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Abstract— Both the Resource Description Framework (RDF), used in the semantic web, and Maya Viz u-forms represent data
as a graph of objects connected by labeled edges. Existing systems for flexible visualization of this kind of data require manual
specification of the possible visualization roles for each data attribute. When the schema is large and unfamiliar, this requirement
inhibits exploratory visualization by requiring a costly up-front data integration step. To eliminate this step, we propose an automatic
technique for mapping data attributes to visualization attributes. We formulate this as a schema matching problem, finding appropriate
paths in the data model for each required visualization attribute in a visualization template.

Index Terms—Data integration, RDF, attribute inference.

1 INTRODUCTION

Recently, there has been tremendous interest in web mashups, which
combine data from multiple web services into new visualizations and
applications [4, 37]. Mashups require technology both to easily inte-
grate diverse data sources and to easily create visualizations.

A major challenge to creating mashups is the nature of the data
on the web. Since the web is not centrally managed, databases do
not always conform to agreed upon schemas. Globally, the genera-
tion of data can be considered as a loosely coupled bottom-up pro-
cess [1]. The classic example is Wikipedia which is being created by
thousands of people around the world. Another example is Google-
Base [15]; GoogleBase allows anyone to add new records with an ar-
bitrary schema to a shared database. The result is that most data on the
web (and also in businesses and governments) is heterogeneous, un-
structured, and often incomplete. Researchers in the database commu-
nity have called such a collection of heterogeneous data a data space,
and have formulated a long-term research agenda to provide technolo-
gies for managing such data spaces.

Semantic web technologies like the Resource Description Frame-
work (RDF) and triple-stores attempt to provide a common denomina-
tor format within which diverse data sources can be represented. RDF
represents data as a graph. Each node in the graph is an object repre-
sented by a uniform resource identifier. Edges connect nodes to other
nodes or to literals which represent attributes. Although most data on
the web is not represented as RDF, the data model is general enough
that it provides a convenient unifying abstraction. We will not assume
the existence of an ontology – semantics of objects are not agreed upon
and the data may be incomplete.

In this paper, we consider the problem of visualizing heterogeneous
collections of data. We describe a system that is able to automatically
find the information in the collection of data that is needed to create a
visualization. The user starts by creating a query that returns a result
set of objects. This query could be from a text- based search engine
or from a more structured query browser. The user then selects a type
of visualization, for example, a map, time or scatterplot. In order to
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create the visualization, various attributes of are needed. For example,
to place an item on a map, a geolocation needs to be retrieved for
each object. In order to find these attributes, the system searches for
the attributes it needs by following links between objects in the data
space. Once the attributes are found, the visualization is drawn and
presented to the user.

Our approach is based on decoupling the schema of the underlying
data from the specification of a visualization. By introducing a layer
of search to mediate between the user’s visualization specification and
the actual RDF data, the user can request visualizations without having
to know the schema in advance. This makes it possible to automati-
cally create visualizations.

The specific contributions of this paper are the following:

• We describe a formalism for specifying visualizations with-
out requiring detailed knowledge of the data sources or their
schemas.

• We formulate the problem of matching visualizations to infor-
mation in the sources as a variant of schema matching. We break
the matching problem into two phases: a path indexing phase to
enumerate and prioritize which paths to consider, followed by a
search for combinations of path instances that attempts to select
the best set of paths to use for each object.

• We describe the implementation of our technique and some ex-
periences from fielding it on different scenarios. We evaluate
the system by performance as well as accuracy in returning good
matches. Examples are given using a variety of visual repre-
sentations including maps, timelines, scatterplots, and node-link
diagrams.

In this paper we will emphasize examples of our technique applied
to dbpedia, but we have also used it for visualizing collections of doc-
uments in a digital library, and visualizing personal information like
e-mails and address books.

2 OVERVIEW

Our technique takes a set of object instances and a specification of
fields needed for a visualization. For each object instance, it then at-
tempts to choose paths to the attributes that best fit the requirements of
the requested fields. This technique is intended to be used as just one
component of a larger interactive platform for searching and browsing
loosely-coupled heterogeneous data. In particular, this paper will not
address the initial query mechanisms for selecting the objects of in-
terest. Our examples will simply be based on sets of object instances
drawn from a Wikipedia category page.

We compare our technique to two existing mechanisms for syn-
thesizing visualizations from databases of objects and their attributes.
One common approach to visualizing objects of many different types
is to attach a display method with each class. For example, most
object-oriented programming languages include a method to convert
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Fig. 1. A small portion of the dbpedia RDF graph illustrating the heterogeneity of representations for people and places. Each box in the diagram
depicts an object and several of its literal valued attributes. Associations between objects are shown by arrows.

an object to a string for display purposes. The display method can
take as input any of the properties of the instance to compute the vi-
sualization. The obvious disadvantage of this method is that the visu-
alization is solely determined by the class of an object, and cannot be
tailored to a particular context or associated with a particular task.

A more flexible method for specifying visualizations can be found
in the Maya Viz system [2], which separates the visualization method
from the class definition. In this approach, the visualization only re-
qures that data objects have specific attributes conforming to known
semantic roles. This allows two advantages. First, any set of objects
can be displayed as long as each object has the required properties,
even if they differ on other attributes. For example, if an object has
a timestamp field, then it can be displayed on a timeline. Second, by
separating the visualization method from the object definition, multi-
ple visualizations can be created for each object. However, this method
requires up-front data integration, since objects must be annotated with
roles clarifying how their attributes should be interpreted.

In contexts involving heterogeneous data, it may also make sense
to use fields that aren’t direct attributes of an object, but rather belong
to a related object reached via a sequence of associations. Consider
our example in Figure 2, which draws on dbpedia data to depict U.S.
senators on a map according to their state. In this case, the object de-
scribing a senator does not have an attribute for geolocation, nor would
it make sense for the data object describing a person to have such an
attribute. However, if the user has explicitly requested to see sena-
tors on a map, it can be reasonable to infer geolocation attributes from
the associated object for their home state. Our technique supports au-
tomatically inheriting needed attributes from associated objects when
the visualization requires it.

As noted, our approach of tightly integrating search into visual-
ization is intended to support casual exploration of unfamiliar data
sets. The focus is on providing “best-effort” retrieval of the proper-
ties needed for a specific visualization. We propose multiple heuristics
to guide this search. Nevertheless, the search is not expected to have
perfect precision or recall, so missing or incorrect values must be ex-
pected. Our visualizations can make potential errors easy to discover
by showing a confidence score associated with each item, as well as
the lineage (the paths followed in the RDF graph to obtain it).

3 FORMALISM

This paper considers the following problem: given a set of objects
and a visualization, find for each object the attributes required by the
visualization. To define our problem formally, we first define the data
model and the specification of a visualization.

Fig. 2. A map marking states with their senators, based on data in
dbpedia.

3.1 Data Model

We model our data as a set of object instances. Objects have a set
of attributes, each of which can take one or several values. Objects
can also be linked with other objects by associations. A class repre-
sents a set of similar objects and summarizes the related attributes and
associations.

With this model, we can view our data as a labeled directed graph.
Specifically, each node in our graph corresponds to either an object
or a literal. Edges from an object to a literal are attributes, and edges
from one object to another are associations.

Note that this abstract data model is equivalent to that of RDF. Each
subject–predicate–object triple in an RDF model corresponds to a di-
rected edge from the subject to the object, labeled with the predicate.

Figure 1 shows a small portion of the dbpedia RDF graph consist-
ing of 6 objects: 2 representing public figures, and 4 representing ge-
ographic locations. This example helps to illustrate the heterogeneity
present in dbpedia data describing people and places. Note for exam-
ple that while the attribute describing senator John Kerry’s place of
birth is named PLACE OF BIRTH, the analogous attribute for Edgar
Allan Poe is named birth place. Similarly, note the different repre-
sentations for latitude and longitude. The object describing the city
of Aurora, Colorado has attributes for these values in the dbpedia
namespace, and the values are encoded as strings in degrees, min-



utes, seconds format. The entry for Boston, Massachusetts does not
have attributes directly describing geolocation. However, Boston is
associated with an object from the auxiliary geonames database (also
available from dbpedia.org) via the sameAs relation. The geonames
object describing Boston does have latitude and longitude attributes.
They are formatted as signed decimal values, as opposed to the string
format used for Aurora, Colorado.

Next, consider following a sequence of several associations to
retrieve a distant attribute. For example, the geographic coordinates
of John Kerry’s birthplace can be found by first following the
PLACE OF BIRTH association, and then the latitude and longitude
attributes, respectively. We can write these paths as:
dbp:PLACE OF BIRTH.dbp:latitude
dbp:PLACE OF BIRTH.dbp:longitude

Note that we abbreviate (or omit) the namespaces of predicates
within the paper text for ease of reading. In order to obtain the anal-
ogous geocoordinates for Edgar Allan Poe’s birthplace, completely
different paths must be followed. In this case:
dbp:birth place.owl:sameAs.geo:latitude
dbp:birth place.owl:sameAs.geo:longitude

In addition to needing to traverse different association paths to ob-
tain analogous fields for different source objects, this case would also
require converting the results into a common format. Recall that one
pair of coordinates are expressed as decimals and the other as strings
encoding the sexagesimal degrees-minutes-seconds format.

3.2 Visualization Specification

We specify a visualization using a schema and an encoding. This
approach for formalizing a visualization is based on the work of
Bertin [6] and others [21, 27, 31]. Formally, a visualization is speci-
fied by a set of triples {(T1,N1,E1), . . . ,(Tk,Nk,Ek)}, where for each
i ∈ [1,k], (Ti,Ni,Ei) represents a visualization attribute: Ti is the type
of the attribute, Ni is the name of the attribute, and Ei is the visual en-
coding for the attribute. The encodings represent mappings to visual
variables. Typical encodings are x, y, color, size, etc.

Only the Ti and Ni terms need to be considered by the search algo-
rithm. The Ei visual encodings are then applied to the results returned
by the search. The visual encodings we use are generally provided
by particular visualization widgets like the SIMILE timeline compo-
nent [5] or our javascript-based U.S. map component. We will hence-
forth omit the Ei fields from the visualization specifications shown in
the paper, with the understanding that standard toolkits can be used to
provide this functionality.

Note that the name used to specify a visualization attribute Ni need
not be a predicate appearing on the graph. This is a strength of our
search-centric approach.

Example 3.1 First, consider the visualization used in Figure 2, where
U.S. senators are shown on a map according to their state. The de-
sired fields are the senators’ pictures, and the names and geographical
coordinates of their associated states. Accordingly, the visualization
specification given to the search algorithm is:
{(decimal, state latitude),
(decimal, state longitude),
(string, name),
(Img, image),
(string, state)} �

Fig. 3. A timeline of manned spaceflight, shown using the timeline wid-
get from the MIT SIMILE project [5].

Example 3.2 Next, suppose we want to visualize the space race by
plotting astronauts and cosmonauts on a timeline of their respective
missions. The fields wanted for the visualization can be specified by:
{(date, mission date),
(Img, insignia),
(string, name),
(Img, image),
(string, nationality)}

Figure 3 shows the results obtained by our search algorithm when
applying this visualization specification to the list of all astronauts.

3.3 Satisfying Visualization Requirements

Given a set of object instances N = {n1, . . . ,nl} and a selected vi-
sualization {(T1,N1), . . . ,(Tk,Nk)}, our goal is to find for each object
ni, i ∈ [1, l], the set of required inputs. Hence, to apply the visualiza-
tion, we need to find k paths for each of the objects in N . Every
such path translates into the node sequence followed from the object
to reach the required input. The path must terminate with an attribute
leading to a value of the required type. Although edges in the graph
are directed, we allow them to be traversed in either direction. Edges
followed “backwards” will be prefixed by a caret in our path notation.

We need a mechanism to evaluate whether a candidate set of paths
to attributes corresponds well to the requested set of visualization
attributes. For example, suppose we have a visualization attribute
(string,birthplacename), and we’re visualizing a set of object in-
stances for people including John Kerry and Edgar Allan Poe. For
some object instances the path may be
dbp:PLACE OF BIRTH.dbp:official name
while for others the path may be
dbp:birth place.dbp:official name.

Both of these paths should be ranked highly. On the other hand, a
candidate visualization in which the path was:
foaf:spouse.dbp:birth place.dbp:official name
would be much less suitable.

We formally define the visualization matching problem as follows.

Definition 3.3 Let o be an object instance and {(T1,N1),
. . . ,(Tk,Nk)} be a visualization. Visualization matching finds a tuple
of paths (p1, . . . , pk), where for each i ∈ [1,k],

• the path pi begins at the node that represents object o,

• the end of pi is a node whose type matches Tti,

• the path pi semantically matches Ni. �

The next section will describe the search and ranking algorithms.
We will introduce several heuristics for assessing the quality of can-
didate paths by considering properties like branching factor and the
discriminability of the literals.



4 TECHNIQUE

A visualization specification defines a set of required parameters. For
each object o that we want to display, we must find paths that will
fullfill the requirements of the current visualization. This section de-
scribes our algorithm, which draws upon techniques from the data in-
tegration community.

Schema matching has been studied extensively (see [26] for a sur-
vey). However, our problem domain, where visualization require-
ments motivate the reorganization of semi-structured data, poses sev-
eral novel challenges. First, the information we have for visualization
specifications and that for the source schemas are unbalanced: for at-
tributes in the visualization specifications, we only know their names
and types; but for those in the source schemas, we know their names,
sometimes their types and constraints, and more importantly, we have
a large set of data instances. Second, we choose to match each visu-
alization attribute to an attribute path, generated by following a se-
quence of associations. This allows desired data to be be found in-
directly via associated objects, but significantly increases the number
of possible matches. Third, we want to visualize objects from differ-
ent data sources together. Object instances from different sources may
have different types of attributes and associations, and even instances
from the same source may have missing attributes and associations.
Thus, the matching results will differ from instance to instance.

We propose a two-phase visualization matching algorithm. The
path indexing phase matches each visualization attribute to a set of
candidate attributes in the data sources. The instance matching for
an object finds an assignment of specific attributes from the database
to the requested visualization attributes that best fulfills the visualiza-
tion specification. The assigned attribute instances can either be direct
attributes of the object instance, or attributes of an associated object.

4.1 Path Indexing
Each attribute required for the visualization is specified by a name
and a type. For each class in the data sources and each visualiza-
tion attribute, the path indexing process finds paths through the source
schemas that end with the specified type and that semantically match
the specified name. Note that paths generated at this stage do not
have attribute values from individual object instances. They are in-
deed “path templates” and at runtime we apply them to each object
and retrieve path instances with real attribute values. To distinguish
them from paths in the graph, we call such path templates schema
paths. Indexing proceeds in five steps.

Step 1: We begin by clustering attributes in the data sources into
attribute groups, which we call attribute concepts, such that within
each group the attributes are semantically related to each other. To
obtain this goal, we can apply existing techniques that match a cor-
pus of schemas, such as [22], and then cluster attributes that match
each other. We denote by con = {a1, . . . ,am} an attribute concept
that contains attributes a1, . . . ,am. For example, birth place and
PLACE OF BIRTH from the sample dbpedia biographical entries
(see Figure 1) can be clustered into an attribute concept.

Step 2: We generate schema paths for each data attribute with re-
spect to each class in the schema. Specifically, consider an attribute
a and a class C. If a is an attribute of C, the path is a direct one and
written as C.a. For example, the path of birth date w.r.t. Person is
Person.birth date. If a is an attribute of a different class Cn and Cn is
directly or indirectly associated with C, then the path is an indirect one
and written as C.A1.C1. . . . .An.Cn.a, where A1, . . . ,An are associations,
C1, . . . ,Cn are classes, and C.A1.C1. . . . .An.Cn is an association chain
from C to Cn. For example, one possible path of latitude w.r.t. Per-
son is Person.birth place.City.sameAs.Geoname.latitude. Note
that for any given (a,C) pair, there may be zero, one, or many schema
paths. We consider only those paths that do not contain loops and are
shorter than a specified bounded length.

For dbpedia, the absence of a known schema and size of the
database make the cost of generating all paths prohibitive. Instead,
we enumerate schema paths based only on those instances involved
in a visualization. In addition to the loop and path length constraints,

we also limited the branching factor for each association in a chain.
Associations that have a high branching factor describe one-to-many
relationships, whereas we typically want to retrieve attributes that are
functionally dependent on the initial objects. Consequently, only as-
sociations with low branching factor are followed.

Recall that we allow paths to traverse edges in the RDF graph in
either direction. In particular, we permit paths that use literals as in-
termediate nodes, like:
Person.dbp:name.string.∧foaf:name.birth place
Allowing paths of this type can be very effective for discovering asso-
ciations between multiple objects (potentially from different sources)
that correspond to the same entity. However, there is also a potential to
introduce large numbers of spurious paths if the literal nodes occuring
as intermediates are not sufficiently discriminating. Multiple objects
referencing the literal value “Edgar Allan Poe” may be related – but
the fact that multiple objects reference the numeral “1” is unlikely to
be significant. For our implementation, we only allow strings with a
length greater than 4 characters to serve as intermediate nodes on a
path. Shorter strings, numeric values, and dates are only allowed as
terminal attributes.

Step 3: We now index each attribute concept with respect to a
class. Specifically, given a class C and an attribute concept con =
{a1, · · · ,am}, we generate the bag of words for con w.r.t. C, denoted
as B(con,C), as follows. For each ai, i ∈ [1,m], if the schema path of
ai w.r.t. C is not empty, we add every term on the paths from ai to C,
except the name of C itself, into B. We thus have an index of (con,C)
pairs, each of which is indexed on words in B(con,C). In our example,
we index the concept {birth place, PLACE OF BIRTH} w.r.t. class
Person as a bag of words {birth birth place place of}, and index
the concept {latitude} w.r.t. class Person as a bag of words con-
taining {birth place city same as geoname latitude}, plus words
from other schema paths connecting Persons to latitudes. In many
cases attribute names may contain misspellings or abbreviations. To
be more tolerant of such cases, we index the n-grams of each term on
the path. For example, if we index 3-grams, the concept {birth place}
w.r.t. class Person is indexed on the bag of words {bir irt rth th h p
pl pla lac ace}. Note that a concept can be indexed multiple times,

each corresponding to a specific class, and because the attribute paths
with respect to these classes are different, the concept is indexed on
different bags of words.

Step 4: For each class C and each visualization attribute v, we use
the index from Step 3 to generate a list of schema paths as matching
options. To do this we first match the visualization attribute to a set
of attribute concepts by looking up in the index the terms of v (or
the n-grams of the terms if we index n-grams). For example, for the
visualization attribute (location, birth) and the class Person, we look
up “birth” in the index (or “bir irt rth” if we index 3-grams). Among
the concepts returned, we only consider those that are paired with C.
For each attribute in such a concept con, if the type of the attribute
matches the type of v, we include all paths of the attribute w.r.t. C in
the returned list of paths.

Step 5: Finally, we rank schema paths based on two measures: TF/IDF
score [29] and the length. Specifically, for each attribute path p in
concept con, we compute the matching score as follows:

Score = S · l ·α +1
l ·α

Here, S is the TF/IDF score of the concept con. To favor short paths,
we multiply S with the factor l·α+1

l·α , where l is the length of the path
p and α is a constant that decides the weight of the length.

Not surprisingly, path indexing provides the best result when the at-
tribute concepts generated in Step 1 are of high quality. However, us-
ing our algorithm we can often generate matching plans that are mean-
ingful, and for data sources that are important, the users can manually
refine the results.



4.2 Instance Matching
At query time, we have a set of object instances that we want to display
using a particular visualization, and we need to find for each instance
particular attribute values that satisfy the visualization specification.

Consider an instance o and a visualization specification:

{(T1,N1), . . . ,(Tk,Nk)}.

Instance matching returns a tuple of paths (p1, . . . , pk), where for each
i ∈ [1,k], pi is a path starting from o and ending with a value node of
type Ti. The path pi should be an instance of the schema path proposed
as a match to (Ti,Ni) during path indexing. Note that the path index-
ing algorithm generally proposes multiple candidate schema paths for
each attribute, and each path can yield multiple path instances for ob-
ject o. Since we typically use only one value in the visualization, we
need to choose the best value among the alternatives. The score com-
puted for each schema path by the path indexing algorithm is the main
ranking criterion, but we now describe two additional heuristics that
have a major impact on the quality of our results.

4.2.1 Ranking Function
Majority-Rule Heuristic: When multiple attribute values are reached

along paths with equal scores, we can apply the majority-rule voting
heuristic. For example, suppose multiple equally ranked paths from a
Person instance to a latitude attribute yield the results {“49◦ 15’ N”,
“37◦ 55’ N”, “49◦ 15’ N”}. Given these alternatives, the majority rule
heuristic suggests we should return “49◦ 15’ N”, the most frequently
occurring value.

Specifically, consider a ranked list L returned by path indexing.
Let P = {p1 . . . pm} be the set of path instances whose corresponding
schema paths have the same matching score in L. We denote by v(pi)
the attribute value at the end of the path pi, and by |v(pi)| the number
of times value v(pi) appears in paths in P. We assign a majority-rule
score m to each path pi:

m(pi) =
|v(pi)|

maxp∈P(|v(p)|)

Common-Path Heuristic: The second heuristic we have is the
common-path heuristic. The path scores from the path indexing and
the majority-rule heuristic apply to each path independently. How-
ever, there may be implicit dependencies between required attributes.
In the following example we illustrate this sort of dependency.

Example 4.1 Consider a conference-publication data source, where
each Paper is associated with multiple AuthorshipNodes, each hav-
ing attributes authorName and institution. Suppose we query this
data source with the visualization specification:

{(string,name),(string, institution)}

The paths that might be used for these fields are:
Paper.author.AuthorshipNode.authorName
Paper.author.AuthorshipNode.institution
Note that the paths leading to both authorName and institution

pass through an AuthorshipNode. Intuitively, for each object in-
stance, we should prefer attribute values found at the end of paths
that pass through the same intermediate node. Suppose the following
four paths are present:
Paper104.author.AuthorshipNode297.authorName=“Joe Smith”
Paper104.author.AuthorshipNode297.institution=“Oxbridge”
Paper104.author.AuthorshipNode298.authorName=“Jane Williams”
Paper104.author.AuthorshipNode298.institution=“Camford”

Then, the tuples (“Joe Smith”, “Oxbridge”) and (“Jane Williams”,
“Camford”) would be preferred to those which spuriously pair each
author with the other’s institution. This dependency between the at-
tributes could not be made explicit in the visualization specification
since we assume no knowledge of the schema. However, we apply

a common-path heuristic to automatically discover this type of im-
plicit dependency between attributes. We give a higher score to a tuple
of attributes which were reached along paths that share intermediate
nodes. �

We now formally define the common-path score. Consider a can-
didate matching result (p1, . . . , pk), where p1, . . . , pk are paths from
instance o. The common-path score is proportional to the number
of common intermediate nodes shared by the paths to each attribute.
Specifically, let Ii be the set of intermediate nodes in path pi. We de-
note by |Ii| the size of Ii. The common-path score C is defined as
follows:

C = ∑i |Ii|− |
⋃

i Ii|
∑i |Ii|

+ ε

Here, a small ε > 0 ensures that C > 0.

Example 4.2 Consider our running example
and the candidate matching (lastname.Poe,
birth place.Boston.sameAS.4930956.latitude.42.3,
birth place.Boston.sameAS.4930956.longitude.−71.1). The
first path contains intermediate node Poe, the second path includes
intermediate nodes {Boston, 4930956}, and the third includes
intermediate nodes {Boston, 4930956}. Thus, the common-path score
for this candidate matching is 5−3

5 + ε = 0.4 + ε . However, for a
candidate matching where the latitude and longitude are obtained
through different City nodes, the common-path score would only be ε .
�

Finally, the overall score for a candidate matching result
(p1, . . . , pk) combines the matching scores of the corresponding
schema paths and the scores computed according to the two heuris-
tics.

Formally, we define S = ∏i[s(pi)], where s(pi) is the matching
score computed during path indexing for the schema path that pi cor-
responds to. We define M = ∏i[m(pi)] as the overall majority-rule
score, where m(pi) is the majority-rule score for path pi. We define
the common-path score C as described above. The final score for a
matching result (p1, . . . , pk) is computed as follows:

score(p1, . . . , pn) = S ·M ·Cβ

Here, β is a parameter that controls the importance of the majority-rule
heuristic relative to the common-path heuristic.

4.2.2 Instance Matching Algorithm

Having outlined the ranking function we use, we now describe the
algorithm in detail. Again, consider an instance o of class C, and a
visualization specification {(T1,N1), . . . ,(Tk,Nk)} We proceed in two
steps.

First, we process the fields of the visualization specification sequen-
tially. For each visualization attribute, we consider the ranked list of
schema paths generated by path indexing. For each schema path p,
we query the database for path instances that originate from o and
match p. We begin with the schema paths with the highest matching
scores, and proceed until we have processed schema paths with score
M, where M is the highest score with which a schema path can retrieve
non-empty path instances for o. For each retrieved path instance, we
compute the majority-rule score. Note that here we consider only the
highest score M; a possible alternative is to consider the top-k such
scores.

Second, for each combination of the path instances, denoted by
{p1, . . . , pk}, we compute the final score and rank these candidate re-
sults accordingly. All tuples of matching results that tie for the highest
score will be delivered to the visualization, subject to a cap on the
maximum number of desired results per instance.



Fig. 4. A version of the senators map annotated with confidence scores.
The bar beneath each item encodes the aggregate score for its fields,
with short red bars for low scores and wide green bars for high scores.
The path scores tend to match our subjective assessment: clearly mis-
placed or mislabelled entries have low scores, while correct entries have
high scores.

5 EXPERIMENTAL RESULTS

The techniques described in this paper are intended to be applicable
to a variety of RDF datasets. Because of the emphasis on coping with
missing data and schema heterogeneity, we choose to perform most of
our evaluations using the dbpedia data, which exhibits these qualities.
The portion of dbpedia we used consisted of 18.9 million relations (ei-
ther associations or attributes). It contains 2.3 million objects and 2.8
million distinct literals, with a total of 8,914 distinct types of relations.
Searching for attribute names containing the string “birth” reveals at
least 12 different attribute names all apparently describing dates of
birth. There is also great variability in which attributes are available.
There are 70 different kinds of relations observed that originate with
one of the U.S. senators, but each senator uses only 27 of them, on
average, with some using as few as 15 and some as many as 41.

We were particularly interested in generating visualizations of peo-
ple, places, and times from this noisy dbpedia data. For example, map-
ping senators by state, as in Figure 2, placing human visitors to outer
space on a timeline of their missions (Figure 3), and plotting economic
indicators for countries on a chart (Figure 5). The visualization speci-
fications used to synthesize the map and timeline were given in section
3.2. For the chart, we used the following:
{(dollar, GDP per capita),
(percent, inflation),
(Img, flag)}

Shortcomings in precision and recall are evident in both diagrams.
Several senators are omitted from the map entirely, usually because
no path could be found leading to a latitude and longitude in decimal
format. Also, incorrect photos and names are found for some sena-
tors. In these cases, the preferred paths to attributes failed to find any
results, and lower ranking paths were used. Since each path used has
a confidence score, we can have the visualizations reflect the quality
of the search results by providing visual indicators of the scores. For
example, in Figure 4, a bar beneath the images of senators varies in
width and color depending on the scores associated with their search
results.

With all heuristics enabled, 58 of the senators were correctly as-
signed to a location in their home state. Appropriate image urls were
found for every senator. However, Wikipedia has undergone many
updates since the dbpedia data was last collected, and some formerly
valid image urls assigned by our algorithm are no longer live. Among
the correctly-placed senators, we find that 7 different paths were used
in different cases in order to obtain latitudes. In section 4, we de-
scribed a number of heuristics for choosing and ranking paths. To
evaluate their effect on the quality of results, we show the number of

Fig. 5. A scatterplot of inflation versus GDP for countries in the dbpedia
data, drawn using the dōjō [3] charting widget.

Fig. 6. Graphs of the number of senators for whom correct geocoordi-
nates are obtained as successive heuristics are enabled. A. No heuris-
tics. B. Favor short paths. C. Limit branching factor of associations. D.
Don’t allow short literals as intermediate nodes.

correct geolocations found for the 100 senators.
In addition to the dbpedia corpus, we also applied our technique to

an RDF description of the publication history of the ACM SIGGRAPH
conference. Figure 7 is a node-link diagram depicting the citation re-
lationships among papers. The node-link diagram applet needed two
input specifications, one to retrieve metadata about each paper to dec-
orate the nodes in the graph, and one to retrieve the edges connecting
them. The input specification for nodes is:
{(string,title),
(integer,year),
(integer,citecount),
(image,image)}
and the input for edges is:
{(paper,citedpaper)}
Only the single highest scoring result is used for each paper node.
Since there are multiple citations, all equally high-scoring results for
the edge specification are drawn as edges.

6 RELATED WORK

User interfaces for databases have been approached from two main di-
rections: helping users precisely and conveniently express their infor-
mation needs, and helping users effectively visualize and understand
query results.

The first category focuses on interactive interfaces for query for-
mulation and query refinement. VIQING [23] provides a visual in-



Fig. 7. A node-link diagram depicting the citation relationships between
a set of papers. The data used for this example was an RDF description
of all publications in the ACM SIGGRAPH conference.

terface for querying relational data. Lore [14] uses Dataguides to
walk users through XML schemas for composition of XML queries.
CLIDE [24] offers an interactive interface for users to pose queries
in a data-integration environment. In [33, 30, 38] the authors studied
how to provide integrative refinement of queries to view XML data,
RDF data, and images. VisTrails [8] streamlines the process of cre-
ating multiple related visualizations by modeling workflows. Finally,
[25] proposes a visual query language that allows the formulation of
complex queries over heterogeneous data.

Our work falls in the second category, which studies the visualiza-
tion of information. The visualization of unstructured data, such as
documents, webpages, and tags, is studied in [11, 13, 10, 12]. For
structured data, Catarci et al. [9] surveyed a large number of systems
that visualize relational data. Visionary [32], Visage [28] and DE-
Vise [20] display query results on a canvas and provide powerful visu-
alization features such as zooming, panning and distortion. Kaim [18]
surveyed the visualization of data from those that are one-dimensional
and those that are multidimensional. XmdvTool [35], XGobi [7], and
VisDB [19] studied how to visualize query results when they corre-
spond to high-dimensional data. NUITS [34] displays the results of
keyword search on relational data as a tree of tuples connected by for-
eign keys.

Of particular importance are formal models of visualizations. Much
of the early work in this area was inspired by Bertin’s Semiology of
Graphics [6]. Bertin is credited with specifying visualization as rela-
tions and encodings. Mackinlay [21] developed APT, which formal-
ized Bertin’s methodology and showed how to optimize the choice of
visual encodings. Sage[27] is a more recent system that develops a
more elaborate data model for designing visualizations. DEVise [20]
extends the formal approach using relational algebra and in particular
develops methods for linking multiple views. Wilkinson’s Grammar
of Graphics [36] presents a very thoughtful and detailed design of a
system for formalism the specification of visualizations. The VizQL
language [16] further extends the method for specifying visualizations
by including support for data cubes and table-based visualizations.

Finally, a number of systems have been designed to allow users
to interactively define visualization of information. For example, in
Polaris [31] users can specify the visualization of a data warehouse.
In Haystack [17] users can specify the display of personal information
(stored as RDF data) using RDF. However, these systems all make the
assumption that the schema of the data is known a priori.

Our work is different from the above work in that we consider
the visualization of loosely-coupled heterogeneous data. Our sys-
tem treats visualizations as first-class citizens and the visualizations
are specified independently of the data sources. To display a set of
objects, possibly from disparate data sources, we perform run-time
schema matching to select attributes that best match the visualization
specifications.

7 CONCLUSIONS AND FUTURE WORK

Visualization and data management are interrelated. When data comes
from multiple sources and is highly heterogeneous, much of the intial
interaction with it will be exploratory. Users need to see the data in or-
der to even formulate appropriate queries. We described techniques for
deeply integrating automatic searching within a visualization pipeline.
This is a new way to approach the problem of visualizing heteroge-
neous data. We introduced a mechanism for describing visualizations
independently of the data in the sources, and an algorithm for retriev-
ing the appropriate data for a given visualization. Our initial experi-
ments have shown that our system is able to find the appropriate data
often enough to be useful as an exploratory tool, while sheltering users
from schema heterogeneity and automatically filling in some incom-
plete data.

We note several ways this work might be expanded upon in the
future. The first is to automatically select from a visualization library
the visualization that is most appropriate for a given set of objects.
The second is to better integrate visualization and querying—using
the visualization to help formulate the next query, and using the query
to give us additional hints for selecting appropriate visualizations.
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