
Mining Structures for Semantics

Xin Dong
University of Washington

lunadong@cs.washington.edu

Jayant Madhavan
University of Washington

jayant@cs.washington.edu

Alon Halevy
University of Washington

alon@cs.washington.edu

1. INTRODUCTION
Online data is available in two flavors: unstructured data
that resides as free text in HTML pages, and structured data
that resides in databases and knowledge bases. Unstruc-
tured data is easily accessed as human-readable text on a
browser, while structured data is hidden behind web query
interfaces (web forms), web services, and custom database
APIs. Access to this data, popularly referred to as the hid-

den web, entails submitting correctly completed web forms
or writing code to access web services using protocols such
as SOAP.

The emergence of powerful search engines has greatly im-
proved our ability to search for data on the web; however,
such access is still primarily restricted to unstructured data.
We can search for and access information available as HTML,
but are not yet able to gain easy access to the hidden web.
It is not easy to get to the correct web form, and even harder
to find a suitable web service. When we do find the correct
web form or web service, there is an additional step of under-
standing its schema, and reformulating the user’s query to
fit that schema. While humans do this regularly, one form

at a time, it is difficult to automate the process of query
reformulation, and therefore we cannot leverage the wealth
of information residing behind web forms and services.

We observe that one reason for the success of today’s search
engines is their ability to apply statistics computed from
large collections of HTML documents to rank their search
results. For example, word-occurrence probabilities in the
body and anchor text of HTML pages are used to identify
words most relevant to individual pages. Such analysis of a
corpus of documents has also been used successfully for other
tasks such as classification and clustering of text documents.
Given that we now have a vast collection of web forms and
services, the natural question that arises is whether we can
leverage a corpus of these in order to automate the process
of query reformulation.

The techniques for exploiting corpora of documents do not
apply directly to searching structured data. The main rea-
son is that searching structured data requires understanding
the underlying semantics of the data sources. This struc-
ture is mostly (but not completely) specified by the schema.
However, in specifying these semantics, the actual words
used and the information organization depend more on the
developer’s whim, and little variations may account for very
different semantics.

We are pursuing a project whose goal is to show that large
corpora of structures (i.e., web forms and services, database
schemata) can be used to address the fundamental difficulty
of bridging semantic heterogeneity. This paper briefly re-
views two recent developments in this project, and compares
between them. Specifically, we describe the following:

• Searching for web services: We describe Woogle1 [9],
an intelligent web service search engine. Among other
things, Woogle exploits parameter naming statistics in
a large collection of web service descriptions (WSDL
files) to accurately search for the web service opera-
tions that best suit a user’s requirements.

• Schema Matching: We describe corpus-based schema

matching [14], a schema matching framework that uses
collections of known schemas and mappings to better
match (identify corresponding elements) new unseen
schemas.

While both of these works exploit a corpus of structures,
the problem settings are such that different techniques are
required. Section 2 describes the Woogle web service search
engine, and Section 3 describes corpus-based schema match-
ing. Section 4 addresses the similarities and differences be-
tween the two approaches and describes related work and
future directions in this project.

2. SEARCHING FOR WEB SERVICES
Web services are loosely coupled software components, pub-
lished, located, and invoked across the web. A web service
comprises of several operations (see examples in Figure 1).
Each operation takes a SOAP package containing a list of in-
put parameters, fulfills a certain task, and returns the result
in an output SOAP package. Each web service has an asso-
ciated WSDL file describing its functionality and interface.
A web service is typically (though not necessarily) published
by registering its WSDL file and a brief description in UDDI
business registries.

The growing number of web services available within an or-
ganization and on the Web raises a new and challenging
search problem: locating desired web services. In fact, to
address this problem, several simple search engines have re-
cently sprung up (e.g., [1]). Currently, these engines provide
only simple keyword search: return services that contain
the words in the web service descriptions (obtained from
the WSDL file). However, the keyword search paradigm is

1http://www.cs.washington.edu/woogle

W1: Web Service: GlobalWeather
Operation: GetTemperature

Input: Zip Output: Return
W2: Web Service: WeatherFetcher

Operation: GetWeather
Input: PostCode
Output: TemperatureF, WindChill, Humidity

W3: Web Service: GetLocalTime
Operation: LocalTimeByZipCode

Input: Zipcode
Output: LocalTimeByZipCodeResult

W4: Web Service: PlaceLookup
Operation1: CityStateToZipCode

Input: City, State Output: ZipCode
Operation2: ZipCodeToCityState

Input: ZipCode Output: City, State

Figure 1: Several example web services (not including their tex-
tual descriptions). Note that each web service includes a set of
operations, each with input and output parameters. For example,
web services W1 and W2 provide weather information.

insufficient for two reasons. First, keywords do not cap-
ture the underlying semantics of web services. For example,
when searching zipcode, the web services whose descriptions
contain term zip or postal code but not zipcode will not be
returned. Further, keyword search on web services does not
suffice for accurately specifying users’ information needs:
users are typically looking for a specific operation with some
specific input or output parameters.

To address the challenges involved in searching for web ser-
vices, we built Woogle, a web-service search engine. In addi-
tion to simple keyword searches, Woogle supports similarity
search for web services. Starting with a keyword search, a
user can drill down to a particular web service operation.
When not satisfied, a user can query for web-service op-
erations similar to a given one, those that take similar in-
puts (or outputs), and those that compose with a given one.
These search primitives greatly reduce the tedium involved
in current web service search where a user might have to
conduct multiple search sessions repeatedly modifying the
search keywords until finding the most suitable web service
operation. For example, the operation GetWeather in W2

is similar to GetTemperature in W1, and thus may serve as
an alternative; while they provide weather information, Lo-

calTimeByZipCode in W3 provides other information about
locations, and thereby may be of interest to the user; finally,
composing CityStateToZipCode in W4 with GetWeather in
W1 offers a solution for getting the weather when the zip-
code is not known.

Overview of our approach: Similarity search for web
services is challenging because neither the textual descrip-
tions of web services and their operations nor the names
of the input and output parameters completely convey the
underlying semantics of the operation. Nevertheless, knowl-
edge of the semantics is important in determining similarity
between operations. Broadly speaking, our algorithm com-
bines multiple sources of evidence to determine similarity.
In particular, we consider similarity between the textual de-
scriptions of the operations and of the entire web services,
and similarity between the parameter names of the opera-
tions. The key ingredient of the algorithm is a novel tech-
nique that clusters parameter names found in the collection
of web services into semantically meaningful concepts. By

comparing the concepts to which input or output parame-
ters belong, we are able to obtain much better search results.
We thus demonstrate the ability to use a corpus to better
search for web services on the Web.

In the rest of this section we outline our similarity search
algorithm with particular emphasis on the clustering of pa-
rameter names. We also present results that demonstrate
the effectiveness of our approach. For more details on this
work, the reader is referred to [9].

2.1 Clustering Parameters into Concepts
To effectively compare the inputs and outputs of web-service
operations, it is crucial to get at their underlying seman-
tics. However, this is hard for two reasons. First, parame-
ter naming is dependent on the developers’ whim. Param-
eter names tend to be highly varied given the use of syn-
onyms, hypernyms, and different naming rules. They might
even not be composed of proper English words–there may
be misspellings, abbreviations, etc. Therefore, lexical ref-
erences, such as Wordnet [2], are hard to apply. Second,
inputs/outputs typically have few parameters, and the as-
sociated WSDL files rarely provide rich descriptions for pa-
rameters. Traditional IR techniques, such as TF/IDF [19]
and LSI [5], rely on word frequencies to capture the under-
lying semantics and thus do not apply well.

A parameter name is typically a sequence of concatenated
words, with the first letter of every word capitalized (e.g.
LocalTimeByZipCodeResult). Such words are referred to as
terms. We exploit the co-occurrence of terms in web service
inputs and outputs to cluster terms into meaningful con-
cepts. As we shall see later, using these concepts, besides
the original terms, greatly improves our ability to identify
similar inputs/outputs and hence find similar web service
operations.

Applying an off-the-shelf text clustering algorithm directly
to our context does not perform well because the web ser-
vice inputs/outputs are sparse. For example, whereas syn-
onyms tend to occur in the same document in an IR applica-
tion, they seldom occur in the same operation input/output;
therefore, they will not get clustered. Our clustering algo-
rithm is a refinement of agglomerative clustering [12]. We
briefly outline the clustering algorithm below.

Clustering by Co-occurence: We base our clustering on
the following heuristic: parameters tend to express the same

concept if they occur together often. This heuristic is vali-
dated by our experimental results. We use this intuition to
cluster parameters by exploiting their conditional probabil-
ities of co-occurrence in inputs and outputs of web-service
operations. We say that a term t1 is closely associated with
term t2, if the association rule t1 → t2 has a support and a
confidence over the corresponding thresholds. Here the rules
are a special case of the more general association rules [3].

As is typical, we are interested in clusters that have high
cohesion and low correlation. The cohesion HI of a cluster
I is the percentage of closely associated term pairs over all
term pairs in I. The correlation RIJ between two clusters
I and J is the percentage of closely associated cross-cluster
term pairs. In order to balance the cohesion and correlation,
we try to maximize the average cohesion-correlation ratio of
the set of clusters C.

SC =
avg(cohesion)

avg(correlation)
=

(‖ C ‖ −1)×
P

I∈C HI

2×
P

I,J∈C,I 6=J
RIJ

Agglomerative Clustering: Our clustering algorithm is
a series of refinements over the classical agglomerative clus-
tering. We start with each term being in a cluster of its
own. The algorithm proceeds in a greedy fashion. It sorts
the association rules in descending order first by the confi-
dence and then by the support. Infrequent rules with less
than a minimum support ts are discarded. At every step,
the algorithm chooses the highest ranked rule that has not
been considered previously. If the two terms in the rule be-
long to different clusters, the algorithm merges the clusters.
We now motivate and outline two refinements to this basic
algorithm.

Increasing cluster cohesion The basic agglomerative al-
gorithm takes the single linkage method; that is, it links two
clusters together when any two terms in the two clusters are
closely associated. This merge condition is very loose and
can easily result in low cohesion of clusters. To illustrate,
suppose there is a concept for weather, containing tempera-

ture as a term, and a concept for address, containing zip as
a term. If, when operations report temperature, they often
report the area zipcode as well, then the confidence of rule
temperature → zip is high. As a result, the basic algorithm
will inappropriately combine the weather concept and the
address concept.

The cohesion of a cluster is decided by the association of
each pair of terms in the cluster. To ensure that we obtain
clusters with high cohesion, we merge two clusters only if
they satisfy a stricter condition: given a cluster C, a term is
called a kernel term if it is closely associated with at least
half2 of the remaining terms in C; two clusters are merged
only if all the terms in the merged cluster are kernel terms.

Splitting and Merging: A greedy algorithm pursues local
optimal solutions at each step, but usually cannot obtain the
global optimal solution. In parameter clustering, an inap-
propriate clustering decision at an early stage may prevent
later appropriate clustering. Consider the case where there
is a cluster for zipcode {zip, code}, formed because of the
frequent occurrences of parameter ZipCode. Later we need
to decide whether to merge this cluster with another clus-
ter for address {state, city, street}. The term zip is closely
associated with state, city and street, but code is not closely
associated with them because it also occurs often in other
parameters such as TeamCode and ProxyCode, which typi-
cally do not co-occur with state, city or street. Consequently,
the two clusters cannot merge; the clustering result contrasts
with the ideal one: {state, city, street, zip} and {code}

The solution to this problem is to split already-formed clus-
ters so as to obtain a better set of clusters with a higher
cohesion/correlation score. When analyzing a pair of candi-
date clusters, our algorithm considers two options: (a) split
each cluster into a ready-to-merge subset that contains terms
closely associated with terms in the union of the two clus-
ters and a left-alone subset of the rest terms, and then merge
the two ready-for-merge subsets; (b) leave the two clusters
as they are. The option with the best cohesion-correlation
ratio is selected.

Clustering Results: The term-level clustering algorithm
outlined above still has two problems. First, the cohesion
condition is too strict for large clusters, so may prevent
closely associated large clusters to merge. Second, early in-

2We tried different values for this fraction and found 1

2

yielded the best results.

appropriate merging may prevent later appropriate merging.
Although we do splitting, the terms taken off from the orig-
inal clusters may have already missed the chances to merge
with other closely associated terms. We solve the problems
by running the clustering algorithm iteratively. After each
pass, we replace each term with its corresponding concept,
re-collect association rules, and then re-run the clustering
algorithm. This process continues when no more clusters
can be merged.

We now briefly outline the results of our clustering algo-
rithm. Our dataset, which we will describe in detail in Sec-
tion 2.3, contains 431 web services and 3148 inputs/outputs.
There are a total of 1599 terms. The clustering algorithm
converges after the seventh run. It clusters 943 terms into
182 concepts. The rest 656 terms, including 387 infrequent
terms (each occurs in at most 3 inputs/outputs) and 54 fre-
quent terms (each occurs in at least 30 of the inputs/outputs)
are left unclustered. There are 59 dense clusters, each with
at least 5 terms. Some of them correspond roughly to the
concepts of address, contact, geology, maps, weather, fi-
nance, commerce, statistics, and baseball, etc. The overall
cohesion is 0.96, correlation is 0.003, and average cohesion
for the dense clusters is 0.76. This result clearly indicates a
high cohesion within concepts and a low correlation between
concepts.

2.2 Computing Operation Similarity
In this section we describe how we compute the similarity of
web-service operations. We use the intuition that the simi-
larity between two operations is related to the similarity of
their descriptions, that of their input and output parame-
ters, and that of their host web services. The similarity of
a pair of inputs (or outputs) is related to the similarity of
the parameter names, that of the concepts represented by
the parameter names, and that of the operations to which
they belong. Here the parameter name similarity compares
inputs/outputs on a fine-grained level; while concept simi-
larity compares inputs/outputs on a coarse-grained level.

Parameter name similarity: We consider the terms in all
parameter names in the input or output of an operation as a
bag of words and use the TF/IDF measure [19] to compute
the similarity of two such bags.

Input/output concept similarity: To compare the sim-
ilarity of the concepts represented by the inputs/outputs,
we replace each term in the bag of words described above
with its corresponding concept, and then use the TF/IDF
measure.

Input/output similarity: We compute the similarity of
the inputs of two operations as a linear combination of the
parameter name similarity, concept similarity and the op-
eration similarity. As we see this similarity is recursively
related to the similarity of the operations. We note that
careful choice of the weights in the linear combination will
ensure a closed-form solution for both the input/output sim-
ilarity and the operation similarity.

Web-service operation similarity: We compute the sim-
ilarity of two operations as a linear combination of the simi-
larity of web-service descriptions, the similarity of the oper-
ation descriptions, the similarity of the inputs and the sim-
ilarity of the outputs. The description similarities are com-
puted again with TF/IDF with some simple pre-processing

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Only Parameter Only Concept Woogle

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Keyword NO Clustering Woogle

(a) Operation matching (b) Input/output matching

Figure 2: R-P curves for Woogle similarity search.

of the web-service description (obtained from the WSDL and
the UDDI registry) and the operation description (obtained
from the WSDL).

2.3 Experimental Results
We implemented a web-service search engine, called Woogle,
that has access to 790 web services from the main author-
itative UDDI repositories. We ran our experiments on the
subset of web services whose associated WSDL files are ac-
cessible from the web; this set contains 431 web services and
1574 operations in total. Figure 2 plots the Recall-Precision
curves for web-service operation matching and input/output
matching. It clearly shows that considering parameter clus-
ters can improve the performance for both matching tasks.

3. MATCHING SCHEMAS
Schema matching is the problem of determining a set of cor-

respondences (a.k.a. matches) that identify similar elements
in different schemas. Schema matching is inherently a dif-
ficult task to automate mostly because the exact semantics
of the data are only completely understood by the designers
of the schema, and not fully captured by the schema itself.
In part, this is due to the limited expressive-power of the
data model, and often is further hindered by poor database
design and documentation. As a result, the process of pro-
ducing semantic mappings requires a human in the loop and
is typically labor-intensive, causing a significant bottleneck
in building and maintaining data sharing applications.

Schema matching has received steady attention in the database
and AI communities over the years (see [17] for a recent sur-
vey and [16; 4; 6; 8; 10; 11; 15; 23; 21] for work since). A
key conclusion from this body of research is that an effective
schema matching tool requires a principled combination of
several base techniques, such as linguistic matching of names
of schema elements, detecting overlap in the choice of data
types and representation of data values, considering pat-
terns in relationships between elements, and using domain
knowledge.

However, current solutions are often very brittle. In part,
this is because they only exploit evidence that is present
in the two schemas being matched. These schemas often
lack sufficient evidence to be able to discover matches. For
example, consider table definitions T1 and T2 in Figure 3(a).
While both of these tables describe the availability of items,
it is almost impossible to find a match by considering them
in isolation.

This section describes corpus-based matching, an approach
that leverages a corpus of schemas and mappings in a par-
ticular domain to improve the robustness of schema match-

T1: BookAvailability

T2: Stock

Mapping: BookAvailability(i, w, q) Stock(i, w, q, NULL, “book”)

Match:

T3: BookStock T4: ProductAvailability

140Atlanta1565115147

QtyWarehouseISBN
140Atlanta1565115147

QtyWarehouseISBN
book5354Seattle078878983X

bookORcdQuantitywarehouseIDproductID
book5354Seattle078878983X

bookORcdQuantitywarehouseIDproductID

(a) Matches and mappings between BookAvailability and Stock

(b) Other schemas about product availability

Seattle

warehouseID
50

inStock
4/10/2004

expectedInStock
book0006388515

itemTypeproductID
Seattle

warehouseID
50

inStock
4/10/2004

expectedInStock
book0006388515

itemTypeproductID

QuantitywLocationISBN QuantitywLocationISBN
(no tuples)

Figure 3: Knowledge of schemas T3 and T4 can be used to
better match schemas T1 and T2.

ing algorithms. A corpus offers a storehouse of alternative

representations of concepts in the domain. We show how
such alternate representations can be used to increase the
evidence available in the matched schemas and thereby im-
prove the ability to discover difficult matches. For further
details, the reader is referred to [14].

Overview of our approach: To illustrate the intuition be-
hind our techniques for exploiting a corpus, suppose that for
any element e (e.g., table or attribute name) in a schema S,
we are able to identify the set of elements, Ce, in the corpus
that are similar to the element e. We can use Ce to augment

the knowledge that we have about e. In our example, the ta-
ble T1.BookAvailability is very similar to the table T3.BookStore

in the corpus (their columns are also similar to each other).
Similarly, T2.Stock is similar to T4.ProductAvailability. It is
easy to see that combining the evidence in T3 with T1 and T4

with T2 better enables us to match T1 with T2: first, there is
increased evidence for particular matching techniques, e.g.,
alternative names for an element; and second, there is now
evidence for matching techniques that lack evidences earlier,
e.g. considering T3 with T1 includes data instances (tuples)
where there were none initially. This is the intuition of aug-

ment that we will describe in Section 3.1.

Another method of exploiting the corpus is to estimate statis-
tics about schemas and their elements. For example, given a
corpus of inventory schemas, we can learn that Availability ta-
bles always have columns similar to ProductID and are likely
to have a foreign key to a table about Warehouses. These
statistics can be used to learn domain constraints about
schemas (e.g., a table is less likely to match Availability if
it does not have a column that can match ProductID). We
show how to learn such constraints, and how to use them
to further improve schema matching. In particular these
constraints are used in an A* search that selects matching
element pairs from the element similarity values computed
by augment. We note that previous work has shown that
exploiting domain constraints is crucial to achieving high
matching accuracy, but such constraints have always been
specified manually. We outline the process of learning and
application of constraints in Section 3.2.

3.1 The Augment Method
We now describe the augment method in detail. As noted
earlier, the corpus is a collection of schemas and elements

within the schema. In order to find elements in the cor-
pus that are similar to a given schema element s, we com-
pute an interpretation vector, Is, for s. Is is a vector,
〈. . . , pe,s, pf,s, . . . 〉, where pe,s is an estimate of how simi-
lar s is to element e in the corpus. We use machine learning
to estimate these similarities. Specifically, for each element
of the corpus, e, we learn a model; given an element s, the
model of e predicts how similar e is to s.

Models for corpus elements: The model for each element
is created via an ensemble of base learners, each of which
exploits different evidences about the element. Some of the
base learners that we use are as follows: a name learner that
determines the word roots that are most characteristic of the
name of an element (as compared to the names of other el-
ements); a data instance learner that determines the words
and special symbols (if any) that are most characteristic in
instances of an element; and a context learner that deter-
mines the characteristics of elements that are related to an
element. The predictions of the base learners are combined
via a meta-learner.

Training each of these learners requires learner-specific pos-
itive and negative examples for the element on which it is
being trained. For any element s ∈ S, the element is a pos-
itive example of itself, and all other elements in the schema
are negative examples. If, in some mapping in the corpus,
s is deemed similar to an element t in T , then the train-
ing examples for t can be added to the training examples
for s. Mappings enable us to obtain more training data for
elements and hence learn more general models. The meta-
learner uses a linear combination to combine the predictions
made by the base learners in the ensemble and is trained us-
ing a technique called stacking [20].

Note that all the base learners in the ensemble need not be
classifiers. For example, we can also have a simple name
comparator that uses string edit distance to estimate simi-
larity of two names.

Augmenting and matching elements: The goal of the
augment method is to enrich the models that we build for
each element of the schemas being matched, thereby improv-
ing our ability to predict matches. Suppose we are deciding
the match between an element s in schema S, and an ele-
ment t in schema T . Given the interpretation vector for s,
we pick Cs, a set of close elements from the corpus, using
a simple criteria: pick the N elements that are most sim-
ilar to e such that pe,s ≥ α. The augmented models are
constructed in a way similar to building models for each el-
ement in the corpus. Having determined Cs, an ensemble
model is learned for s by putting together the training data
for all the elements in Cs. In addition to Cs, other elements
that are known to map to elements in Cs also contribute to
the examples for s.

We note that since there are multiple schemas in the corpus,
it is easier to find elements in the corpus that are similar to
s than directly trying to match s with some element in T .
Even if a few elements are incorrectly added to the aug-
mented model, there are benefits as long as there are fewer
of them than correctly added elements.

We use the learned augmented models for elements in schema
S and T to compute the similarity between each s ∈ S and
t ∈ T . The similarities are computed as in [8], sim(s, t) is
average of the probabilities obtained by applying the aug-
mented model for s on t and vice-versa.

In [13] we proposed an alternate method, pivot, for comput-
ing these similarities by simply computing the cosine mea-
sure between the interpretation vector. In practice, we found
that augment performed better that pivot in all our domains.

The result of both the augment and the pivot methods is
a similarity matrix: for each pair of elements s ∈ S and
t ∈ T , we have an estimate for their similarity (in the [0, 1]
range). Correspondence or matches can be selected using
this matrix in a number of ways, as we describe next.

3.2 Constraints for Match Generation
The task of generating matches consists of picking the element-
to-element correspondences between the two schemas being
matched. As observed in previous work [15; 7], relying only
on the similarity values does not suffice for two reasons.
First, certain matching heuristics cannot be captured by
similarity values (e.g., when two elements are related in a
schema, then their close elements in the corpus should also
be related). Second, knowledge of constraints plays a key
role in pruning candidate matches.

Constraints can either be generic or dependent on a partic-
ular domain. As examples of the latter, if a table matches
Books, then it must have a column similar to ISBN. If a
column matches DiscountPrice, then there is likely another
column that matches ListPrice. Most prior work has used
only generic constraints, and when domain constraints have
been used, they have been provided manually and only in
the context where there is a single mediated schema for the
domain [7].

In this section we briefly describe how domain constraints
can be learned from a corpus of schemas, and also how we
can estimate the relevance of the difference constraints to
match generation. The latter is important because many of
the constraints we employ are soft constraints; i.e., they can
be violated in some schemas.

Corpus Statistics: In order to learn constraints from the
corpus, we must first estimate various statistics of its con-
tents. For example, given a collection of Book schemas, we
might find that all of them have a column for ISBN, 50% of
them have author information in separate tables, and 75%
have list and discount price information in the same table.

In order to estimate meaningful statistics about an element,
we must have a set of examples for that element, e.g., we
can make statements about tables of Books only when we
have seen a few examples of similar tables. We hence group
together elements in our corpus into clusters that intuitively
correspond to concepts. As in the last section, we use ag-
glomerative clustering to build clusters; however, here we
are clustering elements in different schemas. We use a differ-
ent set of refinements to the basic clustering algorithms; for
example, we do not let two elements from the same schema
ever be part of the same cluster. Given the clustering of cor-
pus elements into concepts, here are some of the statistics
that we estimate.

Tables and Columns: For relational schemas, compute for
each table concept ti and each column concept cj , the con-
ditional probability P (ti|cj). This helps us identify the con-
texts in which columns occur. For example, the ISBN column
most likely occurs in a Books table or an Availability table (as
foreign key), but never in a Warehouse table.

Neighborhood: We compute for each concept the most likely
other concepts they are related to. Briefly, we construct

itemsets from the relationship neighborhoods of each ele-
ment, and learn association rules from these. For example,
we learn that AvailableQuantity → WarehouseID, i.e., the at-
tribute availability is typically specified w.r.t. a particular
warehouse.

Ordering: If the elements in a schema have a natural order-
ing (e.g. the input fields in a web form, or the sub-elements
of an XML element), then we can determine the likelihood
of one concept preceding another.

Cost-based Match Generation: Given two schemas S

and T , our goal is to select for each element in S the best
corresponding element in T (and vice-versa). Specifically,
for each element e in S we will assign either an element f in
schema T , or no match (φ). Let M represent such a match.
Thus, M = ∪i {ei ← fi}, where ei ∈ S and fi ∈ T ∪ {φ}.

We assign a cost to any such match M that is dependent on
our estimated similarity values and constraints:

Cost(M) = −
X

i

log sim[ei, fi] +
X

j

wj ×Kj(M) (1)

where sim[ei, fi] is the estimated similarity of elements ei

and fi, each Kj (≥ 0) is some penalty on the mapping M for
violating the jth constraint, and wj is a weight that indicates
the contribution of the jth constraint. The first sum is an
estimate of the total log likelihood of the mapping (if the
similarities were interpreted as probabilities). The second
sum is the penalty for violating various constraints. The
task of generating the mapping from S to T is now reduced
to the task of picking the mapping M with the minimal
cost. We use A∗ search [18] to pick the best mapping M ,
which guarantees finding the match with the lowest cost.
Our constraints are encoded as functions, Kj , that produce
a value in the interval [0, 1]. We do not provide the details
for each Kj , but note that the weight-learning algorithm
described in the next section adapts wj to the values Kj

evaluates to.

Some of the constraints we use are the following. Among
generic constraints, uniqueness states that each element must
match with a distinct element in the target schema, and mu-

tual states that e can match f only if e is one of the most
similar elements of f and mutually f is one of the most sim-
ilar elements of e. As domain constraints obtained from the
corpus, we have the following: (1) same-concept: if two el-
ements are to be matched, then they have to be similar to
the same concept(s) in the corpus; (2) likely-table: if column
e matches f , then e’s table must be a likely table for f to
be in; (3) neighbors: if element f is to be assigned to e, then
elements that are likely related to f must be related to e;
and (4) ordering: if element f is to be assigned to e, then
the ordering corpus statistics should not be violated.

Learning Constraint Weights: Since many of the con-
straints we use in our matching algorithm are soft; i.e., en-
code preferences rather than strict conditions, the choice of
weight for each constraint is crucial. Prior work has always
hard-coded these constraint weights. We now describe how
these weights can actually be learned from known mappings.

Consider a matching task between source schema S and tar-
get schema T . Consider a mapping M in which the correct
matches are known for all elements in S except e. If f were
the correct match for element e, then in order that e is also
correctly matched with f , given the exact matches of other
elements, the following condition must hold.

∀fi, fi 6= f, Cost(M |e← f) < Cost(M |e← fi) (2)

26-90

11-33

3-20

3-28

elements
(min-max, average, std.deviation)

41

18

7

11

16.5

4.9

4.1

6.7

names, examples,
descriptions, context

text, variable names,
select options

evidence

30

39

37

74

mappings

34

26

20

30

schemas

relationalinventory

relationalinvsmall

webformsreal estate

webformsauto

typedomain

26-90

11-33

3-20

3-28

elements
(min-max, average, std.deviation)

41

18

7

11

16.5

4.9

4.1

6.7

names, examples,
descriptions, context

text, variable names,
select options

evidence

30

39

37

74

mappings

34

26

20

30

schemas

relationalinventory

relationalinvsmall

webformsreal estate

webformsauto

typedomain

Table 1: Characteristics of evaluation domains.

This can be re-written for each element fi as below.

L(M, sim, e, fi, w̄) = log sim[e, f]− log sim[e, fi]+
X

j

wj × [Kj(M |e← f)−Kj(M |e← fi)] > 0 (3)

Element e is incorrectly matched if the above condition is
violated for some fi. In [14] we describe how we learn the
values of the wjs (using hill-climbing search) by minimizing
the number of incorrect violations of this above condition in
a known set of mappings.

3.3 Experimental Results
We now present experimental results that demonstrate the
performance of corpus-based matching. We show that corpus-
based matching works well in a number of domains, and in
general has better results than matching schemas directly.
Furthermore, we show our techniques are especially effective
on schema pairs that are harder to match directly.

Datasets: We used a variety of domains and Table 1 sum-
marizes some of their basic characteristics. We note that the
web form schemas (set of visible input fields) were extracted
by a rather primitive text extractor and hence had a number
of errors that made the matching difficult. The relational
schemas were created independently by undergraduate stu-
dents as part of a class project in their database class. These
schemas were varied in their choice of tables (3-12), number
of columns, and data types.

In each domain, we manually created mappings between ran-
domly chosen schema pairs. The matches were one-many,
i.e., an element can match any number of elements in the
other schema. These manually-created mappings are used
as training data and as a gold standard to compare the map-
ping performance of the different methods.

Experimental Methodology: We compared three meth-
ods: augment, direct, and pivot: augment is our complete
corpus-based solution. direct uses the same base learners
described in Section 3.1, but the training data for these
learners is extracted only from the schemas being matched.
direct is similar to the Glue system [8] and can be considered
a fair representative of direct-matching methods. pivot, as
described in Section 3.1, is the method that computes co-
sine distance of the interpretation vectors of two elements
directly.

The result of each of our methods is a directional match: for
each element in a schema, an element from the other schema
is chosen such that the cost of entire mapping is minimized.
If the gold standard has a match in which s matches a set
of elements E, then a matcher is said to have predicted it
correctly if s is predicted to match any one element in E,
and every element in E is predicted to match s. As a result,
any 1 : m mapping is considered as m+1 separate matches.

We report matching performance in terms of F-Measure.
For a given schema pair, let c be the number of elements

in the two schemas for which a match is predicted and the
predicted match is correct. If a match was predicted for n

elements, and a match exists in the gold standard for m ele-
ments, the f-measure is the harmonic mean of the precision
and recall.

FMeasure =
2pr

p + r
, where p =

c

n
, r =

c

m

Optimizing for f-measure tries to balance the inverse relation
between precision and recall.

Corpus improves F-Measure: Figure 4 compares the
results of direct, augment, and pivot in each of the four do-
mains. There are 22 (auto), 16(real estate), 19(invsmall), 16(in-

ventory) schemas respectively and 6 mappings in the corpus.
augment achieves a better f-measure than direct and pivot in
all domains. There is a 0.03− 0.11 increase in f-measure as
compared to direct, and a 0.04− 0.06 increase as compared
to pivot. We note that augment has a better recall as com-
pared to direct in all four domains, and better precision in
three of the four domains (the precision is lower in the in
the inventory domain due to the presence of many ambigu-
ous matching columns, but there is a noticeable increase in
recall). These results show that augmenting the evidence
about schemas leads to the discovery of new matches, and
in most cases fewer incorrect match predictions are made.

The results in this section consider only the single best
match for each element. In an interactive schema-matching
system, we typically offer the user the top few matches
when there is a doubt. When we consider the top-3 can-
didate matches, then augment is able to identify the correct
matches for 97.2% of the elements, as opposed to 91.1% by
direct and 96.7% by pivot.

Difficult versus Easy matching tasks: Our central claim
is that corpus-based matching offers benefits when there is
insufficient direct evidence in the schemas. To validate this
claim, we divided the manual mappings in each domain into
two sets - easy and difficult: all the schema pairs in the test set
were matched by direct and then sorted by direct’s matching
performance. The top 50% were identified as the easy pairs
and the bottom 50% as the difficult pairs.

Figure 4b compares the average f-measure over the difficult

matching tasks, showing that augment outperforms direct

in these tasks. More importantly, the improvement in f-
measure over direct is much more significant (0.04 − 0.16)
than in Figure 4a, e.g., there is an improvement of 0.16 in
the invsmall domain, and 0.12 in the real estate domain as
compared to the 0.11 and 0.07 increases when all tasks are
considered.

Figure 4c shows the same comparison over the easy tasks.
The performance of augment for these tasks, while still very
good, is in fact slightly worse than direct in one domain
and the improvements are much less in the other domains.
This is quite intuitive in retrospect. When two schemas are
rather similar (easy to match directly), including additional
evidence can lead the matcher astray.

4. DISCUSSION AND RELATED WORK
We described two related projects that exploit corpora of
structures. They correspond to the two steps in searching
and accessing the hidden web: (1) locating the desired data
source; (2) reformulating a query onto the schema of the
source. While both steps rely on a good understanding of

the structure information, they are different in the match-
ing granularity: data-source location is essentially finding
a similar schema, while schema matching looks for similar
elements within two given schemas that are assumed to be
related. In the former task, the exact details of the vari-
ous elements and their relationships are less important: it
suffices to know that a similar element exists, rather than
knowing which element it is.

As we develop corpus-based techniques to searching struc-
tures with rich semantics, there is another dimension to keep
in mind, namely, the cohesion of the underlying structure.
In particular, a database schema includes a set of tightly-
coupled tables and attributes that, together, are meant to
model a set of objects. This raises the complexity of the
matching, but meanwhile provides rich information. For ex-
ample, the schema definition languages for databases are
strong in defining constraints, such as type constraints, key
and foreign key constraints, and thus present more oppor-
tunities for exploring constraints in schema matching. In
contrast, the operations in web services are only loosely cou-
pled, and each one in isolation has much less information.
However, the descriptions in the WSDLs and the UDDI en-
tries allow for applying the information retrieval techniques
in matching. In addition, the input and output parame-
ters in an operation are organized in a tree hierarchy rather
than forming a flat vector and so imply the relationship be-
tween parameters. Web forms can be viewed as very simple
database schemata, and are similar to web services in that
they also take certain inputs. Although here the inputs do
not have particular type information, other aspects of infor-
mation can be explored to understand the inputs, such as
text descriptions on the webpage, the layout of the input
components on the page, and the values of the drop-down
boxes. Furthermore, a field in a web form may already cor-
respond to a selection or aggregation query over the under-
lying schema (e.g., price range or maximum price), rather
than to the schema element itself.

4.1 Related Work
The use of previous schema and mapping knowledge has
been proposed in the past, but in two very restricted set-
tings. They either use previous mappings to map multi-
ple data sources to a single known mediated schema [7],
or compose known mappings to a common schema [6]. In
our approach, we show that a corpus of schemas and map-
pings can be leveraged in many different ways to discover
matches between two as yet unseen schemas. In [10], the
authors construct a single mediated schema for a domain of
web forms. They estimate the single most likely mediated
schema that could generate all the web forms in a given col-
lection. In [22] the authors collectively match a number of
related web forms by clustering their fields. We use such
clustering as a step in learning constraints.

4.2 Future Directions
There are several exciting future directions we are pursu-
ing. First, we believe that corpus-based techniques should
be helpful in authoring database schemata and querying un-
familiar schemas. Second, we plan to apply our techniques
to software component matching, where the goal is to find
methods that have the same signatures and behavior [24].
While some of our techniques for analyzing web service de-
scriptions may apply, in the context of software components

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

auto real estate invsmall inventory

A
ve

ra
g

e
 F

M
e

a
s
u

re

direct augment pivot

(a) Overall F-Measure

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

auto real estate invsmall inventory

A
ve

ra
g

e
 F

M
e

a
s
u

re

direct augment pivot

(b) Difficult Tasks

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

auto real estate invsmall inventory

A
ve

ra
g

e
 F

M
e

a
s
u

re

direct augment pivot

(c) Easy Tasks

Figure 4: (a) shows that augment performs better overall than direct and pivot in all domains, but the improvement is more
significant for difficult tasks (b) and more modest for easy tasks (c).

we may also leverage analysis of pre- and post-conditions.

5. REFERENCES

[1] Binding Point. http://www.bindingpoint.com.

[2] WordNet. http://www.cogsci.princeton.edu/∼wn/.

[3] R. Agarwal, T. Imielinski, and A. Swami. Mining As-
sociations between Sets of Items in Massive Databases.
In SIGMOD, 1993.

[4] J. Berlin and A. Motro. Database Schema Matching
Using Machine Learning with Feature Selection. In
CAiSE, 2002.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent seman-
tic analysis. JASIS, 41(6):391–407, 1990.

[6] H.-H. Do and E. Rahm. COMA - A System for Flex-
ible Combination of Schema Matching Approaches. In
VLDB, 2002.

[7] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
Schemas of Disparate Data Sources: A Machine Learn-
ing Approach. In SIGMOD, 2001.

[8] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy.
Learning to Map between Ontologies on the Semantic
Web. In WWW, 2002.

[9] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Similarity Search for Web Services. In VLDB,
2004.

[10] B. He and K. C.-C. Chang. Statistical Schema Matching
across Web Query Interfaces. In SIGMOD, 2003.

[11] J. Kang and J. Naughton. On schema matching with
opaque column names and data values. In SIGMOD,
2003.

[12] L. Kaufman and P. J. Rousseeuw. Finding Groups in

Data: An Introduction to Cluster Analysis. John Wiley
& Sons, New York, 1990.

[13] J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and
P. Shenoy. Corpus-based Schema Matching. In Infor-

mation Integration Workshop at IJCAI, 2003.

[14] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy.
Corpus-based Schema Matching. In ICDE, 2005.

[15] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm. In
ICDE, 2002.

[16] N. F. Noy and M. A. Musen. PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment.
In AAAI, 2000.

[17] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal, 10(4),
2001.

[18] S. Russell and P. Norvig. Artificial Intelligence: A Mod-

ern Approach. 2nd edition, 2003.

[19] G. Salton, editor. The SMART Retrieval System—

Experiments in Automatic Document Retrieval, 1971.

[20] K. M. Ting and I. H. Witten. Issues in Stacked Gen-
eralization. Journal of Artificial Intelligence Research,
10:271–289, 1999.

[21] J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma.
Instance-based Schema Matching for Web Databases
by Domain-specific Query Probing. In VLDB, 2004.

[22] W. Wu, C. Yu, A. Doan, and W. Meng. An Interac-
tive Clustering-based Approach to Integrating Source
Query interfaces on the Deep Web. In SIGMOD, 2004.

[23] L. Xu and D. Embley. Discovering Direct and Indirect
Matches for Schema Elements. In DASFAA, 2003.

[24] A. M. Zaremski and J. M. Wing. Specification matching
of software components. TOSEM, 6:333–369, 1997.

