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ABSTRACT
Despite the abundance of useful information on the Web, differ-
ent Web sources often provide conflicting data, some being out-
of-date, inaccurate, or erroneous. Data fusion aims at resolving
conflicts and finding the truth. Advanced fusion techniques apply
iterative MAP (Maximum A Posteriori) analysis that reasons about
trustworthiness of sources and copying relationships between them.
Providing explanations for such decisions is important for a bet-
ter understanding, but can be extremely challenging because of the
complexity of the analysis during decision making.

This paper proposes two types of explanations for data-fusion
results: snapshot explanations take the provided data and any other
decision inferred from the data as evidence and provide a high-
level understanding of a fusion decision; comprehensive explana-
tions take only the data as evidence and provide an in-depth un-
derstanding of a fusion decision. We propose techniques that can
efficiently generate correct and compact explanations. Experimen-
tal results show that (1) we generate correct explanations, (2) our
techniques can significantly reduce the sizes of the explanations,
and (3) we can generate the explanations efficiently.

Categories and Subject Descriptors
H.2 [Database Management]: Heterogeneous Databases

Keywords
Data fusion, copy detection, explanation

1. INTRODUCTION
Despite the abundance of useful information on the Web, differ-

ent Web sources often provide conflicting data, some being out-of-
date, inaccurate, or erroneous. A recent study [18] shows that even
for stock and flight, where people usually obtain data from the Web
and the quality of the data can have a big effect on people’s daily
lives, inconsistent data are provided for 70% of the data items. Re-
solving such conflicts and finding the values that best reflect the
real world is extremely important for cleaning Web content, con-
structing knowledge bases, and improving user experiences.

Data fusion (surveyed in [2, 18]) aims at resolving conflicts and
finding the truth. It has been shown that simply choosing the value
provided by the most sources often leads to incorrect results [18].

∗Research conducted at AT&T Labs-Research.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

Table 1: Data from five sources on the affiliation of five DB
researchers. False values are in italic font.

S1 S2 S3 S4 S5

Stonebraker MIT berkeley MIT MIT MS
Dewitt MSR msr UWisc UWisc UWisc

Bernstein MSR msr MSR MSR MSR
Carey UCI at&t BEA BEA BEA
Halevy Google google UW UW UW

State-of-the-art fusion techniques consider in addition (i) trustwor-
thiness of the providers such that data provided by more trustwor-
thy sources are trusted more [8, 9, 12, 20, 21, 23, 24, 25, 26,
27], and (ii) copying relationships between the providers such that
copied data are ignored in truth finding [1, 6, 8, 9].

In real systems, simply presenting data-fusion results is often
insufficient. It is natural to ask “Why is this value rather than
some other value provided by other sources considered true?” Only
when we facilitate “what” with “why”, can we achieve a better un-
derstanding of the data-fusion decision, which is not only valuable
for data consumers, but also useful for diagnosis.

Explaining such decisions is important, but challenging. First,
Bayesian analysis, specifically, MAP (Maximum A Posteriori) anal-
ysis, is conducted for decision making, including deciding the true
value, judging whether a source copies from another, and so on.
Unlike conventional (provenance-style) reasoning, MAP analysis
considers all alternate choices, computes the inverse probability
of the observed data conditioned on each choice, and then com-
putes the probability of each alternative accordingly. We are not
aware of any existing techniques that explain MAP reasoning ([11,
17] explained evidence propagation in Bayesian networks, which
is different). As we illustrate next, an exhaustive description of the
underlying MAP analysis can be hard to understand and frustrating
as an explanation.

EXAMPLE 1.1. Consider data provided by five sources on the
affiliation of five DB researchers (Table 1). Source S1 provides all
correct affiliations; S2 provides affiliation names in lower case;
S4 and S5 copy from S3, while S5 provides the value for Stone-
braker independently. We are able to find all correct affiliations
if we apply the MAP analysis in [8], but it is natural to ask “Why
is UCI considered as the correct affiliation of Carey?” Suppose
we know the accuracy of the sources and probability of copying
between sources (we explain in Sec.2 how we may obtain them), a
detailed (and possibly agonizing) explanation can go like this.

Three values are provided for Carey’s affiliation. If UCI is true,
then we reason as follows. (1) Source S1 provides the correct value.
Since S1 has accuracy .97, the probability that it provides this cor-
rect value is .97. (2) Source S2 provides a wrong value. Since S2

has accuracy .61, the probability that it provides a wrong value is
1 − .61 = .39. If we assume there are 100 uniformly distributed
wrong values in the domain, the probability that S2 provides the



particular wrong value AT&T is .39
100

= .0039. (3) Source S3 pro-
vides a wrong value. Since S3 has accuracy .4, the probability that
it provides BEA is 1−.4

100
= .006.1 (4) Source S4 either provides a

wrong value independently or copies this wrong value from S3. It
has probability .98 to copy from S3, so probability 1 − .98 = .02
to provide the value independently; in this case, its accuracy is .4
so the probability that it provides BEA is .006. (5) Source S5 either
provides a wrong value independently or copies this wrong value
from S3 or S4. It has probability .99 to copy from S3 and probabil-
ity .99 to copy from S4, so probability (1− .99)(1− .99) = .0001
to provide the value independently; in this case, its accuracy is
.21, so the probability that it provides BEA is .0079. Thus, the
probability of our observed data conditioned on UCI being true is
.97 ∗ .0039 ∗ .006 ∗ .006.02 ∗ .0079.0001 = 2.1 ∗ 10−5.

If AT&T is true, the probability of our observed data is 9.9∗10−7

(details skipped). If BEA is true, the probability of our observed
data is 4.6 ∗ 10−7. If none of the provided values is true, the prob-
ability of our observed data is 6.3 ∗ 10−9. Thus, UCI has the max-
imum a posteriori probability to be true (its conditional probability
is .91 according to the Bayes Rule).

Obviously, such an explanation gives too many details unneces-
sarily and is extremely verbose, so is very difficult to understand.

A much simpler explanation might be “(1) S1, the provider of
value UCI, has the highest accuracy, and (2) copying is very likely
between S3, S4, and S5, the providers of value BEA”. For most
purposes, this level of detail is adequate (further details can be
provided on demand). However, automatically extracting such key
evidence is not easy. 2

The second challenge for explanation comes from the iterative
reasoning in inter-dependent tasks in data fusion, such as quantify-
ing trustworthiness of sources, detecting copying between sources,
and finding correct values. Existing work on explaining iterative
reasoning (e.g., [22]) provides exhaustive answers, such as finding
all extraction patterns that contribute to an extracted tuple in data
extraction, but does not show how to explain the iterative process.

EXAMPLE 1.2. Continue with Ex.1.1. Given the proposed ex-
planation, natural subsequent questions might be (1) why S1 is
considered as having a higher accuracy than other sources and
(2) why copying is considered likely between S3 − S5.

Careful choices need to be made in answering these questions.
Taking the copying between S3 and S4 as an example, the explana-
tion might be “S3 and S4 share all five values, and especially, make
the same three mistakes UWisc, BEA, UW; this is unusual for in-
dependent sources, so copying is likely”. This explanation would
further trigger explanation for why UWisc, BEA, UW are wrong.
However, recall that one reason for BEA to be considered wrong
(i.e., UCI being correct) is the copying between S3−S5, so we end
up with a circular explanation, which is undesirable.

On the other hand, if we provide a provenance-style explanation
and trace back the iterations (see Fig.1, which we shall explain
later), the explanation again can be verbose and repetitive, con-
taining a lot of highly similar fragments. 2

In this paper we propose two types of explanations. For a high-
level understanding of a fusion decision, we provide snapshot ex-
planations that take the provided data and any other decision in-
ferred from the data as evidence. The explanation in Ex.1.1 is a
snapshot explanation. For an in-depth understanding of a fusion de-
cision, we provide comprehensive explanations that take only the

1We have omitted repeating some words and some details that would appear
in such a detailed explanation to save space.

provided data as evidence and explain any decision that requires
inference over the data. This paper focuses on how to find and or-
ganize evidence that we would show in each type of explanation;
how to present the evidence (i.e., which words and layout to use,
whether to use text, tables, or graphs) to improve the understand-
ability and user studies to measure this impact are beyond the scope
of this paper.

We have three goals in producing such explanations. First, the
evidence we show should be consistent with the MAP analysis and
give the correct reasoning. For example, MAP analysis considers
various alternate choices and reasons about them using all avail-
able positive and negative evidence, so showing only the positive
evidence to explain a decision is inappropriate. Second, rather than
providing a big chunk of evidence that contains every detail of the
MAP analysis, which can be long and overwhelming, it is desirable
that the evidence lists are succinct; indeed, succinctness has been
a goal for explanation in the literature [14, 15]. Third, explana-
tions are often generated at runtime on demand; thus, the evidence
should be selected efficiently.

To the best of our knowledge, this paper is the first that aims at
explaining data fusion decisions made by iterative MAP analysis.
In particular, we make the following contributions.

1. We propose explaining our decisions by snapshot explana-
tions, which list both positive and negative evidence con-
sidered in MAP. We show how we efficiently shorten such
explanations by categorizing and aggregating evidence and
selectively removing unimportant evidence.

2. We propose explaining our (snapshot) explanations2 by com-
prehensive explanations, which construct a DAG (directed
acyclic graph) where children nodes represent evidence for
the parent nodes according to the iterations. We show how
we efficiently shorten such explanations by considering only
the critical points at which we change our decision in the
iterations.

3. We show through experiments on real-world data that (i) we
generate correct explanations, (ii) our techniques can signifi-
cantly reduce the size of the explanations, and (iii) our algo-
rithms are efficient.

We have implemented our techniques for snapshot explanations
in SOLOMON3 [7] and demonstrated a text presentation and a graph
presentation for the same set of selected evidence. Our techniques
apply to data fusion approaches that conduct MAP analysis or itera-
tive reasoning [1, 6, 8, 12, 20, 21, 24, 25, 26, 27]; however, the core
ideas, including how to explain iterative MAP analysis and how to
efficiently shorten such explanations, are novel and not discussed
in any previous work. Our ideas for snapshot explanations can be
adapted to explain other types of MAP decisions (e.g., classifica-
tion), and our ideas for comprehensive explanations can be applied
in explaining iterative reasoning involving confidence or probabili-
ties (e.g., iterative data extraction).

In this paper, Sec.2 defines our problem and briefly reviews data
fusion techniques. Sec.3-4 describe snapshot and comprehensive
explanations. Sec.5 presents experiments. Sec.6 discusses related
work and Sec.7 concludes.

2. PRELIMINARIES
This paper studies how to explain iterative MAP analysis. We

consider two types of explanations: Snapshot explanations provide

2Lord Byron wrote in Don Juan “I wish he would explain his explanation.”
3http://www2.research.att.com/∼yifanhu/SourceCopying/



Table 2: Main notations in this paper.
Notation Meaning
S The set of sources in the data set.
D The set of data items in consideration.
Φ Observation of data by sources S and S′.

ΦD(S) Observation of data by S on item D.
P (Φ|S⊥S′) Probability of S’s and S′’s data conditioned

on S and S′ being independent (similar for
condition S → S′ or S′ → S).

Pind(Φ(S)) Probability of S’s data conditioned on S
being independent of S′.

P (Φ(S)|S → S′) Probability of S’s data conditioned on S
being a copier of S′; abbreviated from
P (Φ(S)|S → S′,Φ(S′)).

a high-level understanding of a fusion decision; comprehensive ex-
planations provide an in-depth understanding of a fusion decision.

DEFINITION 2.1. Let W be a MAP decision in data fusion.

• A snapshot explanation forW takes the provided data and all
decisions in fusion except W as evidence and explains how
W is reached.
• A comprehensive explanation for W takes only the data as

evidence and explains how W is reached. 2

We next briefly review advanced data fusion techniques; nota-
tions are summarized in Table 2.

Overview: Consider a set D of data items, each representing a
particular aspect of a real-world object (e.g., the affiliation of a re-
searcher) and having a single true value. Also consider a set S of
data sources that provide data on these data items. For the same
item, different sources may provide conflicting values. Data fu-
sion aims at finding the true value for each item according to the
provided values.

Advanced fusion techniques [6, 8, 24] find the true value on item
D ∈ D by MAP: it computes the inverse probability that the ob-
served data on D are provided conditioned on each value in D’s
domain being true, and selects the value with the highest probabil-
ity. The probability computation considers the following aspects.

1. Source accuracy: The probability that a source S ∈ S pro-
vides a true value depends on its accuracy: the higher the ac-
curacy, the higher the probability (opposite for a false value).
The accuracy of S is computed as the average probability of
S’s values being true [8, 24].

2. Copying relationship: We wish to consider only indepen-
dently provided values. Copying is considered likely if we
observe a lot of common unpopular data, especially common
false values, since it is typically much less likely for inde-
pendent sources to share such data.

There is inter-dependence between truth discovery, copy detec-
tion, and source accuracy; techniques in [1, 8, 12, 21, 24] conduct
iterative computation until the results converge.

In this paper we illustrate our techniques on explaining no-copying
between two sources. We thus give more details on MAP analysis
for copy detection.

Copy detection: Let Φ be our observation of the data provided by
sources S, S′ ∈ S. Let S → S′ denote that S copies from S′

and S⊥S′ denote that S and S′ do not copy from each other; then,
P (S → S′) + P (S′ → S) + P (S⊥S′) = 1 (no-loop copying
is assumed in previous work; that is, S → S′ and S′ → S do not
happen together). Assuming 0 < α < .5 is the a priori probability
of a source copying from another and β = 1 − 2α, we obtain the
following equation according to the Bayes rule.

P (S⊥S′|Φ) =
βP (Φ|S⊥S′)

αP (Φ|S → S′) + αP (Φ|S′ → S) + βP (Φ|S⊥S′)
.

(1)
Let Pind(Φ(S)) be the probability of S providing its data con-

ditioned on it being independent of S′, we have P (Φ|S⊥S′) =
Pind(Φ(S))Pind(Φ(S′)) as both sources provide its data indepen-
dently. Let P (Φ(S)|S → S′) (abbreviated from P (Φ(S)|S →
S′,Φ(S′)) for space consideration) denote the probability of S
providing its data conditioned on it being a copier of S′, we have
P (Φ|S → S′) = P (Φ(S)|S → S′)Pind(Φ(S′)), as S′ provides
its data independently. Assuming independence between different
data items and denoting the observation for S on D by ΦD(S), we
have

P (Φ|S⊥S′)=ΠD∈DPind(ΦD(S))Pind(ΦD(S′)); (2)
P (Φ|S → S′)=ΠD∈DP (ΦD(S)|S → S′)Pind(ΦD(S′)). (3)

When computing Pind(ΦD(S)), [6] considers (but is not limited
to) three aspects: the probability of S providing data on D, that of
S providing the observed value, ΦD.val(S), and that of S using the
observed format, ΦD.fmt(S). The product of them is taken:

Pind(ΦD(S)) = Pind(ΦD(S) 6= ∅)·Pind(ΦD.val(S))·Pind(ΦD.fmt(S)).
(4)

We skip details of probability computation (see [6]), as it is unim-
portant in this paper. Note that a source may appear to copy from
another source when there is actually a co-copying or transitive
copying relationship; [6] shows how to adjust probability computa-
tion for this case and we can easily adapt our approach accordingly.

When computing P (ΦD(S)|S → S′), note that a copier may or
may not copy on a particular data item, and if it copies the value,
it may or may not keep the same format. [6] considers the selec-
tivity (probability of copying on a data item), denoted by s, and
the probability of keeping the same format in copying, denoted by
k (0 ≤ s, k ≤ 1 and [6, 8] discussed how to set them). As an
example, in case S provides the same value as S′ but uses a dif-
ferent format, we would consider the possibility that S provides
the item independently (with probability 1− s) and the possibility
that S copies it from S′ but changes the format (with probability
s(1− k)); thus,

P (ΦD(S)|S → S′) = (1−s)Pind(ΦD(S))+s(1−k)Pind(ΦD.fmt(S)).
(5)

As another example, in case S provides a different value, we would
only consider the possibility that S provides the item independently
(with probability 1− s):

P (ΦD(S)|S → S′) = (1− s)Pind(ΦD(S)). (6)

Consider the case that S provides a rare data item, provides a
particular false value, or uses an unpopular format. When S′ has
the same behavior, this probability conditioned on S → S′ can be
much higher than that conditioned on S⊥S′, so such observations
serve as strong evidence for copying.

EXAMPLE 2.2. Continue with Ex.1.1 and consider S1 and S2.
They share neither rare data items nor false values and they use
different formats, so copying is unlikely. Withα = .25, s = k = .8,
the MAP analysis goes as follows.

We start withP (Φ|S1⊥S2), which requires computingPind(ΦD(S1))
and Pind(ΦD(S2)) for each D ∈ D (Eq.(2)). All values S1 pro-
vides are correct. Assuming we have decided that the accuracy of
S1 is .97, then the probability for S1 to provide a true value is .97.
On the other hand, as S1 provides all data items and uses consis-
tent formatting, the probability of providing a particular item and



Table 3: List explanation for no-copying between S1 and S2.
Score Evidence

3.2 S1 provides different values from S2 on 2 items
Among the items for which S1 and S2 providePos 3.06
the same value, S1 uses different formats for 3 items
The a priori belief is that S1 is more likely to be.7
independent of S2

Neg .06 S1 provides the same true value for 3 items as S2

that of using the format on a data item are both 1. Thus, for each
D ∈ D we have Pind(ΦD(S1)) = 1 ∗ .97 ∗ 1 = .97 (Eq.(4)). In a
similar way, assuming S2 has accuracy .61 and there are 100 uni-
formly distributed false values, we compute Pind(ΦD(S2)) = .61
if S2 provides a true value on D, and Pind(ΦD(S2)) = 1−.61

100
=

.0039 if S2 provides a false value on D. Thus, P (Φ|S1⊥S2) =
(.975) ∗ (.613 ∗ .00392) = 3 ∗ 10−6.

Next consider P (Φ|S1 → S2), which requires computing
P (ΦD(S1)|S1 → S2) andPind(ΦD(S2)) for eachD ∈ D (Eq.(3)).
Source S1 shares three values with S2 and they are all correct. Ac-
cording to Eq.(5), the probability for such itemD isP (ΦD(S1)|S1 →
S2) = (1 − .8) ∗ .97 + .8 ∗ (1 − .8) ∗ 1 = .354. On the other
hand, S1 provides two different values from S2 and each of them
is true. According to Eq.(6), the probability for such data item
D is P (ΦD(S2)|S1 → S2) = (1 − .8) ∗ .97 = .194. Thus,
P (Φ|S1 → S2) = (.3543 ∗ .1942)∗ (.613 ∗ .00392) = 5.8∗10−9.

Similarly, P (Φ|S2 → S1) = 2.3 ∗ 10−7. According to Eq.(1),
P (S1⊥S2|Φ) = .5∗3∗10−6

.5∗3∗10−6+.25∗5.8∗10−9+.25∗2.3∗10−7 = .96, so
no-copying is very likely. 2

Note again that the reasoning in the example is how a detailed
description of the MAP analysis would look like (many details al-
ready skipped) for a no-copying decision. Obviously it is over-
whelming, especially when only a high-level understanding is needed.
We next show how we can explain such decisions more elegantly.

3. EXPLAINING THE DECISION
We start with snapshot explanations: given a decision W , we

take the data and all decisions made at the convergence round ex-
cept W as input and explain W . Snapshot explanations are often
sufficient by themselves, and are also important building blocks for
comprehensive explanations as we show shortly. We describe how
we generate the explanation that strictly follows the MAP analysis
(Sec.3.1-3.2), then show how to shorten it (Sec.3.3-3.4).

3.1 List explanation
MAP analysis considers all possible choices, collects evidence

and computes the probability for each of them. To explain a deci-
sion W , rather than showing only the positive evidence for W , we
shall show for each alternative W ′ that the accumulated evidence
for W is stronger than that for W ′. We thus propose the following
form for a snapshot explanation.

DEFINITION 3.1 (LIST EXPLANATION). The list explanation
for a decision W versus an alternative W ′ in MAP analysis is in
the form (L+,L−), where L+ is the list of positive evidence forW
and L− is the list of negative evidence forW (but positive forW ′).
Each evidence l ∈ L+ ∪L− is associated with a score, denoted by
s(l)(> 0). A snapshot explanation for W in MAP contains a set of
list explanations, one for each alternate choice W ′. 2

Ideally, a list explanation should be correct and complete. A list
explanation is correct if the sum of the scores of positive evidence
is higher than that for negative evidence (so the a posteriori proba-
bility for W is higher than that for W ′). A list explanation is com-
plete if all evidence considered in the MAP analysis is included.

Table 4: List explanation for no-copying between S1 and S2

strictly following the MAP analysis.
Score Evidence

S1 provides a different value from S21.6
on Stonebraker

1.6 S1 provides a different value from S2 on Carey
S1 uses a different format from S2 although1.0
shares the same (true) value on Dewitt
S1 uses a different format from S2 althoughPos 1.0
shares the same (true) value on Bernstein
S1 uses a different format from S2 although1.0
shares the same (true) value on Halevy
The a priori belief is that S1 is more likely.7
to be independent of S2

Obviously, a complete list explanation must be correct as it strictly
reflects the MAP analysis; however, as we show soon, such an ex-
planation is often huge in size. In Sec.3.4 we show how we can
relax the completeness requirement and shorten a list explanation
to be correct and comparable to the complete list explanation.

EXAMPLE 3.2. Table 3 shows the list explanation for “S1 does
not copy from S2” versus “S1 copies from S2” in Ex.1.1. There
are three pieces of positive evidence showing no-copying and one
piece of negative evidence showing copying. The explanation is
correct: 3.2 + 3.06 + .7 = 6.96 > .06. The explanation is also
complete, showing all evidence considered in the MAP analysis. 2

3.2 Generating list explanations
We next describe how we generate a list explanation strictly fol-

lowing the MAP analysis. We illustrate the main idea on no-copying
and then generalize the algorithm.

Recall that between two sources there are three possible relation-
ships: S⊥S′, S → S′ and S′ → S. Thus, the snapshot explana-
tion includes two list explanations. According to the MAP analysis
(Eq.(1)), for S → S′ we shall show βP (Φ|S⊥S′) > αP (Φ|S →
S′) and similar for S′ → S. As we assume independence of data
items, we need to show the following (derived from Eq.(2-3)).

ΠD∈DPind(ΦD(S)) > ΠD∈DP (ΦD(S)|S → S′) ·
α

1− 2α
. (7)

Recall that we compare the sum of the scores for positive and
negative evidence; we thus rewrite (7) as follows.∑
D∈D

lnPind(ΦD(S)) >
∑
D∈D

lnP (ΦD(S)|S → S′) + ln
α

1− 2α
.

(8)
Each data item D appears in the computation of both sides of

the inequality. We decide if it supports S⊥S′ or S → S′ by
comparing Pind(ΦD(S)) and P (ΦD(S)|S → S′). If the for-
mer is larger, D is positive evidence for no-copying with score
ln Pind(ΦD(S))

P (ΦD(S)|S→S′) ; if the latter is larger, D is negative evidence

with score ln P (ΦD(S)|S→S′)
Pind(ΦD(S))

; otherwise, D is not evidence for ei-
ther decision. By moving all D’s that form positive evidence to the
left side of the inequality and all D’s that form negative evidence
to the right side, we rewrite Eq.(8) as∑
Pind(ΦD(S))>P (ΦD(S)|S→S′)

ln
Pind(ΦD(S))

P (ΦD(S)|S → S′)

>
∑

Pind(ΦD(S))<P (ΦD(S)|S→S′)
ln
P (ΦD(S)|S → S′)

Pind(ΦD(S))
+ ln

α

1− 2α
.(9)

Finally, the term ln α
1−2α

represents the evidence coming from the
a priori belief (α, β are not involved in any other part of Eq.(9)).
This evidence is negative if α > 1− 2α (α > 1

3
).

Obviously, the explanation is complete and correct: P (S⊥S′|Φ)
> P (S → S′|Φ) if and only if the scores of positive evidence sum
up to be higher than those of negative evidence.



EXAMPLE 3.3. Consider explaining S1⊥S2 in Ex.1.1. The list
explanation w.r.t. S1 → S2 is shown in Table 4.

For item Stonebraker, denoted by D1, S1 provides a different
value from S2. Recall from Ex.2.2 that Pind(ΦD1(S1)) = .97
and P (ΦD1(S1)|S1 → S2) = .194. Thus, D1 serves as positive
evidence for no-copying with score ln .97

.194
= 1.6. We compute the

same score for item Carey.
For item Dewitt, denoted by D2, S1 provides the same value as

S2 but uses a different format. Recall that Pind(ΦD2(S1)) = .97
and P (ΦD2(S1)|S1 → S2) = .354. Thus, D2 also serves as
positive evidence for no-copying and the score is ln .97

.354
= 1.0.

We compute the same score for items Bernstein and Halevy.
Finally, the a priori belief when α = .25 serves as positive evi-

dence with score | ln .25
1−2∗.25

| = .7.
In total, there are 6 pieces of positive evidence and no negative

evidence. Note that by equation transformation and evidence ex-
traction, the explanation is already much simpler than the descrip-
tion of MAP analysis in Ex.2.2. 2

Generalization: We explain a general MAP decisionW as follows
(application on other fusion decisions shown in [10]).

1. List each alternate choice other than W .
2. Generate a list explanation for each choice W ′.

(a) Write and expand the inequality between inverse prob-
ability for W and that for W ′ to show that W has a
higher a posteriori probability.

(b) Take the logarithm of each side of the inequality.
(c) For each involved element (e.g., data item for copy de-

tection), compare the probability computed on each side
and decide if it serves as positive or negative evidence.

(d) Add evidence according to a priori probabilities.

3.3 Categorizing and aggregating evidence
The current explanation scheme lists each data item as a piece

of evidence. Since there can be a lot of data items in practice,
the explanation can be long and overwhelming. We observe from
Table 4 that a lot of evidence looks similar; a natural thought is to
categorize and aggregate the evidence. We do so in two steps.
Evidence separation: Since our observation on a data itemD con-
sists of three aspects: existence of the item, provided value(s), and
used format(s) (see Eq.(4)), we divide evidence on D into three,
one for each aspect. This enables categorization on each aspect
instead of on combinations of aspects.

Accordingly, we need to split the score on D for different as-
pects, denoted by scoreext(D), scoreval(D), and scorefmt(D).
We compute (1) sc1 = scoreext(D), (2) sc2 = scoreext(D) +
scoreval(D), and (3) sc3 = scoreext(D)+scoreval(D)+scorefmt
(D) (sc3 actually equals the overall score on D), and then infer
scoreext(D), scoreval(D), and scorefmt(D). Consider the case
of both sources providing the same value v as an example. We have

sc1=ln
Pind(ΦD(S) 6= ∅)

P (ΦD(S) 6= ∅|S → S′)
= ln

Pind(ΦD(S) 6= ∅)
s+ (1− s)Pind(ΦD(S) 6= ∅)

;(10)

sc2=ln
Pind(ΦD(S) 6= ∅)Pind(ΦD.val(S))

P (ΦD(S) 6= ∅,ΦD.val(S)|S → S′)

=ln
Pind(ΦD(S) 6= ∅)Pind(ΦD.val(S))

s+ (1− s)Pind(ΦD(S) 6= ∅)Pind(ΦD.val(S))
; (11)

sc3=ln
Pind(ΦD(S))

P (ΦD(S)|S → S′)
. (12)

A positive score shows that the specific aspect serves as pos-
itive evidence for no-copying and vice versa. Note that even if
D as a whole serves as positive evidence, it is not necessary that

Table 5: Score and count for each category (combination of
aspect and class) in Ex.3.4.

Aspect Class 1 Class 2 Class 3 Class 4
Exist 0 0 0 0
Value 0 -.06, 3 0 3.2, 2

Format 0 0 0 3.06, 3

scoreext(D), scoreval(D), and scorefmt(D) are all positive. As
shown in Ex.3.3, item Dewitt (D2) serves as positive evidence.
However, we compute scoreext(D2) = ln 1

.8+.2∗1 = 0, scoreval

(D2) = ln 1∗.97
.8+.2∗1∗.97

−0 = −.02, scorefmt(D2) = 1−(−.02)−
0 = 1.02. Thus, providing D2 is neither positive nor negative evi-
dence, sharing the same value is negative evidence for no-copying,
and using different formats is positive evidence. Exposing such
hidden evidence is an extra benefit of evidence separation.
Classification: Now for each aspect we can classify the data ac-
cording to the feature of the data and why it serves as positive or
negative evidence. Take the value aspect as an example. There are
four classes: (1) sharing false value; (2) sharing true value; (3)
providing a different value that is more likely to be provided if the
source is a copier but provides this item independently (e.g., if S
copies high-accuracy data from S′ but all of its independently pro-
vided data are wrong, then for a value different from S′’s, S has a
probability of 1 to provide a wrong value conditioned on it being
a copier of S′ but a lower probability conditioned on being inde-
pendent); and (4) providing other different values. Among these
classes, the last forms positive evidence for no-copying and the oth-
ers form negative evidence. The first two classes are essentially the
same, but by separating them we can distinguish strong evidence
and weak evidence. We have similar classes for the other aspects
but in general the classes for different aspects can be different.

Finally, each class of an aspect forms a category of evidence; we
can aggregate evidence in the same category and sum up the scores.
Evidence collection and categorization can be done together in one
scanning of the data items. We present details in [10] and illustrate
the algorithm by an example.

EXAMPLE 3.4. Continue with Ex.3.3. We first consider each
data item, compute the scores and classify the reasons. Take D2 as
an example. Recall that we compute scoreext(D2) = 0, scoreval
(D2) = −.02 and scorefmt(D2) = 1.02. For the value aspect,
S1 and S2 provide the same true value, falling in Class 2; for the
format aspect, S1 and S2 use different formats, falling in Class 4.

We then aggregate evidence in the same category, resulting with
2 pieces of positive evidence (not including the a priori belief evi-
dence) and 1 piece of negative evidence (see Table 5). Table 3 gives
the corresponding list explanation, containing only 4 instead of 6
pieces of evidence. 2

With evidence categorization and aggregation, the amount of ev-
idence is not determined by the number of data items, but by the
number of categories. In our experiments, the evidence lists can be
shortened by orders of magnitude.
Generalization: We categorize and aggregate evidence for a gen-
eral MAP decision as follows.

1. Manually enumerate the aspects according to the terms in
probability computation (such as Eq.(4)).

2. Manually enumerate the classes of reasons why a particular
aspect serves as positive or negative evidence given the fea-
ture of the observation.

3. For each involved element, split the scores for different as-
pects and classify the reason for each aspect.

4. Aggregate evidence in each category.



3.4 Shortening lists
Although evidence aggregation can significantly reduce the amount

of evidence, the result lists can still contain twenty or thirty pieces
of evidence, much of which may be “unimportant” and removable,
as we show next.

EXAMPLE 3.5. Consider the following list explanation (we show
only scores).

L+ = {1000, 500, 60, 2, 1}; L− = {950, 50, 5}. (13)

Obviously, removing the evidence whose scores are below 100
still shows that the positive evidence is much stronger than the neg-
ative evidence. However, if we further remove the negative evidence
with score 950, it gives the wrong impression that there is no nega-
tive evidence. On the other hand, if we further remove the positive
evidence with score 500, it gives the wrong impression that the pos-
itive evidence is only slightly stronger. 2

We can certainly show only top-k evidence or evidence whose
score is above a given threshold θ. However, using the same k
and θ everywhere may cause over-shortening for some instances,
where the explanation is incorrect, and under-shortening for some
other instances, where further shortening will generate a shorter but
still correct explanation. We next propose two better solutions that
generate explanations being correct and comparable to the com-
plete explanation. Both of them remove evidence from the end of
the list, as typically the lower the score, the less important is the ev-
idence; on the other hand, each follows a different principle of what
is considered as comparable to the complete list explanation. Both
methods can be applied for list explanation of any MAP decision.
Tail cutting First, given a shortened list explanation, we can guess
the bound of the accumulated scores: the minimal accumulated
score for all positive evidence happens when each removed posi-
tive evidence has score 0; the maximal score for negative evidence
happens when each removed negative evidence has a score as high
as the lowest remaining score for negative evidence. If even in such
a worst case, the remaining positive evidence is still stronger, we
consider the explanation as comparable. In Ex.3.5, if we remove
the last negative evidence and inform in the explanation that “there
is 1 more piece of negative evidence with lower score”, then the
removed score is at most 50, so the negative evidence (total score
950 + 50 + 50 = 1050) is still weaker. We can further remove the
last 3 pieces of positive evidence and the positive evidence is still
stronger (total score 1000 + 500 = 1500 > 1050). According to
this intuition, we shall solve the following optimization problem.

DEFINITION 3.6 (TAIL-CUTTING PROBLEM). Consider the fol-
lowing list explanation (we show only scores):

L+ = {x1, x2, . . . , xn}; L− = {y1, y2, . . . , ym}. (14)

The tail-cutting problem minimizes s + t, 1 ≤ s ≤ n, 1 ≤ t ≤
m, under the constraint

s∑
i=1

xi >
t∑

j=1

yj + yt(m− t). 2 (15)

In this definition, constraint (15) compares the minimum positive
score, obtained when all removed scores are 0, with the maximum
negative score, obtained when them−t pieces of removed evidence
all have the maximum possible score yt, and so guarantees that the
shortened list is comparable to the complete explanation.

Algorithm CUTTAIL (pseudo-code in [10]) proceeds in three
steps.

1. Iteratively try s = n, n − 1, . . . , 1, as far as
∑s
i=1 xs >∑m

j=1 yj ; the resulting s is the minimum when we do not

remove any negative evidence (t = m) and serves as the
starting point for the next step.

2. Iteratively try t = m,m − 1, . . . , as far as
∑n
i=1 xi >∑t

j=1 yj + yt(m − t) (at this point removing any more
negative evidence cannot satisfy constraint (15), even if we
add back all positive evidence). For each t, increase s when
needed to guarantee (15), and record s+ t.

3. Return the s and t with minimal s+ t.

PROPOSITION 3.7. Algorithm CUTTAIL solves the TAIL-CUTTING
problem (finds the optimal solution) in time O(m+ n). 2

EXAMPLE 3.8. Consider applying CUTTAIL to the full list ex-
planation in Ex.3.5. The algorithm first removes the last 3 pieces of
evidence from L+; at this point, 1000 + 500 > 950 + 50 + 5 and
s + t = 2 + 3 = 5. It then tries t = 2, where increasing s is not
needed (1000 + 500 > 950 + 50 + 50 ∗ 1); so s+ t = 2 + 2 = 4.
When it tries t = 1, even if all positive evidence is added back, we
still have 1000 + 500 + 60 + 2 + 1 < 950 + 950 ∗ 2, so it stops.
Finally, it returns s = 2, t = 2 as the result. 2

Difference keeping In our second method, we consider the short-
ened list as comparable to the complete one if it keeps the differ-
ence between the accumulated scores for the two evidence lists;
this corresponds to dividing both the numerator and the denomina-
tor of Eq.(1) by a constant or dividing both sides of the inequation
of Eq.(7) by a constant. In other words, we wish that the sum of the
scores for removed positive evidence is nearly the same as that for
removed negative evidence. Meanwhile, we wish to make the lists
as short as possible, equivalent to making the sum of the removed
scores as large as possible. Thus, we solve the following problem.

DEFINITION 3.9 (DIFFERENCE-KEEPING PROBLEM). Consider
the same list explanation as in Defn.3.6. Let X =

∑n
i=s+1 xi and

Y =
∑m
j=t+1 yj (1 ≤ s ≤ n, 1 ≤ t ≤ m). The difference-

keeping problem minimizes
|X − Y |+ β1

max(X,Y ) + β2
, (16)

where 0 < β1, β2 ≤ min{x1, . . . , xn, y1, . . . , ym} are small pos-
itive numbers, under the constraint

s∑
i=1

xi >

t∑
j=1

yj . 2 (17)

In the objective function (16), we use β1 and β2 to guarantee
non-zero numerator and denominator. Constraint (17) guarantees
correctness of the explanation. Note that one may add other con-
straints such as giving upper bounds of X and Y to guarantee
that at most a given fraction of evidence is removed; giving up-
per bounds of s and t to control maximum length of the lists; or
use max(X,Y )γ , γ > 0, in (16) to control how much we wish to
emphasize small list length.

A naive way of solving this problem tries each combination of
m and n and can take time O(mn(m + n)). We now sketch an
algorithm that solves the problem in only linear time. Recall that
we remove evidence from the end of the lists, so we call a removed
subset of evidence a suffix sublist. The key idea is that for each suf-
fix sublist L, there is a key evidence k(L) in the other list, such that
the longest suffix without k(L) has lower or the same accumulated
score as L and the shortest suffix with k(L) has higher accumu-
lated score than L. Then, for each suffix, we only need to examine
these two suffix sublists from the other list. Consider Ex.3.5 and
the suffix list {5} from L−. Its key evidence in L+ is the evidence
with score 60. The longest suffix without this evidence, {2, 1},



Table 6: Applying KEEPDIFF in Ex.3.5.
Rnd Remove from L+ Remove from L− Difference Objective

0 ∅ ∅ 0 1
1

= 1

1 {1} ∅ 1 2
2

= 1

2 {1, 2} ∅ 3 4
4

= 1

3 {1, 2} {5} 2 3
6

= .5

4 {1, 2} {5, 50} 52 53
56

= .95

5 {1, 2, 60} {5, 50} 8 9
64

= .14

has a lower score than 5, and the shortest suffix with the evidence,
{60, 2, 1}, has a higher score. Obviously, any other suffix sublist
in L+ has a higher difference from {5} than these two.

According to this intuition, Algorithm KEEPDIFF (pseudo-code
in [10]) scans L+ and L− bottom-up as follows.

1. Remove evidence with the lowest score.
2. Check constraint (17), compute the objective function, and

record the solution if its value is lower than the recorded low-
est value.

3. Decide the evidence to remove at the next round as follows:
(1) find the next suffix (the current suffix plus the next evi-
dence) of the other list; (2) find its key evidence in the current
list; and (3) pick evidence from the current list until reaching
the key evidence.

4. Repeat Steps 2-3 until reaching the first evidence of a list.

PROPOSITION 3.10. Algorithm KEEPDIFF solves the DIFFERENCE-
KEEPING problem in time O(m+ n). 2

EXAMPLE 3.11. Continue with Ex.3.5. Table 6 shows removed
evidence and the value of the objective function in each round;
here, we set β1 = β2 = 1. We start with L+, as it contains the
lowest score. Initially, the next suffix sublist in L− is {5}, and its
key evidence in L+ has score 60; thus, we pick scores 1 and 2 first
and then switch to list L−. We continue till reaching the first el-
ement of L−. The result of Round 5 is optimal, even though its
difference is not the smallest. 2

In practice, we apply both CUTTAIL and KEEPDIFF and choose
the solution with shorter lists (i.e., minimal s+t). Our experiments
show that these strategies can further shorten the lists by half.

EXAMPLE 3.12. Continue with explaining no-copying between
S1 and S2 for the running example. For evidence in Table 3, CUT-
TAIL would remove the last two pieces of positive evidence, while
KEEPDIFF would not remove any evidence. We thus choose the re-
sults of CUTTAIL. The final explanation can go like this. “There are
3 pieces of positive evidence for no-copying, where the strongest is
that S1 provides 2 different values from S2 (with score 3.2). There
is 1 piece of negative evidence for no-copying: S1 provides the
same true value on 3 data items as S2 (with score .06). The posi-
tive evidence is stronger so no-copying is likely.” 2

4. EXPLAINING THE EXPLANATION
We next consider generating comprehensive explanations, where

we take only provided data as evidence. Again, we start with full
explanation (Sec.4.1), and then describe how we shorten the ex-
planation efficiently (Sec.4.2). The techniques we present in this
section can apply to any type of iterative decisions.

4.1 DAG explanation
A comprehensive explanation needs to in addition explain every

“evidence” inferred over the data. We can adopt the DAG struc-
ture, where each node explains a decision, and the children are the
evidence (note that the final explanation may be in a different pre-
sentation, which is outside the scope of the paper).
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Figure 1: Full explanation DAG for the decision “UCI is more
likely than BEA to be the affiliation of Carey” (represented by
D4 : P (UCI) > P (BEA)). The triangle between S3, S4 and
S5 represents copying between them; A(S1) > A(S3) repre-
sents that S1 has a higher accuracy than S3; D3 : MSR repre-
sents that MSR is the correct affiliation for Bernstein.

DEFINITION 4.1 (DAG EXPLANATION). The DAG explana-
tion for an iterative MAP decision W is a DAG (N,E, R), where
(1) each node in N represents a decision and its list explanations,
(2) each edge in E indicates that the decision of the child node is
evidence for that of the parent node, and (3) there is a single node
R that has no parent and represents the decision W . 2

Similar to snapshot explanations, an ideal DAG explanation should
also be correct and complete. It is correct if (1) the explanation
represented by each node is correct, and (2) each child supports
its parents as positive evidence. It is complete if for every node,
each positive evidence inferred from the data corresponds to a child
node. Note that we do not expand the DAG for negative evidence,
since their opposites will only further strengthen our decision.

Consider explaining “UCI is more likely than BEA to be the cor-
rect affiliation of Carey” in the motivating example. As we have
shown in Ex.1.2, careless generation of the DAG can result in loops.
Similar to explaining “WHY” according to provenance [3], we ex-
plain by tracing the decisions from the last round of iterations back
to the first round. In particular, we start with generating the root
node for the decision at the convergence round and its children for
the supporting evidence at the same or the previous round. We re-
peat until all leaf nodes can be inferred directly from the data. We
call the result a full explanation DAG. Obviously, a full explanation
DAG is both correct and complete.

EXAMPLE 4.2. Fig.1 shows the full explanation DAG for our
example. The root node has two children, showing that we make
this decision at the convergence round, the 11th round, because we
detect copying between S3 − S5 at the 11th round, and compute a
higher accuracy for S1 than S3 at the 10th round. We make both
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Figure 2: Critical-round DAG. Not being part of the DAG,
italic-font nodes indicate the critical round for a decision and
dashed lines show the reasons at the critical round.
of these two decisions based on our decisions at the 10th round
that UWisc, UW and BEA are wrong. Among them, the deci-
sion on BEA at Round 10 is made for the same two reasons as
at Round 11; the decisions on UWisc and UW, on the other hand,
are made because of copying between S3−S5 and no-copying be-
tween S1 −S2 (the reasoning is that these two values are provided
by three sources with copying and the correct values are provided
by two independent sources), both decided at the 10th round. While
copying between S3 − S5 is detected for the same reasons as at
Round 11, no-copying between S1 − S2 is decided based on the
decisions at the 9th round that the shared values MSR, MSR, and
Google (for D2, D3, D5 respectively) are all correct. We decide
that MSR is correct for D3 purely from the data, because no other
value is provided on D3, so the node is a leaf node. We further
expand the DAG for other decisions.

At the 4th round, we decide copying between S3 − S5 only be-
cause we decided at Round 3 that UWisc and UW are wrong,
which again are decided because of copying between S3 − S5 and
no-copying between S1−S2. When we trace back to the 1st round,
we show that we made decisions on UWisc and UW because the
no-copying probability between S1−S2 is higher than that between
S3−S5, which in turn is inferred from the raw data because S1 and
S2 share fewer values (initially we assume the same probability for
each value to be true). We can thus terminate. 2

4.2 Shortening DAG explanations
A full explanation DAG is often huge because some parts can

be repeated many times; for example, in Fig.1 the subgraphs for
Round 4 to 9 are exactly the same. We wish to reduce the size of the
DAG by removing the repeated subgraphs. We observe that if the
same decision is made at two consecutive rounds, their supporting
positive evidence are typically the same. The only difference is the
exact scores, which may change slightly between rounds, but such
small changes are not significant in understanding the decision. We
thus shorten the explanation by explaining a decision only at its
critical round, the last round when we change our decision; in other
words, we explain how we initially make this decision. Such a
DAG is called a critical-round DAG.

EXAMPLE 4.3. Continue with Ex.4.2. Fig.2 shows the critical-
round DAG for our example. It shows that the decision is first made
at Round 4 (before that we wrongly consider BEA as correct) based
on (1) copying between S3 − S5, decided at Round 4, and (2) that
the accuracy of S1 is higher than S3, decided at Round 3. Copying
between S3 − S5 is originally decided at Round 1 according to the
high overlap between these sources; it does not have any child be-
cause it is purely inferred from the data. The decision that S1 has

a higher accuracy is originally made at Round 2 (although in that
round the difference is not significant for believing that UCI is cor-
rect), based on the decisions at Round 2 that UWisc and UW are
false. These two decisions are originally made at Round 1, again
based on the decisions at Round 1 that the no-copying probability
between S1−S2 is higher than that between S3−S5, inferred from
the raw data. Critical-round DAGs can be significantly smaller; the
example DAG includes only 6 nodes. 2

Critical-round DAGs are both correct and complete if we con-
sider only the critical rounds. Our experiments show that there are
typically very few extra reasons appearing after the critical round
and even fewer reasons disappearing after the critical round.

We next formally define the critical-round DAG, which we pro-
pose to use as the comprehensive explanation.

DEFINITION 4.4 (CRITICAL-ROUND EXPLANATION DAG).
Let W be a decision at Round n. The critical round of W , denoted
by r(W,n), satisfies the following conditions: (1) W is made in
Round 1 ≤ r(W,n) ≤ n, (2) r(W,n) = 1, or ¬W is made in
Round r(W,n)− 1.

An explanation DAG is called a critical-round DAG if for each
node N and its decision W at Round n, N ’s children represent
positive evidence for W at round r(W,n). 2

Obviously, constructing a critical-round DAG would require record-
ing the decisions we make in each round in a log file. There can be
many rounds before convergence, so constructing a DAG would
very often require importing the decisions and restoring the status
for different rounds back and forth from the logs. By pre-generating
the explanation and the evidence list for each decision offline, and
storing them in a database (details in [10]), we can speed up DAG
construction significantly.

5. EXPERIMENTAL RESULTS
We now describe experimental results on real-world data show-

ing that (1) the list of evidence we generate for the explanations are
correct (2) our techniques can significantly reduce the amount of
evidence; and (3) we can generate the explanations efficiently.

5.1 Experimental setting
We experimented on the AbeBooks data set, extracted in 2007

from AbeBooks.com by searching computer-science books4. There
are 894 bookstores (data sources), 1265 books, and 24364 listings,
each containing attributes ISBN, name, and often authors5.

We generate explanations for four types of decisions: I. truth
discovery: true value for the name and author list of each book; II.
copy detection: copying or no-copying between sources whose Jac-
card similarity on data items (intersection over union) is at least .1
(there are 3210 such pairs); III. copy direction: direction of copying
between sources with detected copying (there are 1552 pairs where
the direction can be decided); IV. copy pattern: copying by object
or copying by attribute [6] between sources with detected copying
(there are 1340 detected patterns). We consider all for snapshot
explanations, and I and II (only copying) for comprehensive expla-
nations.

For snapshot explanation, we compare six list-shortening strate-
gies: (1) TOPK: showing evidence with the top-k scores; (2) LARGE:

4We thank authors of [24] for providing us the data, which can be found at
http://lunadong.com/fusionDataSet.htm.
5Previous study shows that a naive voting for deciding the correct list of
authors on this data set obtains an accuracy of only .71, while the advanced
fusion technique in [8] obtains an accuracy of .89.
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Figure 5: Shortening strategies.

showing evidence whose score is larger than 5; (3) TOPKLARGE:
showing the top-k evidence whose score is larger than 5; (4) CUT-
TAIL: applying Algorithm CUTTAIL; (5) KEEPDIFF: applying Al-
gorithm KEEPDIFF with β1 = β2 = .01; and (6) SHORTEN: try-
ing both CUTTAIL and KEEPDIFF, and selecting the results with
shorter lists. By default, we apply SHORTEN.

For comprehensive explanation, we compare full explanation DAG
and critical-round DAG. We also generated enriched critical-round
DAG, where appearing and disappearing evidence after the critical
round is also expanded. By default, we used critical-round DAGs.

We used Java and experimented on a WindowsXP machine with
2.66GHz Intel CPU and 3.48GB of RAM. We hosted the database
using MySQL.

5.2 Snapshot explanations
Shortening strategies: Fig.3 shows results of generated snapshot
explanations for the four types of decisions. We have five obser-
vations. (1) Evidence categorization and aggregation shortens the
evidence list by an order of magnitude on average. (2) List short-
ening further shortens the evidence list by 51% on average. (3) Ev-
idence categorization and aggregation can reduce the size of expla-
nations more for copy detection than for truth discovery, because
the amount of raw evidence for the former, decided by the num-
ber of values provided by the sources, is much larger than that for
the latter, decided by the number of sources providing the data item.
(4) The final amount of evidence is the largest for decisions of Type
I as each explanation involves multiple list explanations, then for
those of Type II as each explanation involves two list explanations,
and last for Type III and IV as each involves a single list explana-
tion. (5) All evidence lists are correct.

As a case study, we observed that the largest explanation without
shortening is for a Type II decision. The original explanation con-
tains two lists, in total containing 4927 pieces of evidence. One can
imagine how verbose the explanation could be if we give a detailed
description of the Bayesian analysis. After categorization and ag-
gregation, there are still 29 pieces of evidence in total. After list
shortening the number further drops to 15.

We next compare different list shortening strategies. We first
consider decisions of copy detection (Type II). Table 7 shows the
average length of the result lists and Fig. 4 shows the shortening
ratio (percentage of the size of the shortened lists over that of the
full lists) for each method. We have four observations. (1) LARGE
and TOP15LARGE obtain the shortest evidence lists; however, this
is at the price of introducing errors (the sum of scores for positive
evidence is no larger than that for negative evidence) in the expla-
nations as they remove evidence without checking. As shown in
Table 8, TOPKLARGE introduces errors for 47-48 (2.2%) pairs of
sources; TOPK in itself introduces only a few errors, but on the
other hand, in reduces the list length only slightly. (2) SHORTEN
obtains slightly longer evidence lists than LARGE and TOP15LARGE,
but does not introduce any error. (3) CUTTAIL and KEEPDIFF ob-
tain similar results in terms of the average length of the result lists;

Table 7: Average number of evidence in the explanations gen-
erated by each shortening strategy.
FULL TOP15 LARGE TOP15LARGE CUTTAIL KEEPDIFF SHORTEN
11.0 10.5 4.5 4.5 7.4 7.2 5.7

Table 8: Errors in snapshot explanations.
ALL TOP20 TOP15 TOP10

TOPK 0 0 0 1
TOPKLARGE 47 47 47 48

however, the former is better at shortening short lists (5-14 evi-
dence) and the latter is better at shortening long lists (15-29 evi-
dence). SHORTEN combines them and obtains shorter lists. (4) Fi-
nally, most methods have a lower shortening ratio for longer lists,
whereas LARGE and TOPKLARGE have consistent ratio for lists of
various length, and are able to significantly shorten very short lists
(0-4 evidence), but this again is at the price of making errors.

We next consider decisions of Type III and IV; Fig.5 shows the
length of evidence lists generated by different shortening strategies.
The results are in general consistent with our observations for deci-
sions of Type II and we have the following additional observations.
First, before shortening, the list explanations for decisions of Type
IV are short; since CUTTAIL is better at shortening short lists (see
Fig.4), the results of SHORTEN are affected more by CUTTAIL.
Second, for decisions of Type III and IV, each evidence typically
has a high score, so LARGE and TOP15LARGE under-shorten and
generate longer lists than SHORTEN.

Efficiency: Table 9 shows efficiency of generating explanations
for each type of decisions. We observe that (1) explanations can
be generated very quickly online, and (2) the list shortening strate-
gies introduce a very small overhead. Note that collecting evidence
for decisions of Type II-IV all requires scanning provided data and
took 62.3 ms on average. Note also that collecting evidence for
truth discovery decisions requires computing copying probability
for each shared value and thus took longer time.

5.3 Comprehensive explanations
Shortening strategies: The iterative Bayesian analysis on the ex-
perimental data set took 9 rounds. Fig.6 plots the size of the critical-
round DAGs versus the critical round. We observe that for truth dis-
covery decisions, those that do not change since the first round typ-
ically have a small DAG (with less than 15 nodes), whereas those
changed at later rounds can have much larger DAGs (the largest
DAG has 1035 nodes). In contrast, for copy detection decisions,
the DAGs for decisions not changed since the first round have only
1 node (copy detection in the first round is based purely on pro-
vided data). Despite the fact that copying decisions typically re-
quire more inferred evidence than truth discovery decisions, the
former typically have smaller DAGs than the latter; this is because
a DAG for a copying decision often has only one node (the root)
representing a copying decision, but a DAG for a truth discovery
decision can often have several such nodes.
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Figure 6: Size distribution of critical-round DAGs.
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Figure 7: Size of comprehensive explana-
tions.

Table 9: Runtime of explanation generation.
(In ms) I. Truth II. Cpy. III. Dir. IV. Pat.

Evid Collection 350.3 62.3
Categorization .08 31.2 8.8 .03

Shortening .12 .01 .02 .01

Fig.7(a) compares the sizes of different types of DAGs for truth
discovery decisions. We have three observations. (1) Most full
DAGs either have only 1 node (69%), or have over 1000 nodes
(30%), meaning that once a decision is not purely supported by
provided data, the full explanation DAG is typically huge. (2) Most
critical-round DAGs are small as they show only evidence at the
critical rounds: 72.4% of the DAGs have 1 node, 92.6% have less
than 10 nodes, and only 1 has more than 1000 nodes. (3) Finally,
enriched critical-round DAGs can be much larger than critical-round
DAGs. We observe that on average there are .75 appearing evi-
dence for decisions not changed since the first round, and nearly
0 appearing evidence for other decisions, and nearly 0 disappear-
ing evidence for all decisions. However, explaining such additional
evidence at a late round can significantly increase the size of the
DAGs: 25.9% of the DAGs are of size larger than 10 and 15% have
more than 1000 nodes.

Efficiency: Fig.8(a) compares the efficiency of generating compre-
hensive explanations from the database and directly from the log
files. Constructing explanation DAGs from a database was very ef-
ficient: on average it took only 0.3 second and in the worst case
it took 22 seconds. DAG construction from files on average took
283.5 times as long as that from a database. For DAGs with up to
10 nodes, using the database reduced runtime by 3 orders of mag-
nitude; even for DAGs of size over 100, using the database reduced
runtime by more than 1 order of magnitude.

Fig.8(b) reports database creation time. We finished creating the
database in 8.4 hours and the size of the database is 766MB. It is
acceptable given that it is an offline process. We observe that pop-
ulating tables for the first round took the longest time (4.6 hours),
because most decisions are made at that round; starting from the
third round, each round took less than half an hour. We also observe
that generating explanation and evidence for accuracy comparison
decisions took much longer time than other types of decisions, be-
cause there are many more such decisions in each round. Finally, it
took 55 hours to create a database for constructing full explanation
DAGs (13.7GB), as we need to generate explanation and evidence
for each decision at each round; this further shows the huge over-
head for generating full explanation DAGs.

6. RELATED WORK
Generating provenance (or lineage) information to facilitate un-

derstanding of data management and data integration results has
received recent interest in the database community. Techniques
have been proposed for explaining results for queries [3, 4, 14,
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Figure 8: Efficiency of generating comprehensive explanations.

19], workflows [5], schema mappings [13], and information ex-
traction [15, 22]. We propose explaining data fusion results [1, 6,
8, 12, 20, 21, 24, 25, 26, 27]; the core ideas, including how to ex-
plain iterative MAP analysis and how to efficiently shorten such
explanations, are not discussed in any existing work on data fu-
sion. The following characteristics of our techniques distinguish
our work from previous explanation works.

First, we need to explain results from MAP analysis which con-
siders alternate decisions and reasons about the probability of each
of them. Causality reasoning [19] does not easily apply for such
analysis; we proposed list explanation according to the nature of
MAP analysis. One of our key contributions is evidence-list short-
ening. [14, 15] discussed reducing the number of returned reasons
by applying constraints and declaring trust on certain data. These
techniques do not apply in our context; we instead consider evi-
dence categorization, aggregation and list shortening.

Second, we need to explain results from iterative reasoning. Among
existing work, only [22] explains iterative reasoning: it proposed
querying all extraction patterns that contribute to an extracted tu-
ple and all tuples that are influenced by an extraction pattern over
all iterations. By creating an explanation database, we can support
such queries in the context of data fusion as well, and we in ad-
dition generate the evidence DAG for comprehensive explanation.
Finally, answers to provenance queries are also in the DAG struc-
ture and indexing techniques have been proposed for accelerating
query evaluation [16]. Our techniques differ in that we leverage
the repetition in the iterations to reduce the size of the explanation
DAG and use a database to accelerate DAG construction.

7. CONCLUSIONS
In this paper we study explaining data fusion results obtained by

iterative MAP analysis. We proposed snapshot explanations and
comprehensive explanations, and showed how we efficiently gen-
erate such explanations and significantly reduce the size of the ex-
planations. Future work includes applying our ideas in pinpointing
important decisions, and improving data fusion results by seeking
user feedback.
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