the fact that
the upper bound of each probability score is 1.

5.2 By-tuple Top-K Query Answering
We next consider returning top-k answers in by-tuple se-

mantics. In general, we need to consider each mapping se-
quence and answer the query on the target instance that is
consistent with the source and the mapping sequence. Al-
gorithm TopKByTable can be modified to compute top-k
by-tuple answers by deciding at runtime the mapping se-
quence to consider next. However, for non-p-join queries
and projected-p-join queries, we can return top-k answers
more efficiently. We outline our method for answering non-
p-join queries here, and leave the details of projected-p-join
queries to the full paper.

For non-p-join queries the probability of an answer tuple t
to query Q cannot be expressed as a function of t’s probabil-
ities in executing reformulations of Q; rather, it is a function
of t’s probabilities in answering Q on each tuple database
of the source table. However, retrieving answers on a tuple
base is expensive. Algorithm NonPJoin provides a method
that computes by-tuple answers on the tuple databases in
batch mode by first rewriting Q into Q′ by returning the id
column and then executing Q′’s reformulated queries. We
find top-k answers in a similar fashion. Here, after execut-
ing each reformulated query, we need to maintain two answer
lists, one for Q and one for Q′, and compute pmin and pmax

for answers in different lists differently.

6. P-MAPPING REPRESENTATIONS
Thus far, a p-mapping was represented by listing each

of its possible mappings, and the complexity of query an-
swering was polynomial in the size of that representation.
Such a representation can be quite lengthy since it essen-
tially enumerates a probability distribution by listing every
combination of events in the probability space. Hence, an
interesting question is whether there are more concise rep-
resentations of p-mappings and whether our algorithms can
leverage them.

We consider three representations that can reduce the size
of the p-mapping exponentially. In Section 6.1 we consider
a representation in which the attributes of the source and
target tables are partitioned into groups and p-mappings
are specified for each group separately. We show that query
answering can be done in time polynomial in the size of the
representation. In Section 6.2 we consider probabilistic cor-
respondences, where we specify the marginal probability of
each attribute correspondence. However, we show that such
a representation can only be leveraged in limited cases. Fi-
nally, we consider Bayes Nets, the most common method

Mapping Prob
{(a,a’), (b,b’), (c,c’)} 0.72

{(a,b’), (c,c’)} 0.18
{(a,a’), (b,b’)} 0.08

{(a,b’)} 0.02
(a)

Mapping Prob
{(a,a’), (b,b’)} 0.8

{(a,b’)} 0.2

(b)

Mapping Prob
{(c,c’)} 0.9

∅ 0.1

(c)

Figure 5: The p-mapping in (a) is equivalent to the
2-group p-mapping in (b) and (c).

for concisely representing probability distributions, in Sec-
tion 6.3, and show that even though some p-mappings can
be represented with them, query answering does not neces-
sarily benefit from the representation.

6.1 Group Probabilistic Mapping
In practice, the uncertainty we have about a p-mapping

can often be represented as a few localized choices, espe-
cially when schema mappings are created by semi-automatic
methods. To represent such p-mappings more concisely, we
can partition the source and target attributes and specify
p-mappings for each partition.

Definition 6.1 (Group P-Mapping). An n-group p-
mapping gpM is a triple (S, T, pM), where

• S (resp. T ) is a source (resp. target) relation schema
and {S1, . . . , Sn} (resp. {T1, . . . , Tn}) is a set of dis-
joint subsets of attributes in S (resp. T );

• pM is a set of p-mappings {pM1, . . . , pMn}, where for
each 1 ≤ i ≤ n, pMi is a p-mapping between Si and
Ti. 2

The semantics of an n-group p-mapping gpM = (S, T, pM)
is a p-mapping that includes the Cartesian product of the
mappings in each of the pMi’s. The probability of the map-
ping composed of m1 ∈ pM1, . . . ,mn ∈ pMn is Πn

i=1Pr(mi).

Example 6.2. Figure 5(a) shows p-mapping pM between
the schemas S(a, b, c) and T (a′, b′, c′). Figure 5(b) and (c)
show two independent mappings that together form a 2-group
p-mapping equivalent to pM . 2

Note that a group p-mapping can be considerably more
compact than an equivalent p-mapping. Specifically, if each
pMi includes li mappings, then a group p-mapping can de-
scribe Πn

i=1li possible mappings with
Pn

i=1 li sub-mappings.
The important feature of n-group p-mappings is that query
answering can be done in time polynomial in their size.

Theorem 6.3. Let gpM be a schema group p-mapping
and let Q be an SPJ query. The mapping complexity of
answering Q with respect to gpM in both by-table semantics
and by-tuple semantics is PTIME. 2

Theorem 6.4. Given a p-mapping pM , we can find in
polynomial time in the size of pM the maximal n and an n-
group p-mapping gpM , such that gpM is equivalent to pM .
2



Mapping Prob
{(a,a’), (b,b’), (c,c’)} 0.8

{(a,b’), (c,c’)} 0.1
{(a,b’)} 0.1

(a)

Corr Prob
{(a,a’)} 0.8
{(a,b’)} 0.2
{(b,b’)} 0.8
{(c,c’)} 0.9

(b)

Figure 6: The p-mapping in (a) corresponds to the
p-correspondence in (b).

6.2 Probabilistic Correspondences
The second representation we consider, probabilistic corre-

spondences, represents a p-mapping with the marginal prob-
abilities of attribute correspondences. This representation is
the most compact one as its size is proportional to the prod-
uct of the schema sizes of S and T .

Definition 6.5 (Probabilistic Correspondences).
A probabilistic correspondence mapping (p-correspondence)
is a triple pC = (S,T, c), where S = 〈s1, . . . , sm〉 is a source
relation schema, T = 〈t1, . . . , tn〉 is a target relation schema,
and

• c is a set {(cij ,Pr(cij))|i ∈ [1, m], j ∈ [1, n]}, where
cij = (si, tj) is an attribute correspondence, and Pr(cij)
∈ [0, 1];

• for each i ∈ [1, m],
Pn

j=1 Pr(cij) ≤ 1;

• for each j ∈ [1, n],
Pm

i=1 Pr(cij) ≤ 1. 2

Note that for a source attribute si, we allow
Pn

j=1 Pr(cij)
< 1. This is because in some of the possible mappings, si

may not be mapped to any target attribute. The same is
true for target attributes.

¿From each p-mapping, we can infer a p-correspondence
by calculating the marginal probabilities of each attribute
correspondence. Specifically, for a p-mapping pM = (S, T,m),
we denote by pC(pM) the p-correspondence where each mar
ginal probability is computed as follows:

Pr(cij) =
X

cij∈m,m∈m

Pr(m)

However, the relationship between p-mappings and p-corres-
pondences is many-to-one. For example, The p-correspondence
in Figure 6(b) is the one computed both for the p-mapping
in Figure 6(a) and for the p-mapping in Figure 5(a).

Given the many-to-one relationship, the question is when
it is possible to compute the correct answer to a query based
only on the p-correspondence. That is, we are looking for
a class of queries Q̄, called p-mapping independent queries,
such that for every Q ∈ Q̄ and every database instance DS ,
if pC(pM1) = pC(pM2), then the answer of Q with respect
to pM1 and DS is the same as the answer of Q with respect
to pM2 and DS . Unfortunately, this property holds for a
very restricted class of queries, defined as follows:

Definition 6.6 (Single-Attribute Query). Let pC
= (S, T, c) be a p-correspondence. An SPJ query Q is said
to be a single-attribute query with respect to pC if T has one
single attribute occurring in the SELECT and WHERE clauses
of Q. 2

Theorem 6.7. Let pC be a schema p-correspondence, and
Q be an SPJ query. Then, Q is p-mapping independent with
respect to pC if and only if for each pC ⊆ pC, Q is a single-
attribute query with respect to pC. 2

6.3 Bayes Nets
Bayes Nets are a powerful mechanism for concisely repre-

senting probability distributions and reasoning about proba-
bilistic events [22]. The following example shows how Bayes
Nets can be used in our context.

Example 6.8. Consider two schemas S = (s1, . . . , sn,
s′1, . . . , s

′

n) and T = (t1, . . . , tn). Consider the p-mapping
pM = (S, T,m), which describes the following p-mapping:
if s1 maps to t1 then it is more likely that {s2, . . . , sn} maps
to {t2, . . . , tn}, whereas if s′1 maps to t1 then it is more likely
that {s′2, . . . , s

′

n} maps to {t2, . . . , tn}.
We can represent the p-mapping using a Bayes Net as

follows. Let c be an integer constant. Then,

1. Pr((s1, t1)) = Pr((s′1, t1)) = 1/2;

2. for each i ∈ [1, n], Pr((si, ti)|(s1, t1)) = 1 − 1
c

and

Pr((s′i, ti)|(s1, t1)) = 1
c
;

3. for each i ∈ [1, n], Pr((si, ti)|(s
′

1, t1)) = 1
c

and Pr((s′i, ti)

|(s′1, t1)) = 1 − 1
c
.

Since the p-mapping contains 2n possible mappings, the
original representation would take space O(2n); however, the
Bayes-Net representation takes only space O(n). 2

Although the Bayes-Net representation can reduce the size
exponentially for some p-mappings, this conciseness may not
help reduce the complexity of query answering. We formal-
ize this result in the following theorem.

Theorem 6.9. There exists a schema p-mapping pM and
a query Q, such that answering Q with respect to pM in by-
table semantics takes exponential time in the size of pM ’s
Bayes-Net representation. 2

7. BROADER CLASSES OF MAPPINGS
In this section we briefly show how our results can be

extended to capture two common practical extensions to
our mapping language.

Complex mappings: Complex mappings map a set of at-
tributes in the source to a set of attributes in the target.
For example, we can map the attribute address to the con-
catenation of street, city, and state.

Formally, a set correspondence between S and T is a re-
lationship between a subset of attributes in S and a subset
of attributes in T . Here, the function associated with the
relationship specifies a single value for each of the target
attributes given a value for each of the source attributes.
Again, the actual functions are irrelevant to our discussion.
A complex mapping is a triple (S, T, cm), where cm is a set
of set correspondences, such that each attribute in S or T is
involved in at most one set correspondence. A probabilistic
complex mapping is of the form pCM = {(cmi, P r(cmi)) |
i ∈ [1, n]}, where

Pn

i=1 Pr(cmi) = 1.

Theorem 7.1. Let pCM be a schema probabilistic com-
plex mapping between schemas S̄ and T̄ . Let DS be an in-
stance of S̄. Let Q be an SPJ query over T̄ . The data
complexity and mapping complexity of computing Qtable(DS)
w.r.t. pCM are PTIME. The data complexity of computing
Qtuple(DS) w.r.t. pCM is #P-complete. The mapping com-
plexity of computing Qtuple(DS) w.r.t. pCM is PTIME. 2



Conditional mappings: In practice, our uncertainty is
often conditioned. For example, we may want to state that
daytime-phone maps to work-phone with probability 60% if
age ≤ 65, and maps to home-phone with probability 90% if
age > 65.

We define a conditional p-mapping as a set cpM = {(pM1,
C1), . . . , (pMn, Cn)}, where pM1, . . . , pMn are p-mappings,
and C1, . . . , Cn are pairwise disjoint conditions. Intuitively,
for each i ∈ [1, n], pMi describes the probability distribution
of possible mappings when condition Ci holds. Conditional
mappings make more sense for by-tuple semantics. The fol-
lowing theorem shows that our results carry over to such
mappings.

Theorem 7.2. Let cpM be a schema conditional p-mapping
between S̄ and T̄ . Let DS be an instance of S̄. Let Q be an
SPJ query over T̄ . The problem of computing Qtuple(DS)
with respect to cpM is in PTIME in the size of the mapping
and #P-complete in the size of the data. 2

8. RELATED WORK
We are not aware of any previous work studying the se-

mantics and properties of probabilistic schema mappings.
Gal [11] used the top-K schema mappings obtained by a
semi-automatic mapper to improve the precision of the top
mapping, but did not address any of the issues we consider.
Florescu et al. [10] were the first to advocate the use of
probabilities in data integration. Their work used proba-
bilities to model (1) a mediated schema with overlapping
classes (e.g, DatabasePapers and AIPapers), (2) source de-
scriptions stating the probability of a tuple being present in
a source, and (3) overlap between data sources. Although
these are important aspects of many domains and should be
incorporated into a data integration system, our focus here
is different. De Rougement and Vieilleribiere [6] considered
approximate data exchange in that they relaxed the con-
straints on the target schema, which is a different approach
from ours.

There has been a flurry of activity around probabilistic
and uncertain databases lately [4, 24, 5, 3]. Our intention
is that a data integration system will be based on a proba-
bilistic data model, and we leverage concepts from that work
as much as possible. We also believe that uncertainty and
lineage are closely related, in the spirit of [4], and that re-
lationship will play a key role in data integration. We leave
exploring this topic to future work.

9. CONCLUSIONS AND FUTURE WORK
This paper took the first step towards data integration

systems that handle uncertainty about queries, mappings
and data in a principled fashion. We introduced probabilis-
tic semantic mappings, which play a key role in such a sys-
tem. We presented query answering algorithms for by-table
and by-tuple semantics and for the case where the user is
interested in the top-k answers. We also considered concise
encoding of probabilistic mappings.

Many other problems need to be solved to realize the data
integration systems we envision. Aside from the connection
between uncertainty and lineage in such systems, we also
want to incorporate uncertainty about the results of key-
word reformulation and about possibly dirty data. In ad-
dition, we want to establish a formal connection between
schema mapping tools and data integration systems that

support uncertainty. In one direction this means extract-
ing probabilities about schema mappings from the results
of schema mapping tools. In the reverse direction, our goal
is to reason globally about the uncertainty in a data inte-
gration system and its effect on query answers, in order to
decide where it is most beneficial to expand more resources
(human or otherwise) to improve schema mappings.
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