
SIGMOD 2003 Demo Proposal:
Relational On-Line Exchange with XML

Philip Bohannon Xin (Luna) Dong Sumit Ganguly Henry F. Korth Chengkai Li
P.P.S. Narayan Pradeep Shenoy

Lucent Technologies – Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974 USA�
bohannon,sganguly,hfk,ppsnarayan � @lucent.com�
luna,pshenoy � @cs.washington.edu cli@uiuc.edu

1 Introduction

As XML has gained widespread popularity, new applica-
tions are often XML-based, that is, they depend primarily
on XML documents and the associated data model for data
access and messaging. However, in most cases the XML-
based application must interoperate with existing SQL-
based applications. In the typical “shred-and-publish” ap-
proach to interoperation, incoming XML data is parsed
(shredded) into relational tables and outgoing data is ex-
tracted by SQL engines and then formatted (published) as
XML. For example, a database supporting an SQL-based
hotel-reservation application may also be called on to sup-
port a web-site, or to exchange XML with a third party
“hub” for the travel industry.

Maintaining the mapping between the relational data
source and the associated XML documents is complex and
error-prone. Fortunately, recently-developed middleware
systems for XML publishing [3, 5] greatly ease this task
by providing a declarative language in which a view query
specifies the desired mapping. The view query is trans-
lated by the middleware into one or more SQL queries for
execution on the underlying DBMS, and a tagger process
constructs an XML document from the result.

Application-caching of database data is widespread,
particularly in the web-facing applications that XML mid-
dleware systems are designed to support. Data is cached
primarily for performance, and an experimental study by
Labrinidis and Roussopoulos [8] of caching web data both
in and out of the DBMS illustrates the problem. In al-
most every experiment, caching outside the DBMS offered
two orders of magnitude better performance than caching
within.

While caching may solve the performance problem, the
application cache is undesirable for a number of reasons.

First, multiple applications must each re-implement a por-
tion of the functionality provided by the DBMS. Second,
concurrency and data integrity among the caches and the
relational DBMS must be managed by the application(s).
This may lead to consistency problems when the underly-
ing relational data is being accessed and updated by pre-
viously existing applications, while cached copies of this
data are being used by e-business applications. Neverthe-
less, anecdotal evidence again indicates that this tradeoff is
made frequently, leaving the DBMS in the “back room”—
increasingly isolated from the bulk of web interactions.

ROLEX1 is a research system for XML-relational interop-
eration [2]. In short, ROLEX seeks to provide the function-
ality of XML-relational middleware at the speed of cached
XML data. To achieve this, ROLEX is integrated tightly
with both the DBMS and the application, as shown in Fig-
ure 1(b). However, the integration with the application
is through a standard interface supported by most XML

parsers, the Document Object Model (DOM) [7]. Thus, in
general, an application need not be modified to be used
with ROLEX. To support our integration model and per-
formance goals, ROLEX is built on the DataBlitz ��� Main-
Memory Database System, allowing us to capitalize on ex-
tremely low-latency access to data while still providing ad-
vanced concurrency control and recovery features [1]. We
expect ROLEX, when fully implemented, to be a compelling
platform with the best of two worlds: the speed of cached
XML files and the declarative data management tools and
consistency guarantees of the DBMS.

In particular, contrast the ROLEX architecture, shown in
Figure 1(b) with that of standard XML-relational middle-
ware shown in Figure 1(a). As shown, the results of a
ROLEX view query are provided to the application in the
form of a virtual DOM tree rather than as a text document.
Simply avoiding the cost of text generation and subsequent
parsing is an important benefit of this approach. While our
system is based on a particular main-memory database sys-

1 ROLEX stands for Relational On-Line Exchange with XML.

Query Logic

Tagger

Parser

Publisher

Application

RelDB

View Query

XML Data

SQL

DOM

ROLEX-QP

ROLEX

Application

DataBlitz

View Query

Virtual DOM

Navigational

Access

Shared Memory

The ROLEX System

Traditional Publishing

Model

Figure 1: Publishing architectures (a) current approaches (b) ROLEX approach.

hotelchain(chainid, companyname, hqstate)
metroarea(metroid, metroname)
hotel(hotelid, hotelname, starrating, chain id

metro id, state id, city, pool, gym)
guestroom(r id, rhotel id, roomnumber, type, rackrate)
confroom(c id, chotel id, croomnumber, capacity, rackrate)
availability(a id, a r id, startdate, enddate, price)

Figure 2: Hotel reservation schema.

tem, we expect the model can be used with any closely-
coupled architecture, including database-aware caches.

2 Overview

In this section, we introduce view-query specification in
ROLEX using the example shown in Figure 3. This query
format, referred to as a schema-tree query, is meant to cap-
ture a rich set of XML view queries, and is adapted from
the intermediate query representation of [6]. This particular
example defines an XML view on the tables of Figure 2 that
supports conference planning by showing candidate hotels
along with information about availability of rooms in the
same metro area.

Each node in the schema-tree query includes a tag, a
tag query, and a binding variable. Each tuple returned by
the tag query becomes an element in the resulting XML

document. Relational attributes can be mapped to XML

attributes or subelements; however, these details are not
shown. For example, the top-level node in Figure 3 has the
tag <metro> and the tag query “ ��� = SELECT metroid,
metroname FROM metroarea.” This query defines a list of
metropolitan areas that become sibling nodes in the result-
ing XML document, each tagged with the <metro> tag (a
unique document root is implied). As shown in this exam-
ple, the binding variable for a node may be used as a pa-
rameter when specifying tag queries of descendant nodes
in the schema tree. For example, the variable ��� associ-
ated with <metro> is used as a parameter in tag queries
for <hotel> and <metro available> to refer to the at-
tribute ��� .metroid.

An application using ROLEX accesses data through
a standard interface called the Document Object Model
(DOM) [7]. The navigation functions implemented by DOM

FROM confroom
SELECT SUM(capacity)

AND startdate = .startdate

WHERE chotel_id = .hotelid

AND enddate >= 2/1/01

<confstat>

<metro_available>

<hotel_available>

<hotel>

FROM confroom
SELECT *

AND startdate <= 1/1/01

WHERE chotel_id = .hotelid

FROM metroarea
SELECT metroid, metroname

WHERE rhotel_id = .hotelid
FROM availability, guestroom

AND a_r_id = r_id

<metro>

SELECT * FROM hotel

<confroom>

WHERE metro_id = .metroid
 AND starrating > 4

SELECT COUNT(a_id)

AND enddate >= 2/1/01

GROUP BY startdate

SELECT COUNT(a_id)

AND a_r_id = r_id

FROM availability, hotel, guestroom
WHERE rhotel_id = hotelid

AND metro_id = .metroid

$h

m

$m

$h

$m

Q =

h

c

a
Q =

Q =

$h

$a

Q =s

Q =

Q =

Binding Var.

$m

Tag

v

$c

$s $a

$v

$h

$h

$h

$h $m

$a, $m

Parameters

Figure 3: An XML view query and its associated schema
tree.

are as one would expect: parent-to-child, child-to-parent,
and sibling-to-sibling. We also support navigating to the
first child with a particular tag. A DOM interface to an XML

view query supports all the DOM operations and behaves
as if the user were navigating the XML document resulting
from the query. For example, this might be accomplished
by navigating the query results and building a DOM tree. A
virtual DOM tree goes a step further by providing the same
interface without creating the physical DOM tree. A nav-
igable query plan, which we describe in the next section,
is the mechanism used by ROLEX to support a virtual DOM

tree.
A novelty of ROLEX is that it uses a navigational profile

for a user or application when optimizing view-query plans.
While navigational profiles can, in principle, be quite com-
plex, we currently adopt a very simple model. If � is a
node in the schema tree with parent � , the navigation pro-
file stores ��� � ��� � � , or the probability that some node in
the DOM tree generated by � will be visited given that its
parent, generated by � , has been visited. One simple way
to gather this information is by collecting the correspond-
ing statistic at each schema-tree node during view-query
execution. While statistics gathering is not implemented in
the demo, it is possible for the user to manually enter the
profile probabilities with the query.

3 Demonstration Overview

The ROLEX prototype consists of three subsystems: the op-
timizer, the execution engine, and the virtual DOM layer.
The execution engine and DOM interface operate on the
tuple-layer interface of the DataBlitz � � Main-Memory
Database System. Note that, although the data is memory
resident, many costs of a full-featured DBMS remain, in-
cluding locking, latching, support for multiple data types,
null handling, etc.

3.1 Interface

The demo has a web based interface allowing queries to
be entered and edited. Once the user is satisfied, a query
plan is generated as well as a graphical (postscript) repre-
sentation of the plan. Query results are displayed using a
standard browser.

3.2 Optimizer

A navigable query plan provides, for each node � in the
schema tree of a view query, two entities: (1) a subplan for
evaluating the tag query for � , and (2) a navigation index.
The navigation index serves to materialize the output of the
tag query and supports efficient lookup based on parame-
ter values. The subplan may populate the navigation index
lazily or eagerly as decided by the optimizer, and it may
also materialize results to be used by other subplans.

The navigation index is distinguished from a normal
(hash or tree) index by two additional features: (1) given a
pointer to an entry in the index, the successor and predeces-
sor matching the same key value can be reached efficiently,
and (2) the index can record the fact that certain parameters
produced empty results. These capabilities allow us to sup-
port DOM tree operations on the schema-tree view without
explicitly generating the document; effectively implement-
ing a virtual DOM interface.

One example of how we take advantage of the virtual
DOM output is that we optimize our execution plan for user
and application navigation patterns [2]. When query re-
sults are navigable, patterns of access to the document tree
may be user- or application-specific. Using knowledge of
these patterns, the ROLEX query optimizer selects execu-
tion plans that are expected to outperform, during naviga-
tion, plans optimized to generate the entire document. The

Table Tuple Size (Bytes) Cardinality
hotel 54 1000
metroarea 128 50
phone 24 3000
guestroom 20 40000
confroom 20 10000
availability 20 800000

Table 1: Table Cardinalities for Experimental Queries.

navigation opportunities for a user on an SQL query are typ-
ically limited to the use of bi-directional cursors. However,
XML views of relational data can be large and complex, and
even considering a subset of DOM functionality, user nav-
igation on the result is potentially far more complex and
more frequent than for relational results.

3.3 Engine

The execution engine has been built to serve as a general in-
memory relational query-execution engine, as well as the
execution engine for ROLEX. The engine handles a vari-
ety of join techniques, group-by and aggregates, and the
materialization options discussed in [2]. In the implemen-
tation, the engine is decoupled from the optimizer, and an
XML plan representation is used to communicate between
the two.

3.4 Updates

We have implemented simple update functionality which
demonstrates the potential of updating the relational data
through the DOM interface. This implementation is part of
ongoing work in defining updates through XML views [4].
The architecture consists of two modules, the information
collection module and the view-update execution module.
The information-collection module collects XML-view and
relational schema information when the view-definition is
parsed and sets up a “view-relationship graph” describing
cardinality relationships between node pairs in the view.
The view-relationship graph is then translated into update
plans that are persisted in the system and later used at run
time. The view-update execution module provides the in-
terface for deletion, insertion, movement, and replacement
on a given XML DOM node at run time. The execution
module interacts with the relational database and the DOM

interface to access the underlying data for the XML view.
The two modules are connected through the persisted up-
date plans that provide the necessary update translation and
propagation information.

3.5 XSLT Stylesheets

We also demonstrate XSLT stylesheets running on the DOM

result of view queries. However, this demonstration does
not currently allow all features of XPATH and XSLT, since
the processor internally copies the tree in order to add or-
der information it uses to handle certain features, especially
involving sibling axes in XPATH. We expect to also demon-
strate a preliminary version of an XSLT view composition
algorithm, which is the subject of on-going research [9].

CREATE VIEW view1 AS

<hotel>
(��� =

SELECT hotelid, hotelname, starrating, state id
FROM hotel

)
<avail>
(��� =

SELECT rhotel id, startdate, rhotel id, roomnumber
FROM availability, guestroom
WHERE type � 5 AND rhotel id = ��� .hotelid
AND startdate � 12/15/02 AND r id = a r id

)
</avail>

</hotel>;

Figure 4: XML view query for experiments.

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
in

 m
ill

is
ec

on
ds

Probability of exploring <avail> nodes

P1
P2
P3

Figure 5: Performance of plans ��� through ��� as a func-
tion of navigation probability for the view query in Fig-
ure 4.

4 Performance

4.1 Impact of Navigation Profiles

We observe that, within the parameters of our system, gen-
erating an execution plan for all probabilities set to 1.0 most
closely approximates a plan optimized for document ex-
port. Similarly, a plan optimized for low (but non-zero)
probabilities at nodes lower in the tree most closely ap-
proximates the heuristic of attaching all child plans to their
parents by outer joins. The general approach of our exper-
iments is to compare these two “extreme” plans to the plan
chosen by the ROLEX optimizer, across a range of probabil-
ities, with our contention being that neither “extreme” plan
performs well across the range.

In our first experiment, we consider the view query
shown in Figure 4. For this view query, the ROLEX op-
timizer finds three optimal plans (��� , �
	 , and ���) as
the navigation probability is varied from �
� �
� to ��� � and
estimates that they are optimal in the ranges � ��� �����
������� ,
� �
���������
��	���� , and ���
��	��
����� ��� respectively. Due to lack of
space we do not show the plans in this paper. We see that
the high probability plan is the decorrelated plan, where the
query of the <avail> node is re-written to do a join with
the query of the <hotel> node. This join is evaluated only
once; the first time any <avail> node is visited. Hence the

high cost of plan ��� at low probabilities.
The performance of each of these plans as a function

of navigation probability is shown in Figure 5. The fig-
ure shows that three plans ��� , �
	 , and ��� are actually
optimal in the ranges � �
���
������� , � �
���������
� �� , and � �
�
����� re-
spectively. Execution time of the plan ��� , which is optimal
at low probabilities, grows linearly with increasing proba-
bility, and executes in ����� seconds for a probability of ��� � .
This is not shown in Figure 5. The error in the probability
cutoff, attributed to cost-model variances, leads to a 5% to
15% sub-optimal execution.

However, Figure 5 emphasizes that there exist distinct
optimal plans for different regions of the probability space.
The experimental results confirm that executing a plan
optimized for very low probability values such as ��� is
highly sub-optimal at high probability values and vice-
versa. Since the plan for probability of ��� � corresponds,
in our model, to the scenario of full document export, we
conclude that such plans are sub-optimal at the lower end
of the navigation probability spectrum.

5 Conclusion and Future Work

Increasingly, relational databases support simultaneous
“OLTP” access via SQL and XML interfaces. ROLEX pro-
vides a novel approach to resolving this duality by offering
the ability to access live, non-materialized XML views of
relational data, directly and efficiently, through a naviga-
ble virtual DOM interface. As a result, the system avoids
the overhead of tagging and parsing that limits the perfor-
mance of existing middleware systems.

In this paper, we propose to demonstrate the working
ROLEX prototype, which includes a query language, opti-
mizer and runtime with web-based interface, as well as lim-
ited support for execution of XSLT transforms and updates
on the DOM tree which get mapped to the relational model.
We note that the ROLEX architecture provides a promising
platform for integrating database functionality (query lan-
guage, integrity constraints) with popular application plat-
forms while providing high performance.

References

[1] J. Baulier et al. DataBlitz storage manager: Main memory
database performance for critical applications. In Proc. of
the ACM SIGMOD Int’l. Conf. on the Management of Data,
1999. Industrial track paper.

[2] P. Bohannon, S. Ganguly, H. Korth, P. Narayan, and
P. Shenoy. Optimizing view queries in rolex to support navi-
gable result trees. In Proc. of VLDB 2002, 2002.

[3] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram,
E. Shekita, and S. Subramanian. XPERANTO: Publishing
object-relational data as XML. In Proc. of the Third Int’l.
Workshop on the Web and Databases, 2000.

[4] X. L. Dong, P. Bohannon, H. Korth, and P. Narayan. Updating
XML views of relational data. In (submitted for publication),
2002.

[5] M. Fernández, A. Morishima, and D. Suciu. Efficient eval-
uation of XML middle-ware queries. In Proc. of the ACM
SIGMOD Int’l. Conf. on Management of Data, 2001.

[6] M. Fernández, D. Suciu, and W. Tan. SilkRoute: Trading
between relations and XML. In Proc. of the WWW9, 2000.

[7] A. L. Hors, P. L. Hegaret, G. Nicol, J. Robie, M. Champion,
and S. Byrne (Eds). “Document Object Model (DOM) Level
2 Core Specification Version 1.0”. W3C Recommendation,
Nov. 2000. http://www.w3.org/TR/DOM-Level-2-Core/.

[8] A. Labrinidis and N. Roussopoulos. WebView materializa-
tion. In Proc. of the ACM SIGMOD Int’l. Conf. on Manage-
ment of Data, 2000.

[9] C. Li, P. Bohannon, H. Korth, and P. Narayan. Composing
XSLT stylesheets with XML publishing views. In (submitted
for publication), 2002.

