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ABSTRACT
Knowledge graph (e.g. Freebase, YAGO) is a multi-relational graph

representing rich factual information among entities of various

types. Entity alignment is the key step towards knowledge graph

integration from multiple sources. It aims to identify entities across

different knowledge graphs that refer to the same real world entity.

However, current entity alignment systems overlook the sparsity

of different knowledge graphs and can not align multi-type enti-

ties by one single model. In this paper, we present a Collective
Graph neural network forMulti-type entityAlignment, called CG-
MuAlign. Different from previous work, CG-MuAlign jointly aligns

multiple types of entities, collectively leverages the neighborhood

information and generalizes to unlabeled entity types. Specifically,

we propose novel collective aggregation function tailored for this

task, that (1) relieves the incompleteness of knowledge graphs via

both cross-graph and self attentions, (2) scales up efficiently with

mini-batch training paradigm and effective neighborhood sampling

strategy. We conduct experiments on real world knowledge graphs

with millions of entities and observe the superior performance

beyond existing methods. In addition, the running time of our ap-

proach is much less than the current state-of-the-art deep learning

methods.
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1 INTRODUCTION
Knowledge Graphs (KGs) contain large volumn of relation tuples

in the form of ⟨subject, relation, object⟩, such as ⟨Aditya Raj, write,
Don’t stop Dreaming⟩ in Figure 1. These relation tuples have a

variety of downstream applications including Question Answer-

ing [19], Search, and Recommendation [42]. With the booming
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Figure 1: An example of Entity Alignment on person called “Aditya
Raj” across IMDB and Freebase. Different edge types indicates dif-
ferent relations(e.g. “direct” and “write”). We use different color and
shape indicates node types and different arrow types indicates dif-
ferent relations.

of structured and semi-structured online data, numerous knowl-

edge graphs are extracted on the same domain [25]. Different KGs,

though subject to the incompleteness in varying degrees, usually

contain complementary information. Entity alignment (EA) aims

to identify entities across different knowledge graphs that refer

to the same real world entity. This problem also known as entity
matching/resolution [12, 14, 16, 27] that matches records in the

multi-relational databases.

In a knowledge graph, there are different entity types (e.g., movie,

actor, characters) and relation types (e.g., direct by, act by, release
date, etc.). Given the nature of entity types, the alignment strategy

for different entity types could be different. For example, we observe

much more characters than films, that share the same name in

the IMDB-Freebase dataset. One obvious solution is to develop

different models for different entity types; however, the solution

falls short for two reasons. First, collecting annotations and training

hundreds or even more models for different entity types can be very

complex and expensive. Second, an entity may belong to multiple

overlapping types (e.g. a person can be both a movie director and a

novel writer), making it hard to decide which model to apply for

each entity. Thus, a multi-type entity alignment algorithm becomes

critical for effective knowledge integration [11].

https://doi.org/10.1145/3366423.3380289


However, previous entity alignment methods [4, 7, 8, 37, 45, 46,

51] suffer from the following challenges presented in the multi-type

entity alignment problem.

Transductive→ Inductive. Previous methods [7, 8, 37, 51] adopt

knowledge graph embeddings to jointly perform the KG completion

and entity alignment tasks, thus may not be tuned perfectly for

alignment purpose. In particular, they focus only on related enti-

ties, i.e. transductive setting, ignoring the potentially rich attribute

information such as the name and the released date. In addition,

when new entities are added into the graphs, these methods require

complete retraining to predict alignment for new entities.

Labeled Type → Unlabeled Type. Traditional methods[27, 39]

can often perform well for entity types with rich training data,

but often fail for the types where training data are sparse or even

lacking. Intuitively, the rich connections between different types

of entities shall help boost performance for the types with small

training data, but the connections are not yet effectively leveraged

on a large scale.

Inspired by the recent success of Graph Neural Networks (GNN)

on various tasks such as node classification [21], link prediction [5,

48] and graph classification [23], we propose to apply GNN to

generate structure-aware representations for each entity, and align

entities by comparing their representations. The GNN mechanism

allows us to incorporate neighborhood information recursively and

make inductive predictions on unseen entities, thus addressing both
of the afore-mentioned challenges. Unfortunately, as we show in

our experiments (Section. 4.4), a vanilla application of GNN failed

terribly, obtaining only 0.33 F1 score (27% precision and 43% recall)

for alignment. The key reason is that the GNNmodels will generate

similar embeddings for the same entity from two different KGs

only if both KGs contain fairly complete information about the

entity. In reality, most KGs are sparse in different ways, making the

embeddings often very different. For example, for the same movie,

IMDB may contain editor, director and actor information, while

Freebase contains only director and producer information.

This paper presents a novel GNN model that makes collective de-

cisions [2, 36] (i.e. related entities alignment are determined jointly)

on entity alignment for multple different types. The key of our

solution is a carefully designed attention mechanism that effec-

tively leverages shared neighborhoods as positive evidence without

ignoring strong negative evidence. First, to be robust on incomplete

knowledge graphs, we design the cross-graph attention that allows

focusing more on the similar neighborhoods across two graphs. To

illustrate the intuition, consider our motivating example in Figure 1.

“Aditya Raj” participates in four movies in IMDB, whereas “Aditya

Raj Kapoor” writes/produces two movies in Freebase; a vanilla ver-

sion of GNN will generate different representations for them. Our

cross-graph attention gives higher weight to shared neighbors such

as “Sambar Salsa”, and thus generate similar representations for

the two nodes. Second, to be sensitive towards strong negative

evidence, we employ relation-aware self-attention on edges that

prevents blindly aligning nodes with similar neighborhoods. For

example, two movies in the same series are likely to share directors,

writers, and some actors; our edge-level attention allows us to pick

up key differences in release year and length to distinguish them.

Indeed, our experiments show that the two attention mechanisms

collectively improve linkage quality by 10% F1 score in average.

Table 1: Comparison of methods for entity alignment. Inductive:
Making use of node features and generalize to new nodes. Predi-
cate: Modeling semantics of different relations. Collective: Collect-
ing evidence fromneighborhood.Multi-type: Handlingmultiple en-
tity types in one model. Scalable: Scaling up to millions of nodes.

CG-MuAlign MuGNN [4] GCN-Align [45] DeepMatcher [27]

Inductive ✔ ✔ ✔
Predicate ✔ ✔ ✔
Collective ✔
Multi-type ✔ ✔ ✔
Scalable ✔ ✔

We note that although collectively linking entities is not a new

idea [2, 12, 31, 34], our method is the first scalable solution that

does not require any manually defined rules (like [31]) or logic

(like [34]) for evidence propagation. Similarly, although GNN has

been widely adopted for iteratively capturing the neighborhood

information, our model, to the best of our knowledge, is the first

that allows collective decisions in a GNN. Besides, we develop a

scalable GNN framework to support large-scale entity alignment

in the experiments. In Table. 1, we compare our method with most

recent entity alignment algorithm from five different perspectives.

In particular, we made the following contributions.

• We propose a GNN-based knowledge graph entity alignment

framework called CG-MuAlign, that collectively align entities

of different types. We carefully design the attention mecha-

nisms that can both effectively accumulate positive evidence

from the neighborhood, and remain sensitive to strong nega-

tive evidence to distinguish similar but different entities.

• We scale up our model to large-scale knowledge graphs by

avoiding expensive computation in each layer of the deep

neural network and by relation-aware neighborhood sampling.

• Through extensive experiments on two different datasets, we

show that our methods obtain high quality linkage (80.5% F1

and 60% recall when precision is 95%) on knowledge graphs

with size of two and half millions of nodes. In particular, with

the help of labeled film data, we show thatCG-MuAlign trained
on 2,000 person pairs can reach comparable performance with

model trained on ∼24,000 person pairs.

The rest of the paper is organized as follows. We first provide

the preliminary knowledge and problem definition in Section 2.

Our method is presented in Section 3 and we demonstrate the

experimental results as well as analysis in Section 4. We review the

literature and summarize the differences of our methods in Section

5. At last, we conclude the whole paper in Section 6.

2 PROBLEM DEFINITION
A knowledge graph G is defined as a graph with multi-typed nodes

and edges. We denote nodes V as entities and edges E as relations.

Formally we have G = (V , E,T ,R) with a node type mapping

ϕ : V → T and edge type mappingψ : E → R.

Given two different knowledge graphs G and G
′
on same domain,

the node type and edge type are {T ,T ′} and {R,R ′} , respectively.

Assuming node and edge types are aligned in advance: T ∗{(t , t ′) ∈
T × T ′ |t ⇔ t ′}, R∗{(r , r ′) ∈ R × R ′ |r ⇔ r ′}, certain amount

of ground truth node pairs S{(vt
∗

i ,v
t ∗
i′ )|t

∗ ∈ T ∗} are available.

Normally, there are only a few aligned seed pairs for some of the

aligned node type T ∗
, i.e. |S| ≪ |V|.



Formally, we define the problem of entity alignment as follows.

Definition 2.1 (KG Entity Alignment). Given two knowledge

graphs G = (V, E,T ,R) and G ′ = (V ′, E ′,T ,R), entity align-
ment aims to find a set of entity pairs {(vi ,vi′) ∈ V ×V ′} with

high precision and recall, such that each pair refers to the same real

world entity.

3 METHOD
CG-MuAlign features a collective GNN framework to address the

KG Entity Alignment problem. Our model not only bridges the

gap between single-type and multi-type alignment model, but also

generalize to unlabeled types. In Section 3.1, we describe the over-

all picture of our alignment model. Then we discuss two proposed

attention mechanisms and explain how they contribute to the collec-
tive setting in Sections 3.3 and 3.4, respectively. At last, we present

our model specifications and reason about scalability concerns.

Graph A
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Combine
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final representation
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Figure 3: CG-MuAlign architecture

3.1 Solution Overview
We model the entity alignment problem as a classification problem,

where we predict whether two nodes v ∈ V and v ′ ∈ V ′
represent

the same real-world entity.

The model includes two GNN encoders and an entity alignment

loss layer. The GNN encoder takes an K-hop sub-graph derived

from target node v , aggregates the neighborhood information and

outputs representation hkv for node v . In its k-th layer, for node i ,
the GNN encoder aggregates neighbor information from k-1 layer,

zki = Aggregate ◦ Transform(k )
(
{hk−1j , j ∈ Ni }

)
(1)

where hk−1 is the hidden representation of the previous layers and

Ni is the neighborhood of node i in the knowledge graph. The

output representation hki is the combination of hk−1i and zki ,

hki = Combine
(k)

(
{hk−1i , zki }

)
(2)

For two KGs, we have two K-layer models GNN1 and GNN2 with

identical structure and shared parameters. For each pair of entities

(i, i ′) in the training data, we sample N negative entities from KG1

and KG2. Then we obtain the final representations from two GNN

encoders as (hKi ,h
K
i′ ) and apply a marginal hinge loss on distance

between output vector of two nodes,

L =
∑
(i,i′)

∑
(i−,i′−)

max

(
0,d(hKi ,h

K
i′ ) − d(hKi−,h

K
i−′) + γ

)
In the experiments, we use d(x ,y) = | |x − y | |2 as the distance func-
tion. The overall architecture of our solution is shown in Figure 3.

3.2 Collective Graph Neural Networks
In CG-MuAlign, we first group the neighbor nodes by edge type r
as Ni,r and apply different Transform, i.e.Wr . In Figure 1, for ex-

ample, the target node “Aditya Raj” in the left IMDB sub-graph

have Ni,write = {Don’t stop Dreaming, Shamaal: The Sandstorm,

Sambar Salsa} and Ni,edit = {Gawaahi}. At each layer, we trans-

form the neighborhood (j ∈ Ni,r ) information regarding the rela-

tion between node i and j as follows,

zki, j =W
k
r h

k−1
j , j ∈ Ni,r (3)

As one entity can belong to multiple overlapping types, the above

transformation explicitly differentiate the same person’s represen-

tations as editor and writer in the aggregation.

We calculate node-level attention α (details in Section 3.3), edge-

level attention β (details in Section 3.4) and Aggregate neighbor-

hood as,

zki =
∑
∪Ni,r

αi jβi jz
k
i, j , Σjαi jβi j = 1 (4)

Then we proposes the following Combine function:

hki = σ
(
[W k

sel f h
k−1
i | |zki ]

)
(5)

Intuitively, we concatenate the self information and neighborhood

information to make the alignment decision on self information

and neighborhood information independently. And we name this

layer as CollectiveAgg.

In CG-MuAlign, we stack multiple layers in each GNN encoder,

where the inputs at layer k is the output representation of layer k-1.

The layer-0 representation is the input node features and we allow

entities of different types to have different length of features. Let

the hidden dimension of the model be m, we have the first layer

of relation matricesW 1

r ∈ Rdr×
m
2 , where dr is the feature length

of entity in neighbor group Nr . After concatenation as depicted in

Equation 5, the hidden representation is then
m
2
+ m

2
=m. For the

layer k = 2, 3, ...,K , we haveW k
r ∈ Rm×m

2 Then we describe how

we compute the two attentions α and β .

3.3 Node-level Cross-graph Attention
Existing GNN-based entity alignment methods reconcile structural

difference across two knowledge graphs by implicit means, such

as graph matching objective [46] and rule grounding [4]. As we

discussed in the introduction, the structural differences are mainly

raised by the nature of incompleteness in a knowledge graph. In

CG-MuAlign, we address this problem by collective aggregation of

confident neighborhood information. Namely, we explicitly assign

higher weights for those neighbors that are likely to have the corre-

sponding ones in the other graph. We achieve this by employing a

cross-graph attention mechanism that attends over the neighbor’s

feature vectors.
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Figure 2: Illustration of node-level and edge-level attention in CG-MuAlign

Given the candidate node pair (i, i ′), we have Ni and Ni′ as
neighborhood of node i and node i ′, respectively. We make soft
decisions by calculating similarity of pairs (p,q) ∈ Ni × Ni′ ,

αp =

∑
q∈Ni′

exp
−| |zp−zq | |2∑

p∈Ni

∑
q∈Ni′

exp
−| |zp−zq | |2

,αq =

∑
p∈Ni

exp
−| |zq−zp | |2∑

q∈Ni′

∑
p∈Ni

exp
−| |zq−zp | |2

The hidden representation zp and zq are calculated in Equation 3.

For p1,p2 ∈ Ni , αp1 > αp2 if the accumulated similarity between

p1 and neighborsNi′ in GraphG ′
is larger than p2. In computation,

weight αp and αq are the row-wise and column-wise normalized

vector for the cross-graph attention matrix Ai,i ′ ∈ R |Ni |× |Ni′ | .

In Figure 2a, we turn the 1-hop neighbor in Figure 1 into actual

computation graph in our CollectiveAgg layer. The neighborhood

for “Aditya Raj” two knowledge graphs are {Gawaahi:edit, Don’s
stop Dreaming:write , The Sandstorm:write, Sambar Salsa:write } and
{Don’s stop Dreaming:write, Don’s stop Dreaming:produce, Sambar

Salsa:write, Sambar Salsa:produce }. The cross-graph attention will

give high weights to neighbor nodes {Sambar Salsa:write, Don’s
stop Dreaming Salsa:write} as their hidden representation is similar.

Thus, the proposed cross-graph attention leverages the positive
evidence to the collective decisions.

3.4 Edge-level Relation-aware Self-attention
Yet, cross-graph attention neglects the negative evidence across

the graphs. If the neighborhood aggregation only relies on the

cross-attention, it fails to predict “negative” when only unimpor-

tant nodes are softly aligned. In our music data set at Figure 2, when

aligning song “Radioactive” by American rock band Imagine Drag-

ons between Amazon Music and Wikipedia, cross-graph attention

produce positive evidence on most of the neighbors such as song

writer, producer and one performer. However, it is an unmatched

pair since the one in Amazon is a deluxe version collaborated with

“Kendrick Lamar”. In other words, different relations shall play dif-

ferent roles in alignment prediction. For example, performed by is

more informative than written by.
In fact, the computation of cross-graph attention focuses on

the neighbor nodes similarity and considers each relation equally

important. In light of this issue, similar with Graph Attention

Table 2: Alignment Example for song Radioactive. Neighbor nodes
are grouped by relations as described in Section 3.2. Bold font indi-
cates the neighbor node with large cross-attention weights.

Amazon Music Wikipedia

Attributes

Title Radioactive Radioactive

Duration 2M19S 2M19S

Neighbors

Song writer

Wayne Sermon Wayne Sermon
A. Grant Alexander Grant

Dan Reynolds Dan Reynolds
Josh Mosser Josh Mosser

Song producer Alex Da Kid

Album Night Visions (Deluxe) Night Visions

Main performer

Imagine Dragons Imagine Dragons
Kendrick Lamar

Networks [41], we adjust the cross-graph attention with an edge-

level self-attention that considers the edge(tuple) information, i.e.
⟨Radioactive, perform by, Kendrick Lamar⟩ we calculate an edge-

level self-attention by a weight vector ®ar to estimate the importance

of an edge composed of subject, object and relation.

βi j =
exp(σ (®aTr [zi | |zj ]))∑

k ∈Ni

exp(σ (®aTr [zi | |zk ]))

We use σ (·) as LeakyReLU suggested in [41]. As depicted in Fig-

ure 2b, self-attention measures the importance of a relation tuple

with the relation aware linear layer ar . In the previous example,

the attention score of ⟨Radioactive, perform by, Kendrick Lamar⟩ is

similar with ⟨Radioactive, perform by, Imagine Dragons⟩ and much

larger than grouped neighbors such as writer and producer.

3.5 Scaling up
Despite the effectiveness of the proposed GNN model, training

and applying it is very expensive. We scale it up in three ways:

by carefully removing unnecessary computation, by strategically



sampling the neighborhood, and by selectively considering the

matching candidates.

Simplifying Computation: We now analyze the effectiveness of

CollectiveAgg under the Open World Assumption
1
, that is, no

knowledge graph has complete knowledge. We assume graphG and

G ′
observes p portion and q portion from the underlying complete

knowledgeGu . In our example in Figure 1, both IMDB and Freebase

contains only partial information of “Aditya”. Given a ground truth

pair (i, i ′), that both refers to the real world entity e , the number

of neighborhood of e in the real world is Ne . We now quantify

the Collective Power by counting numer of shared (same) nodes

regarding order of the neighbors.

Theorem 3.1. If G and G ′ have the same number of nodes, i.e.
|V1 | = |V2 | and there exists a injective function F : V1 → V2. Let K
denote the order of the neighborhood, |E | is the total number of edges
in the underlying graph Gu , the expected Collective Power decays
geometrically as K increases.

E(v,F(v))∼G1
CP(K) ≤ |E| · p

K
2 q

K
2

Proof. According to the definition of p and q. Let pi and qi be
the actual observed ratio for node vi and F (vi ) in graph G and G ′

,

we have,

p =

|V1 |∑
i=1

|Ni | · pi

|E |
,q =

|V2 |∑
i=1

|Ni | · qi

|E |

For a specific node i , the expected number of same neighborhood

from a uniform distribution in two graphs is |Ne |piqi . Thus, when
K = 1,

E(v,F(v))∼G1
CP(1) =

∑
i

|Ne |piqi (6)

≤

√∑
i
(
√
Nepi )

2
∑
i
(
√
Neqi )

2

(7)

≤

√∑
i
Nepi

∑
i
Neqi = |E | ·

√
pq (8)

Recursively, we repeat the same calculation on shared neighbor

nodes in previous step, that is, E[CP(K + 1)] = E[CP(K)] ·
√
pq □

The above theorem can be explained as jaccard similarity of

neighborhood follows a long-tail distribution as K grows, because

only same first-order neighbor nodes may contain the same second-

order neighbor nodes in principle. According to this, we employ the

CollectiveAgg as the Aggregate only at the last layer to reduce

the computation cost as the collective power decrease. That is,

hki =


CollectiveAgg

(
{hk−1j , j ∈ Ni ∪ {i}}

)
, k = K − 1

AverageAgg

(
{hk−1j , j ∈ Ni ∪ {i}}

)
k < K − 1

(9)

where the AverageAgg replaces the αi jβi j in Equation 4 as
1

|Ni |
.

Mini-batchTraining andNeighborhood Sampling.Traditional
graph neural nets are trained globally, which is infeasible when the

graph is large. Instead, we sample a batch of positive pairs from

1
the assumption that the truth value of a statement may be true irrespective of

whether or not it is known to be true, from wikipedia:https://en.wikipedia.org/wiki/

Open-world_assumption

training data and construct a K-hop sub-graph from G and G ′
. To

further speed up the training, we adopt neighborhood sampling to

control the size of the computation graph.

Lemma 3.2. Let the maximum neighborhood size as N and batch
size as B, the space complexity of CG-MuAlign is O(BNK ). Without
batch training or sampling, the space complexity is O(|V| · K). For
training data of size S, the expected running time is O(S · NK ).

Additionally, we adopt a relation-aware neighborhood sampling

to leverage the maximal collective power, which samples those “one-

to-one” relation first. The probability of sampling possibly matched

neighbor node is greater than those “one-to-many” relations. For

example, one movie usually has only one director but many actors,

knowing whether the director is same is more informative than

knowing one actor is same. For each type of entity vt , we calculate
the average number avд_N t

r of neighbors connected by relation r .
During the neighborhood sampling process for node i of type t , we
sample from the neighborhood group Ni,r with probability

Pr(n) ∝

(
avд_N t

r∑
r avд_N

t
r

)−1
Therefore, director neighbors are more likely to be sampled com-

pared with characters and actors due to their large population. It

helps make the collective decisions when we sample a small number

of neighborhoods.

Candidate Generation. Though the training cost is controlled by

number of GNN layers and number of sampled neighbors, the infer-

ence cost remains as a problem. Naive one-versus-all comparison

leads to time complexity up to O(|V|!). To scale up to millions

of entities, we employ candidate generation during the inference

stage, also known as blocking. For each test node, we use several

strong keys(e.g. name and date of birth for person) to collect possi-

ble match entities and use CG-MuAlign to predict alignment score

within candidate pairs.

3.6 Relations with other GNN variants
Nowwe summarize the key differences of proposedCollectiveAgg

with previous popular GNN framework.

Similar with RGCN [32], we adopt multi-relational matrices to

model the semantics of different relations when aggregating the

neighbors. Our self-attention modules shares similar motivation

with GATGAT [41]. Both GraphSage and CollectiveAgg charac-

terize with concatenating self representation and neighborhood

representations. The GraphSage GNN layer includes concatenation

and aggregate function, like average

hki = σ
(
W1

[
hk−1i | |σ

(
W2 ·MEAN{hk−1j , j ∈ Ni,r }

)] )
, (10)

There are two differences between CollectiveAgg and GraphSage.

First, we have multi-relational projection matrixWr in the hidden

layer. Second, we use weighted average (attention) Λ instead of

averaging or max pooling.

hki = σ
(
W1

[
hk−1i | |Λ(Wr · {h

k−1
j , j ∈ Ni })

] )
(11)

In the toy example below, all kinds of previous aggregation

function, e.g.MEAN/MAX/SUM, fail to fit the label if node id is the

only input feature. A learnable mask Λ on neighborhood, instead,

https://en.wikipedia.org/wiki/Open-world_assumption
https://en.wikipedia.org/wiki/Open-world_assumption


Table 3: Overall Dataset Statistics

Dataset # Nodes # Edges # Node Types # Edge Types

Movie 2,684,233 6,851,166 8 8/8

Music 1,768,983 10,723,141 6 4/5

Table 4: Movie Dataset

Dataset # Films # People # Characters # Genres # Train/Test

Freebase 273,526 314,869 859,289 599

53,405/53,405

IMDB 423,118 600,909 211,895 28

movie person

genre character

1
2
3
4

1 isDirectedby

2 isEditedby

3 isProducedby

4 isWrittedby

6

5
inFilmGenre67
isPerformedby5 7

isActedby

8
8

isCharacterIn

Figure 4: The schema of the Movie Graph

can fit the label by masking out node c and d . To some extent,

CollectiveAgg has a greater representation power for the task of

entity alignment when data is sparse.

Example 3.3. For node a ∈ G and a′ ∈ G ′
, we have first-order

neighbors {b, c,d} in graph G and {b} in graph G ′
, the training

label is 1.

4 EXPERIMENTS
We compare CG-MuAlign with other knowledge graph alignment

algorithms to examine our three major claims one by one in Sec-

tion 4.4.

• CG-MuAlign outperforms existing methods on real-world

large-scale dataset.

• Collective alignment is not sensitive to the amount of training

data.

• CG-MuAlign generalizes to unlabeled type effectively with

limited labels.

4.1 Datasets
In our experiments, we use two different knowledge graph align-

ment data sets and evaluate the performance under inductive set-

tings. Both (i.e.Movie and Music domain) contain abundant node

attributes and feature with millions of nodes and tens of millions

edges of different types. We report basic graph statistics in Table 3

and then introduce them in more details. The number of nodes and

number of edges are summed over two knowledge graphs.

Movie Dataset contains a subset of IMDB (an online database of

information related to films) and Freebase (a large knowledge base

on general domains). The latter originally has a large number of

edge types compared with IMDB. We sample a subset of Freebase

that is related to the movie domain. It has ground truth links to the

IMDB ID for some of the films and people. We split the ground truth

pairs into training and testing data. It has four different entity types

and eight different relations, the schema can be found in Figure 4.

Table 5: Music Dataset

Dataset # Songs # Albums # Artists # Train/Test

Wikipedia 104,179 188,602 71,409

57,062/23,485

Amazon-Music 999,900 200,911 201,550

song person

album

1
2 1 isComposedby

2 isWrittenby

3 isProducedby

4 isPerformedby

5 hasTrackon

5

4
3

3 4

Figure 5: The schema of the Music Graph

In Table 4, we report the distribution of entity types and the size of

the training/testing data.

Music Dataset contains twomusic knowledge graph fromAmazon

Music and wikipedia. There are three major types in this dataset:

song, album and artist. The five relations among them can be found

in Figure 5. The positive pairs on songs and albums are generated

with noise and we ask annotators to label testing pairs among a

candidate pool for two types. Detailed number of entities can be

found in Table 5.

4.2 Baselines
We consider methods from three families: (1) link prediction (2)

entity alignment between graphs (3) entity matching in multi-

relational database.

Linkprediction.Between two knowledge graphsG andG ′
, we can

add equivalent edges between ground truth node pairs {(vti ,v
t ′
j )}.

We then run advanced graph embedding algorithm with node fea-

tures to embed nodes from different graphs in the same unified

space. Later, we train a two-layer perceptron on the labeled equiv-
alent edges. Specifically, we consider the following method that

consider the node attributes:

• GraphSage [18] is the first large-scale inductive representation

learning algorithm.

We denote this method as GraphSage+NN along with another

baseline named Feature+NN to verify the feature effectiveness

and inspect how different methods gain improvement over its per-

formance.

Knowledge Graph Alignment. Most of the previous work focus

on the transductive setting. Some recent work [4, 45, 46] based on

Graph Neural Networks, start to extend graph alignment problem

under inductive setting.We group thesemethods into transductive
only: MuGNN [4] and BootEA [37] that both models knowledge

graph embedding and entity alignment simultaneously and induc-
tive: MultiKE [49] and AttrE [39] further incorporate attribute in-

formation into embedding-based entity alignment. GCN-Align [45]

models both structure and attribute features with same relation



matrices for different relations. Aswe found embedding-basedmeth-

ods fail to scale up to graphs with millions of entities, we carefully

verify the effectiveness of proposed GNN model with following

recent GNN variants.

• GCN-Align [45] models both structure and attribute features

with the original graph convolutional network [21].

• GraphSage [18] concatenates the self feature vector and neigh-

borhood aggregation vector.

• GAT [41] aggregates neighborhood information with multi-

head attention.

• RGCN [32] differs GCN with multi-relational linear transfor-

mation matrices.

• R-GraphSage is a variant of GraphSage with multi-relational

linear transformation matrices.

To address the scalability issue, we re-implement all of them in

PyTorch [28] under DGL framework [43]. CG-MuAlign and above

GNN variants adopt same mini-batch paradigm training described

in Section. 3.5 with the batch size of 32. We sample 10 negative en-

tities from each graph and have total 20 negative samples for every

positive pair. We use Adam [20] as our optimizer with learning rate

as 0.003. We set the max neighborhood size as 10 in the neighbor

sampler function. The number of layers for all GNN methods are

set as two. And we set hidden dimension as 100 for link prediction

and graph alignment baselines.

Entity Matching.We refer methods that finds all tuple pairs (a,b)
across different multi-relational databases into this category. We

explore the performance of two representative methods:

• Magellan [22] is end-to-end entity matching framework that

supports different matching functions like linear regression,

SVM, random forest, etc. We choose random forest as the

matching function.

• DeepMatcher [27] is a recent deep learning entity matching

algorithm, we use its “hybrid” mode in our experiments.

• PARIS [36] is an unsupervised RDF ontologies alignmentmodel,

which makes collective decisions based on iterative probability

estimates.

4.3 Experimental Settings
Now we describe how we conduct the experiments and evaluate

the performance.

Data Processing. For all of the GNN-basedmethods, we pre-compute

the feature vector of different entities. There are two major types

of features: string and numerical. We use fastText [26] to encode

string features. For numerical features, we preserve the original

value except time values. For time values, like duration, date of

birth, we use periodical function sin(·) to encode each periodical

segment, e.g. seconds, minutes. Finally, we concatenate all of the

features into a unified vector as the node feature.

For entity matching baselines, we convert one-hop neighbor

node in the knowledge graph into the format relation@attribute,
e.g. for a movie record, we have the field isDirectedby@Name
indicating movie director’s name. Thus, we can turn the first order

information in the knowledge graph into a multi-relational table in

a lossless way. In Magellan [22], the features used in the random

forest are automatically generated by the model. Different string

similarities are computed as features, such as jaccard similarity,

levenshtein edit distance between attributes of entity pairs.

Evaluation Metrics. We evaluate different methods on both la-

beled and unlabeled settings and report their Recall@Precision=0.95,

F1, PRAUC (precision-recall area under curve) and hit@1 on three

data sets. Typically, previous research mainly use hit@1 since the

evaluation data set is small. It is infeasible to conduct one-versus-all

comparison when there are millions of candidate nodes. Thus, we

use candidate generation introduced in Section. 3.5 in the test-

ing stage and report hit@1 based on the candidate set. We re-

port the precision and recall curve while tuning the alignment

threshold. PRAUC and best F1 provide more insights how differ-

ent methods perform without knowing all positive pairs. We will

later show in Table 6, methods have similar hit@1 result could

produce rather different PRAUC and F1. Besides, we propose metric

Recall@Precision=0.95 to evaluate model performance when high

precision is required.

Evaluation Settings. The ground truth links between person and

movie serve as positive data in training and testing. During training,

we adopt the same random sampling to construct negative samples

for different methods as we assume no prior knowledge of the target

domain.We construct the testing data by joining output of candidate

generation and the test split of ground truth links. Specifically, we

use blocking function in Magellan [22] to generate candidates. For

example, we use person’s name and date of birth(allow missing) as

the blocking key. Note that on the music domain, the ground truth

links are also noisy. We annotate a subset of the candidates, thus,

hit@1 metric is not included for music data. For unlabeled type

evaluation, we use the same way to generate the evaluation data.

4.4 Experiments and Performance Study

Alignment Result on labeled types. We train a unified model

for multiple entity types and report all of baselines including GNN

variants. From Table 6, we can conclude CG-MuAlign outperforms

all other method. On the movie dataset, it yields a large margin

over the second best method - DeepMatcher. It is mainly because

IMDB and Freebase have rather different relation distributions and

they suffer from data incompleteness differently. DeepMatcher con-

siders the difference between attribute sets from two graphs, thus,

it performs better than the remaining ones. It is quite surprising

that Feature+NN outperforms most of the GNN variants, which

indicates the neighborhood information affects the performance

negatively in those methods. Although other GNN algorithms suf-

fer from the sparsity of knowledge graphs while our collective

aggregation layer avoid performance drop by aggregating mostly

aligned neighborhood via cross-graph attention. Specifically, among

three GNN variants that do not consider multi-relational structure

(GCN, GrageSage, GAT) perform worse than those includes multi-

relational transformation as expected. We find the concatenation

mechanism first introduced in GraphSage benefit the task. The rea-

son could be self-information is critical to the alignment task and

mixing it with neighborhoods confuses the model predictions. On

the music data set, CG-MuAlign gain a smaller margin over other

baselines as we observe the music graphs are much denser. The

performance difference is similar with the movie dataset, vanilla

GNN perform badly while GraphSage and R-GraphSage obtain

reasonable results compared with Feature+NN. We notice the link



Table 6: Alignment Result on labeled types for inductive setting. For simplicity, transductive only methods are not included in this table. We
report the standard deviation by 5-runs of each method except DeepMatcher, which takes long time for one run.

Method

Movie Dataset Music Dataset
Rec@Prec=.95 PRAUC F1 hit@1 Rec@Prec=.95 PRAUC F1

Feature+NN 0 0.3672 ± 0.053 0.6380 ± 0.000 0.7197 ± 0.001 0.0025 ± 0.002 0.7251 ± 0.027 0.6795 ± 0.009

GraphSage+NN 0.0155 ± 0.001 0.3229 ± 0.003 0.3557 ± 0.001 0.4503 ± 0.003 0.0002 ± 0.000 0.2468 ± 0.018 0.3134 ± 0.012

Magellan 0.4387 ± 0.000 0.7067 ± 0.000 0.6945 ± 0.000 0.7974 ± 0.000 0.1071 ± 0.000 0.7461 ± 0.000 0.6760 ± 0.000

DeepMatcher 0 0.5829 ± 0.000 0.7549 ± 0.000 0.8468 ± 0.000 0 0.1748 ± 0.000 0.3559 ± 0.000

PARIS 0.5840 ± 0.000 0.7759 ± 0.000 0.7661 ± 0.000 0.7725 ± 0.000 0.2333 0.4175 ± 0.000 0.4640 ± 0.000

G
N
N
v
a
r
i
a
n
t
s

GCN 0.0098 ± 0.001 0.2831 ± 0.006 0.3313 ± 0.004 0.4896 ± 0.003 0.0020 ± 0.002 0.3829 ± 0.009 0.4190 ± 0.003

GraphSage 0.1900 ± 0.007 0.5589 ± 0.004 0.5251 ± 0.003 0.6605 ± 0.009 0.2868 ± 0.029 0.8252 ± 0.003 0.7637 ± 0.001

GAT 0.0147 ± 0.002 0.3448 ± 0.006 0.3793 ± 0.004 0.5483 ± 0.003 0.0004 ± 0.001 0.4485 ± 0.014 0.4819 ± 0.007

RGCN 0.0106 ± 0.002 0.4247 ± 0.003 0.4435 ± 0.001 0.5450 ± 0.002 0.0025 ± 0.004 0.4419 ± 0.024 0.4625 ± 0.020

R-GraphSage 0.2829 ± 0.009 0.6573 ± 0.003 0.6110 ± 0.004 0.7125 ± 0.003 0.4081 ± 0.029 0.8335 ± 0.004 0.7646 ± 0.003

CG-MuAlign 0.6010 ± 0.004 0.8548 ± 0.004 0.8050 ± 0.006 0.8869 ± 0.002 0.4437 ± 0.023 0.8400 ± 0.008 0.7762 ± 0.004
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Figure 6: Sensitivity to the amount of training data. The orange
curve indicates the collective setting, i.e. supervision of other types
are provided. The blue curve indicates the non-collective setting.

prediction baseline - GraphSage+NN achieves worse results than

Feature+NN. GraphSage embedding models every edges of differ-

ent types in the objective and the “equivalent” edges contributes

than 1% in total. The “equivalent” relation may be biased by other

links, therefore, predicts unsatisfactory results. Three entity match-

ing baselines reports competitive performance on movie dataset but

DeepMatcher performsmuchworse on themusic dataset. Moreover,

it achieves almost zero on the metric Rec@Prec.95. It may be caused

by overfitting the noisy training data with huge amount of param-

eters(20 million). PARIS, though unsupervised, yield second-best

F1 on the movie dataset, which proves the collective design works

very nice on incomplete knowledge graphs. However, it can not tell

the subtle difference between songs with slightly different names

and duration due to lack of supervisions. Overall, Magellan and

CG-MuAlign are the most robust methods under different datasets

and metrics. As we know, the feature importance of random forest

depends on the training data. So Magellan produces more false

positives than ours, while CG-MuAlign reports above 50% recall

when precision is at 95% across two datasets.

Sensitivity to the amount of training data. Thenwe investigate
how much supervision needed in CG-MuAlign, since label scarcity
is quite normal in the real applications. Also, we are interested in

how collective alignment benefits from different types in this case.

Therefore, we range ratio of supervision from 0 to 1.0 on type A and

test it on type A on two conditions: (1) 100% training type of type

B (2) 0% training type of type B. The result is plotted in Figure. 6.

Table 7: Alignment Result on unlabeled types for few-shot setting.
Wemark the best and second-best result. Column person stands for
unlabeled type in the evaluation.

Method

Person Film

PRAUC F1 PRAUC F1

Node features 0.8285 0.8563 0.4231 0.4780

PARIS 0.7303 0.7489 0.8392 0.7961

G
N
N
v
a
r
i
a
n
t
s

GCN 0.3492 0.4659 0.2589 0.3223

GraphSage 0.5495 0.6069 0.4269 0.4158

GAT 0.3518 0.3791 0.4926 0.4818

RGCN 0.3130 0.3518 0.4288 0.4369

R-GraphSage 0.8065 0.7582 0.5008 0.4705

Few-shot 0.8403 0.8033 0.8505 0.8136

Fully-supervised 0.8543 0.8214 0.9101 0.8794

When we do not have any labeled data for person type, the model

can achieve 0.53 F1 already and adding 10% of training data make

the performance quickly converge to the final model in Figure 6a.

Note that 10% of training data in our setting is about 2K samples

only. When we have about 40% of training data, both settings are

on a par with full supervision model. On the film type, the trends

are similar but result is not that satisfactory when supervision is

limited.We explain it as film alignment is more tricky since different

films could have partially overlapped titles and same movies across

different graphs could have multi-lingual names. Both figure shows

that CG-MuAlign does not rely on large amount of training data.

Few-shot alignment on unlabeled types. In order to investigate
the generalization capability of different methods, we design few-

shot alignment experiments, that first train a model on type A and

fine-tune the model with only a few (i.e. 2,000) training pairs of type
B. The model is evaluated on the test data of new type. We train and

test on person and film alternatively. Magellan and DeepMatcher

are trained on one type is not compatible with the new type, so

we do not report their performance in Table 7. In addition, we add

cosine similarity of node features as an unsupervised benchmark in

the table. When tested on person, we observe the cosine similarity

of feature vector is a very competitive method, since people who



Table 8: Effectiveness of proposed attention mechanism. We report
the averaged metrics on movie and music data set.

Method Averaged-PRAUC Averaged-F1

w.o. cross attention 0.7654 0.7034

w.o. self attention 0.8342 0.7880

CG-MuAlign 0.8474 0.7906
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Figure 7: Parameter sensitivity of CG-MuAlign on movie dataset.
Each figure shows the result of varying the x-axis parameter.

have the same names are likely to be the same person. Another

unsupervised baseline PARIS reports promising results thanks to

the collective probabilistic alignment. Most of the GNN variants

report poor performance except CG-MuAlign and R-GraphSage

that consider the self information (person name) separately. On

type of film, few-shot CG-MuAlign achieves 81.4% F1 when feature

similarity only obtains 47.8%. All other methods perform worse

or slightly better than node feature similarity. The result clearly

demonstrates the effectiveness of collective design, especially when

the training data is limited. We want to note that alignment result

reported in Table 6 are for multi-type alignment, but here the result

is evaluated for each type separately. Our fully supervised model

achieves better results than the reported figures in Table 6, because

multi-type alignment is more challenging. Overall, our few-shot

results are quite close to the fully-supervised version.

4.5 Analysis of CG-MuAlign

Effectiveness of Collective Aggregation. Overall, CG-MuAlign
outperforms baselines by 10% F1 in average. We report the quan-

titative improvement by two different mechanism in Table 8. It

shows the cross attention boost the performance by 7% in averaged-

PRAUC and by 5% in averaged-F1. The self-attention further im-

proves 1% PRAUC and F1. The cross attention contributes the major

part of the performance boost. But when the training data is not

that sparse, i.e. the music dataset, self-attention help identify the

strong negative evidence.

Parameter Study. To measure the parameter sensitivity of CG-
MuAlign, we evaluate the performance on movie dataset varying

one of the following parameters while fixing the others to the de-

fault values mentioned above: (1) number of neighbor sampled for

each node (2) hidden dimension size of each GNN layer (3) number

of negative samples for each positive pair (4) number of GNN lay-

ers. The result is shown at Figure 7, where PRAUC, F1 and Hit@1

are reported under different parameters. First, the performance on

three metrics improves when number of sampled neighbors, i.e.
2,4,6. It is mainly because many useful neighborhood information

is dropped, when number of neighborhood size is small. When the

neighbor window size is reasonably large, the performance tends to

be similar. Then in Figure 7b, we observe the performance is similar

under different hidden dimensions, which reveals that CG-MuAlign
neither overfits nor relies on huge amount of parameters. Since we

have the similar positive ratio in training and testing (10:1), we are

also interested whether CG-MuAlign achieves good performance

under different positive ratio. Result presented in Figure 7c shows

the positive ratio does not affect the model performance. At last, we

notice our model performs best with 2 alignment layers. More lay-

ers negatively affects the model performance, besides the running

time increases as number of layers grows. The results shows that

1-hop neighborhood information is not sufficient for the task of

entity alignment, while higher (> 2) order information deteriorates

the performance as lots of asymmetric information appears. It is

consistent with our scaling up analysis in Section 3.5.

Efficiency Study.We compare the training time, number of param-

eters and the average F1 score on two large-scale entity alignment

datasets with two existing systems, i.e. Magellan [22] and Deep-

Matcher [27]. As shown in Table 9, CG-MuAlign achieves the best

performance with the least training time. Compared with the other

Deep Learning solution, i.e. DeepMatcher, we yield better perfor-

mance with 100 times fewer parameters and 20X speed up. All of

our experiments run on AWS EC2 instance with one 16G NVIDIA

V100 Tensor Core GPU.

Table 9: Efficiency study of three different methods

Method Training Time # Parameters Averaged-F1

Magellan 7m13s 9,300 0.6641

DeepMatcher 13h40m 17,757,810 0.6014

CG-MuAlign 30m47s 175,134 0.7925

The running time of CG-MuAlign is affected by number of sam-

pled neighbors and number of the GNN layers as discussed in

Lemma 3.2. Thus, we report the training time for single epoch by

varying these two parameters. In Figure 8a, we change the number

of sampled neighbors while fixing #layers=2. The training time

increases slowly from 80 seconds to 200 seconds, because only a

few nodes have many neighbors. In Figure 8b, we set the number

of neighbors as 4 and increase the number of layers in GNN. Al-

though the running time grows exponentially, our discussion in

Figure 7d supports that the 2-hop model works best in terms of the

performance-efficiency trade-offs.

5 RELATEDWORK
In this section, we review the literature of entity alignment from

four different perspectives.
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Figure 8: Running time per epoch varying # neighbors and # layers.

Link Prediction. Entity Alignment problem can be formulated as

predicting “equivalent” links among two graphs. For large-scale

graph structured data, network embeddings [17, 29, 38] tranform

nodes in networks into dense vectors that helps predict missing

links conveniently. methods [3, 24, 35, 47] capture the first-order

information and facilitate logical inference with explicit relation

embeddings. To capture higher order information, previous work

models the heterogenous types of nodes and edges with pre-defined

meta-structures [6, 9, 13, 15, 33]. HetG [48] proposes a randomwalk

based sampling strategy and models each type of neighborhood

nodes differently. GATNE [5] studies the attributed multiplex het-

erogenous network embedding under transductive and inductive

settings. HAN [44] aggregates neighbor nodes along meta-path via

hierarchical attention mechanism.

Graph Alignment. Previous efforts on graph alignment mainly

span on the transductive setting, where the entity attribute is not

available. Traditional network alignment methods [40, 50] focus

on graphs with a small number of relation types and optimize the

alignment objective based on the topology. Taking the advantage

of knowledge graph representation learning [3], embedding based

methods [7, 8, 37, 51] embed entities from different space along with

an alignment objective on the training data. Starting with limited

alignment seeds, people propose to use either bootstrapping [37]

or iteratively [51] align the entities.

Recently, graph convolutional neural network [21] sheds light

on inductive graph representation learning. GAT [41] aggregates

neighborhood information via multi-head attention mechanism.

RGCN [32] applies multi-relational Graph Convolutional Networks

and improves the performance of link prediction and node classifi-

cation on knowledge graphs. GraphSage [18] introduces inductive

representation learning on large scale graph data with neighbor-

hood sampling. Besides, graph neural network methods designed

for entity alignment [4, 45, 46] demonstrate great performance im-

provement for multi-lingual KG alignment. Although studies [4, 46]

already observe the structural heterogeneity, our proposed frame-

work is the first to leverage the collective alignment on two KGs

directly.

This task is also related with the problem of graph matching.

Twomost recent works [1, 23] introduce cross-attentionmechanism

while criterion of graphmatching is muchmore rigorous than entity

alignment. Same entities in two KGs can have rather different k-

hop neighborhood sub-graph, whereas it is more likely to be an

unmatched case in graph matching.

Entity Matching. Entity Matching (EM) techniques [14, 22, 27]

find all tuple pairs between two relational tables. It is composed

by two major components: (1) blocking [10] utilizes heuristics to

remove obviously non-matched pairs between two tables and (2)

matching [22] predicts the match score for the remaining pairs.

Megellan [22] is an open-source and scalable entity matching frame-

work that uses handcraft features and various machine learning

algorithms as the matching function such as SVM, random forest,

etc.. Later, DeepMatcher [27] computes the pairwise similarity from

the attribute embeddings and adopts deep neural network as the

matching function. DeepER [14] is the first to consider sequence

model like LSTM to model the textual attributes automatically. En-

tity matching methods mostly use 1-hop neighbor information, but

CG-MuAlign can easily absorb multiple hops of neighbor entities.

Collective Entity Resolution. Researchers have noticed the cor-

relations between labeled entities and unlabeled neighbor entities in

multi-relational database and network structured data [2, 12]. Col-

lective entity resolution considers that the decisionsmade on related

entities are affected by each other. An unsupervised method [52]

is proposed to reduce the entity resolution problem into a graph

summarization problem by clustering the co-referenced entities

across different knowledge graphs into a super node. People design

collective features upon human-curated entity resolution rules [31].

PARIS is an unsupervised probabilistic model for ontologies align-

ment. HolisticEM [30] builds a graph where each node represents

similarity of a pair of entities, and propagates similarity by Per-

sonalized Random Walk to make collective decisions. We carefully

consider collective decisions between sub-graphs sampled around

candidate pairs and boost the performance of GNN greatly.

6 CONCLUSION
In this paper, we propose CG-MuAlign to align entities of different

types between two knowledge graphs. CG-MuAlign leverages both

attribute information and neighborhood information during the

alignment and a novel cross-graph attention mechanism is designed

to deal with the data incompleteness of knowledge graphs. Our

experiments show CG-MuAlign outperforms the baselines by 10%

on PRAUC and F1 measure. CG-MuAlign can be generalized to

entity types of low supervision/few-shot and more than 20% boost.

CG-MuAlign training is highly efficient, 20 times faster than the

state-of-the-art deep learning methods. The collective mechanisms

shows great potential in pairwise prediction tasks. Interesting fu-

ture work can be (1) extendCG-MuAlign to the transductive setting,
where collective decisions need be to carefully carried out upon

structural information. (2) handle multiple (> 2) knowledge graphs

alignment simultaneously. We are also seeking to align entity and

relation jointly in a unified GNN framework.
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