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ABSTRACT
Many applications rely on Web data and extraction systems to ac-
complish knowledge-driven tasks. Web information is not curated,
so many sources provide inaccurate, or conflicting information.
Moreover, extraction systems introduce additional noise to the data.
We wish to automatically distinguish correct data and erroneous
data for creating a cleaner set of integrated data. Previous work has
shown that a naïve voting strategy that trusts data provided by the
majority or at least a certain number of sources may not work well in
the presence of copying between the sources. However, correlation
between sources can be much broader than copying: sources may
provide data from complementary domains (negative correlation),
extractors may focus on different types of information (negative
correlation), and extractors may apply common rules in extraction
(positive correlation, without copying). In this paper we present
novel techniques modeling correlations between sources and apply-
ing it in truth finding. We provide a comprehensive evaluation
of our approach on three real-world datasets with different charac-
teristics, as well as on synthetic data, showing that our algorithms
outperform the existing state-of-the-art techniques.
Categories and Subject Descriptors:
H.3.5 [Online Information Services]: Data sharing
Keywords: data fusion; integration; correlated sources

1. INTRODUCTION
The Web is an incredibly rich source of information, which is

growing at an unprecedented pace and is amassed by a plethora
of contributors. An increasing number of users and applications
rely on online data as the main resource to satisfy their informa-
tion needs. Web data is not curated and sources may often provide
erroneous or conflicting information. Additionally, a lot of Web
data is largely unstructured, lacking a predefined schema or consis-
tent format. As a result, knowledge-driven applications in various
domains (e.g., finance, technology, advertisement, etc.) rely on
information extraction systems to retrieve structured relations from
online sources. However, extraction systems have less than perfect
accuracy, invariably introducing more noise to the data.

Our goal is to automatically distinguish correct data and erroneous
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data for creating a cleaner set of data. A naïve approach to achieve
this goal is majority voting: we trust the data provided by the
majority, or at least a certain number of sources. However, such
a strategy may perform badly for two reasons. First, sources may
provide data from complementary domains (e.g., information on
scientific books vs. on biographies) and extractors may focus on
different types of information (e.g., extracting from the Infobox or
the texts of Wikipedia pages); blindly requiring agreement among
sources may miss correct data and cause false negatives. Second,
sources may easily copy and share data [2] and extractors may
apply common rules; blindly trusting agreement among sources may
enforce erroneous data and cause false positives. Such correlation
or anti-correlation between sources makes it especially hard to tell
the truth from wrong statements or extractions, as illustrated next.

EXAMPLE 1.1. Figure 1 depicts example data extracted from
the Wikipedia page for Barack Obama, using five different extraction
systems. Extracted data consist of knowledge triples in the form of
{subject, predicate, object}; for example, {Obama, spouse, Michelle}
states that the spouse of Obama is Michelle. Some extracted triples
are incorrect. For example, triple t2 is false: extraction systems
S1 and S2 derived the triple from a sentence referring to Barack
Obama Sr, rather than the current US president.

Various types of correlations exist among the five sources. First,
S1, S4 and S5 implement similar extraction patterns and extract
similar sets of triples; there is a positive correlation between these
sources. Second, S3 extracts triples from the Infobox of the Wikipedia
page while S1 (similarly, S4 and S5) extracts triples from the text;
their extracted triples are largely complementary and there is a
negative correlation between them.

Figure 1c shows the precision, recall, and F-measure of voting
techniques: Union-k accepts a triple as true if at least k% of the
extractors extract it; e.g., Union-25 accepts triples provided by at
least 2 extractors: it has high recall (missing only one triple), but
makes a lot of mistakes (extracting 4 false triples) because of the
common mistakes by the correlated sources S1, S4, and S5. Union-
75 accepts triples provided by at least 4 extractors; it misses a lot of
true triples since S3 is anti-correlated with three other sources.

Data fusion has studied resolving conflicts while considering
source copying [5, 6]. Previous approaches have two limitations.
First, they focus on copying of data between sources and are based
on the intuition that common mistakes are strong evidence of copy-
ing; correlation is much broader: it can be positive or negative and
can be caused by different reasons. Previous approaches are effective
in detecting positive correlation on false data, but are not effective
with positive correlation on true data or negative correlation. Second,
their model relies on the single-truth assumption such as everyone
has a unique birthplace; however, in practice there can be multi-

mailto:ravali@cs.umass.edu
mailto:anish.dassarma@gmail.com
mailto:lunadong@google.com
mailto:ameli@cs.umass.edu
mailto:divesh@research.att.com


ID Web document KnowledgeTriple Correct? S1 S2 S3 S4 S5

t1 wiki/Barack_Obama {Obama,profession,president} Yes X X X X
t2 wiki/Barack_Obama {Obama,died,1982} No X X
t3 wiki/Barack_Obama {Obama,profession,lawyer} Yes X
t4 wiki/Barack_Obama {Obama,religion,Christian} Yes X X X X
t5 wiki/Barack_Obama {Obama,age,50} No X X
t6 wiki/Barack_Obama {Obama,support,White Sox} Yes X X X
t7 wiki/Barack_Obama {Obama,spouse,Michelle} Yes X X X
t8 wiki/Barack_Obama {Obama,administered by,John G. Roberts} No X X X X
t9 wiki/Barack_Obama {Obama,surgical operation,05/01/2011} No X X X X
t10 wiki/Barack_Obama {Obama,profession,community organizer} Yes X X X X

(a) Data extracted by five different extractors from the Wikipedia page for Barack Obama. The X symbols indicate which extraction systems
produce each knowledge triple; for example, t3 is extracted by S3, but not by any other extractor.

Precision Recall
S1 0.57 0.67
S2 0.43 0.5
S3 0.8 0.67
S4 0.67 0.67
S5 0.67 0.67

Joint prec Joint rec
S2S3 0.67 0.33
S1S3 1 0.33

S1S2S4 0.33 0.167
S1S4S5 0.6 0.5

(b) Precision and recall for each extractor, and joint precision and joint
recall for some combinations of extractors.

Precision Recall F-measure
Union-25 0.56 0.83 0.67
Union-50 0.71 0.83 0.77
Union-75 0.6 0.5 0.55

(c) Naïve fusion approaches based on voting do not achieve very
good results, as they do not account for correlations among the
extractors.

Figure 1: Example 1.1: (a) knowledge triples derived by 5 extractors, (b) extractor quality and correlations, (c) voting results.

ple truths for certain “facts”, such as someone may have multiple
professions (e.g., triples t1, t3, and t10 in Figure 1 are all correct).

In this paper, we address the problem of finding truths among
data provided by multiple sources, which may contain complex
correlations. We make the following contributions.
• We propose measuring the quality of a source as its precision and

recall and measuring the correlation between a subset of sources
as their joint precision and joint recall. We express them in terms
of conditional probability (Section 2).
• We present a novel technique that derives the probability of a

triple being true from the precision and recall of the sources using
Bayesian analysis under the independence assumption (Section 3).
Our experiments show that even before incorporating correlations,
our basic approach often outperforms existing state-of-the-art
techniques.
• We extend our approach to handle correlations between the sources.

We first present an exact solution that is exponential in the number
of data sources. We then present two approximation schemes: the
aggressive approximation reduces the computational complex-
ity from exponential to linear, but sacrifices the accuracy of the
predictions; our elastic approximation provides a mechanism to
trade efficiency for accuracy (Section 4).
• We conduct a comprehensive evaluation of our techniques against

three real-world data sets, as well as synthetic data. Our experi-
ments show that our methods can significantly improve the results
by considering correlation without adding too much overhead for
efficiency (Section 5).

2. THE FUSION PROBLEM
In this section, we introduce our data model and its semantics,

we provide a formal definition of the problem of fusing data from
sources with unknown correlations, and we present a high-level
overview of our approach. We summarize notations in Figure 2.

2.1 Data model
We consider a set of data sources S = {S1, . . . , Sn}. Each

source provides some data and we call each unit of data a triple;
a triple can be considered as a cell in a database table in the form
of {row-entity, column-attribute, value} (e.g., in a table about politi-

cians, a row can represent Obama, a column can represent attribute
profession, and the corresponding cell can have value president),
or an RDF triple in the form of {subject, predicate, object}, such
as {Obama, profession, president}. We denote with Oi the triples
provided by source Si ∈ S; interchangeably, we denote with Si |= t
or t ∈ Oi that Si provides triple t. Our data model consists
of S = {S1, . . . , Sn} and the collections of their output triples
O = {O1, . . . , On}. In a slight abuse of notation, we write t ∈ O
to denote that ∃Oi ∈ O such that t ∈ Oi. We use Ot to represent
the subset of outputs in O that involve triple t; note that Ot con-
tains the observation that a source Si does not provide t only if Si
provides other data in the domain of t, so we do not unnecessarily
penalize data missing from irrelevant sources.

We consider deterministic sources: a source either outputs a triple,
or it does not. In practice, a source Si ∈ S may provide a confidence
score associated with each triple t ∈ Oi; we can consider that Si
outputs t if the assigned confidence score exceeds a certain threshold.
As in previous work [6, 25], we assume that schema mapping and
reference reconciliation have been applied so we can compare the
triples across sources.

Our goal is to purge the output of all incorrect triples to obtain
a high-quality data set R = {t : t ∈ O ∧ t is true}. We say
that a triple t is true if it is consistent with the real world, and
false otherwise; for example, {Obama, profession, president} is true
whereas {Obama, died, 1982} is false. We next show an instantiation
of our data model for the data extraction scenario.

EXAMPLE 2.1. Figure 1 shows triples extracted by five extrac-
tors from the Wikipedia page for Barack Obama and we need to
determine which triples are correctly extracted. We consider that
each extractor corresponds to a source; for example, S1 corre-
sponds to the first extractor and it provides (among others) triple
t1 : {Obama, profession, president}. We denote this as S1 |= t1,
meaning that the extractor believes that t1 is a fact that appears on
the Wikipedia page. Accordingly, O1 = {t1, t2, t6, t7, t8, t9, t10}.

Based on S and O, we decide whether each triple ti is true
(i ∈ [1, 10]). In this scenario, the extractor input (the processed web
page) represents the “real world”, against which we evaluate the
correctness of the extractor outputs. We consider a triple to be true
(i.e., correctly extracted) if the web page indeed provides the triple.



Semantics: In this paper, we make two assumptions about seman-
tics of the data: First, we assume triple independence: the truth-
fulness of each triple is independent of that of other triples. For
example, whether the page indeed provides triple t1 is independent
of whether the page provides triple t2. Second, we assume open-
world semantics: a source considers any triple in its output as true,
and any triple not in its output as unknown (rather than false). For
example, in Figure 1, S1 provides t1 and t2 but not t3, meaning
that it considers t1 and t2 as being provided by the page, but does
not know whether t3 is also provided. Note that this is in contrast
with the conflicting-triple, closed-world semantics in [6]; under
this semantics, {Obama, religion, Christian} and {Obama, religion,
Muslim} would be considered conflicting with each other, as we
typically assume one can have at most one religion and a source
claiming the former implicitly claims that the latter is false.

We make these assumptions for two reasons. The first reason
is that they are suitable for many application scenarios. One ap-
plication scenario is data extraction, as shown in our motivating
example: when an extractor derives two different triples from a Web
page (often from different sentences or phrases), the correctness
of the two extractions are independent; if an extractor does not de-
rive a triple from a Web page, it usually indicates that the extractor
does not know whether the page provides the triple, rather than
that it believes that the page does not provide the triple. Another
scenario is attributes that can accept multiple truths. For example,
a person can have multiple professions: the correctness of each
profession is largely independent of other professions1, and a source
that claims that Obama is a president does not necessarily claim
that Obama cannot be a lawyer. The second reason is that, to the
best of our knowledge, all previous work that studies correlation
of sources focuses on the conflicting-triple, closed-world seman-
tics; the independent-triple, open-world semantics allows us to fill
the gap in the existing literature. Note that we can apply strate-
gies for conflicting-triple and closed-world semantics in the case
of independent-triple and closed-world semantics, or in the case of
conflicting-triple and open-world semantics. We leave combination
of all semantics for future work.

2.2 Measuring truthfulness
The objective of our framework is to distinguish true and false

triples in a collection of source outputs. A key feature of our ap-
proach is that it does not assume any knowledge of the inner work-
ings of the sources and how they derive the data that they provide.
First, this is indeed the case in practice for many real-world data
sources — they provide the data without telling us how they obtain it.
Second, even when some information on the data derivation process
is available, it may be too complex to reason about; for example,
an extractor often learns thousands (or even more) of patterns (e.g.,
distance supervision [18]) and uses internal coding to present them;
it is hard to understand all of them, let alone to reason about them
and compare them across sources.

Next, we show which key evidence we consider in our approach
and then formally define our problem.

Source quality
The quality of the sources affects our belief of the truthfulness of a
triple. Intuitively, if a source S has high precision (i.e., most of its
provided triples are true), then a triple provided by S is more likely
to be true. On the other hand, if S has a high recall (i.e., most of the

1Arguably, it is unlikely for a person to be a doctor, a lawyer, and a plumber
at the same time as they require very different skills; we leave such joint
reasoning with a priori knowledge for future work.

Notation Description
S Set of sources S = {S1, . . . , Sn}
Oi Set of output triples of source Si
O O = {O1, . . . , On}
Ot Subset of observations inO that refer to triple t
pi (resp. pS∗ ) Precision of source Si (resp. sources S∗)
ri (resp. rS∗ ) Recall of source Si (resp. sources S∗)
qi (resp. qS∗ ) False positive rate of Si (resp. S∗)
Si |= t Si outputs t (t ∈ Oi)
S∗ |= t ∀Si ∈ S∗, Si |= t
Pr (t | O) Correctness probability of triple t
Pr(t), Pr(¬t) Pr(t = true) and Pr(t = false) respectively

Figure 2: Summary of notations used in the paper.

true triples are provided by S), then a triple not provided by S is
more likely to be false.

We define precision and recall in the standard way: the precision
pi of source Si ∈ S represents the portion of triples in the output
Oi that are true; the recall ri of Si represents the portion of all true
triples that appear in Oi. These metrics can be described in terms of
probabilities as follows.

pi = Pr (t | Si |= t) (1)
ri = Pr (Si |= t | t) (2)

EXAMPLE 2.2. Figure 1b shows the precision and recall of the
five sources. For example, the precision of S1 is 4

7
= 0.57, as only

4 out of the 7 triples in O1 are correct. The recall is 4
6
= 0.67, as 4

out of the 6 correct triples are included in O1.

The recall of a source should be calculated with respect to the
“scope” of its input. For example, if a source S provides only infor-
mation about Obama but not about Bush, we may penalize the recall
of S for providing only 1 out of the 3 professions of Obama, but
should not penalize the recall of S for not providing any profession
for Bush. For simplicity of presentation, in the rest of the paper we
ignore the “scope” of each source in our discussion, but all of our
techniques work with either version of recall calculation.

Correlation
Another key factor that can affect our belief of triple truthfulness
is the presence of correlations between data sources. Intuitively,
if we know that two sources Si and Sj are nearly duplicates of
each other, thus they are positively correlated, the fact that both
provide a triple t should not significantly increase our belief that t
is true. On the other hand, if we know two sources Si and Sj are
complementary and have little overlap, so are negatively correlated,
the fact that a triple t is provided by one but not the other should
not significantly reduce our belief that t is true. Note the difference
between correlation and copying [6]: copying can be one reason
for positive correlation, but positive correlation can be due to other
factors, such as using similar extraction patterns or implementing
similar algorithms to derive data, rather than copying.

We use joint precision and joint recall to capture correlation
between sources. The joint precision of sources in S∗, denoted by
pS∗ , represents the portion of triples in the output of all sources in
S∗ (i.e., intersection) that are correct; the joint recall of S∗, denoted
by rS∗ , represents the portion of all correct triples that are output
by all sources in S∗. If we denote by S∗ |= t that a triple t is
output by all sources in S∗, we can describe these metrics in terms
of probabilities as follows.

pS∗ = Pr (t | S∗ |= t) (3)
rS∗ = Pr (S∗ |= t | t) (4)



EXAMPLE 2.3. Figure 1b shows the joint precision and recall
for selected subsets of sources. Take the sources {S1, S4, S5} as
an example. They provide similar sets of triples: they all provide
t1, t6, t8, t9, and t10. Their joint precision is 3

5
= 0.6 and their

joint recall is 3
6
= 0.5. Note that if the sources were independent,

their joint recall would have been r1 · r4 · r5 = 0.3, much lower
than the real one (0.5); this indicates positive correlation.

On the other hand, S1 and S3 have little overlap in their data:
they both provide triples t7 and t10. Their joint precision is 2

2
= 1

and their joint recall is 2
6
= 0.33. Note that if the sources were

independent, their joint recall would have been r1 · r3 = 0.45,
higher than the real one (0.33); this indicates negative correlation.

We define positive and negative correlation formally in Section 4.

Problem definition
Our goal is to determine the truthfulness of each triple in O. We
model the truthfulness of t as the probability that t is true, given the
outputs of all sources; we denote this as Pr (t | O). We can accept a
triple t as true if this probability is above 0.5, meaning that t is more
likely to be true than to be false. As we assume the truthfulness of
each triple is independent, we can compute the probability for each
triple separately conditioned on the provided data regarding t; that
is, Ot. We frame our problem statement based on source quality
and correlation. For now we assume the source quality metrics
and correlation factors are given as input; we discuss techniques to
derive them shortly. We formally define the problem as follows:

DEFINITION 2.4 (TRIPLE TRUTHFULNESS). Given (1) a set
of sources S = {S1, . . . , Sn}, (2) their outputsO = {O1, . . . , On},
and (3) the joint precision pS∗ and recall rS∗ of each subset of
sources S∗ ⊆ S, compute the probability for each output triple
t ∈ O, denoted by Pr (t | Ot).

Note that given a set S of n sources, there is a total of 2(2n −
1) joint precision and recall parameters. Since the input size is
exponential in the number of sources, even a polynomial algorithm
will be infeasible in practice. We show in Section 4 how we can
reduce the number of parameters we consider in our model and
solve the problem efficiently.

2.3 Overview
We start by studying the problem of triple probability computation

under the assumption that sources are, indeed, independent. We will
show that even in this case, there are challenges to overcome in order
to derive the probability. We then extend our methods to account for
correlations among sources. Here, we present an overview of some
high-level intuitions that we apply in each of these two settings.

Independent sources (Section 3)
Fusion of data from multiple sources is challenging because the
inner-workings of each source are not completely known. We
present a method that uses source quality metrics (precision and
recall) to derive the probability that a source provides a particular
triple, and applies Bayesian analysis to compute the truthfulness of
each triple. We describe how to derive the quality metrics if those are
unknown. With this model, we are able to improve the F-measure
to .86 (precision=.75, recall=1) for the motivating example.

Correlated sources (Section 4)
Sources are often correlated: they may copy data from each other,
employ similar techniques in deriving the data, or analyze comple-
mentary portions of the raw data sets. Correlations can be positive
or negative, and are generally unknown. We address two main
challenges in the case of correlated sources.

• Using correlations: We start by assuming that we know concrete
correlations between sources. We will see that the main insight
into revising the probability of triples is to determine how likely
it is for a particular triple to have appeared in the output of a
given subset of sources but not in the output of any other source.
Further, we use the inclusion-exclusion principle to express the
correctness probability of a triple using the joint precision and
joint recall of subsets of sources.

• Exponential complexity: The number of correlation parameters
is exponential in the number of sources, which can make our
computation infeasible. To counter this problem, we develop two
approximation methods: our aggressive approximation reduces
the computation from exponential to linear, but sacrifices accu-
racy; our elastic approximation provides a mechanism to trade
efficiency for accuracy and improve the quality of our approxima-
tion incrementally.

Considering correlations, we can further improve the F-measure to
0.91 (precision=1, recall=0.83) for our motivating example, which
is 18% higher than Union-50 (i.e., majority voting).

3. FUSING INDEPENDENT SOURCES
In this section, we start with the assumption that the sources are

independent. Our goal is to estimate the probability that an output
triple t is true given the observed data: Pr (t | Ot). We describe a
novel technique to derive this probability based on the quality of
each source (Sec. 3.1). Since these quality metrics are not always
known in advance, we also describe how to derive them if we are
given the ground truth on a subset of the extracted data (Sec. 3.2).

3.1 Estimating triple probability
Given a collection of output triples for each source Oi, our ob-

jective is to compute, for each t ∈ O, the probability that t is
true, Pr (t | O), based on the quality of each source. Due to the
independent-triple assumption, Pr (t | O) = Pr (t | Ot).

We use Bayes’ rule to express Pr (t | Ot) based on the inverse
probabilities Pr (Ot | t) and Pr (Ot | ¬t), which represent the prob-
ability of deriving the observed output data conditioned on t being
true or false respectively. In addition, we denote the a priori proba-
bility that t is true with Pr(t) = α.

Pr (t | Ot) =
αPr (Ot | t)

αPr (Ot | t) + (1− α) Pr (Ot | ¬t)
(5)

The denominator in the above expression is equal to Pr(Ot). The a-
priori probability α can be derived from a training set (i.e., a subset
of the triples with known ground truth values, see Section 3.2).

We denote by St the set of sources that provide t, and by St̄ the
set of sources that do not provide t. Assuming that the sources are
independent, the probabilities Pr (Ot | t) and Pr (Ot | ¬t) can then
be expressed using the true positive rate, also known as sensitivity
or recall, and the false positive rate, also known as the complement
of specificity, of each source as follows:

Pr (Ot | t) =
∏
Si∈St

Pr (Si |= t | t)
∏
Si∈St̄

(1−Pr (Si |= t | t)) (6)

Pr (Ot |¬t)=
∏
Si∈St

Pr (Si |= t |¬t)
∏
Si∈St̄

(1−Pr (Si |= t |¬t)) (7)

From Eq. (2), we know ri = Pr (Si |= t | t). We denote the
false positive rate by qi = Pr (Si |= t | ¬t) and describe how we
derive it in Section 3.2. Applying these to Eq. (5), we obtain the
following theorem.



THEOREM 3.1 (INDEPENDENT SOURCES). Given a set of in-
dependent sources S = {S1, . . . , Sn}, the recall ri and the false
positive rate qi of each source Si, the correctness probability of an
output triple t is Pr (t | Ot) = 1

1+ 1−α
α
· 1
µ

, where

µ =
∏
Si∈St

ri
qi

∏
Si∈St̄

(
1− ri
1− qi

)
(8)

Intuitively, we compute the correctness probability based on the
(weighted) contributions of each source for each triple. Each source
Si has contribution ri

qi
for a triple that it provides, and contribution

1−ri
1−qi

for a triple that it does not provide. Given a triple t, we
multiply the corresponding contributions of all sources to derive µ,
and then compute the probability of the triple accordingly.

We say a source Si is good if it is more likely to provide a true
triple than a false triple; that is, Pr (Si |= t | t) > Pr (Si |= t | ¬t)
(i.e., ri > qi). Thus, a good source has a positive contribution for a
provided triple — once it provides a triple, the triple is more likely
to be true; otherwise, the triple is more likely to be false.

PROPOSITION 3.2. Let S ′ = S ∪ {S′} and O′ = O ∪ {O′}.
• If S′ is a good source:

– If S′ |= t, then Pr (t | O′t) > Pr (t | Ot).
– If S′ 6|= t, then Pr (t | O′t) < Pr (t | Ot).

• If S′ is a bad source:

– If S′ |= t, then Pr (t | O′t) < Pr (t | Ot).
– If S′ 6|= t, then Pr (t | O′t) > Pr (t | Ot).

EXAMPLE 3.3. We apply Theorem 3.1 to derive the probability
of t2, which is provided by S1 and S2 but not by S3, S4, or S5:

µ =
r1

q1
· r2

q2
· 1− r3

1− q3
· 1− r4

1− q4
· 1− r5

1− q5
Suppose we know that q1 = 0.5, q2 = 0.67, q3 = 0.167, and
q4 = q5 = 0.33, and we know the recall as shown in Figure 1b.
Then we compute µ = 0.1. With α = 0.5, Theorem 3.1 gives
Pr (t2 | Ot2) = 0.09, so we correctly determine that t2 is false.

However, assuming independence can lead to wrong results: t8 is
provided by {S1, S2, S4, S5}, but not by S3. Using Eq. (8) produces
µ = 1.6 and Pr (t8 | Ot8) = 0.62, but t8 is in reality false.

3.2 Estimating source quality
Theorem 3.1 uses the recall and false positive rate of each source

to derive the correctness probability. We next describe how we
compute them from a set of training data, where we know the
truthfulness of each triple. Existing work [9] also relies on training
data to compute source quality, while crowdsourcing platforms,
such as Amazon Mechanical Turk, greatly facilitate the labeling
process [17].

Computing the recall (ri) relies on knowledge of the set of true
triples, which is typically unknown a priori. Since we only need
to decide truthfulness for each provided triple, we use the set of
true triples that are provided by at least one source in the training
data. Then, for each source Si, i ∈ [1, n], we count the number
of true triples it provides and compute its recall according to the
definition. In our motivating example (Figure 1), there are 6 true
triples extracted by at least one extractor; accordingly, the recall of
S1 is 4

6
= 0.67 since it provides 4 true triples.

However, we cannot compute the false positive rate (qi) in a
similar way by considering only false triples in the training data. We
next illustrate the problem using an example.

EXAMPLE 3.4. Consider deriving the quality of S1 from the
training set {t1, . . . , t10}. Since the sources are all reasonably
good, only 4 out of 10 triples are false. If we compute q1 directly
from the data, we have q1 = 3

4
= 0.75. Since q1 > r1 = 0.67, we

would (wrongly) consider S1 as a bad source.
Now suppose there is an additional source S0 that provides 10

false triples t11 − t20 and we include it in the training data. We
would then compute q1 = 3

14
= 0.21; suddenly, S1 becomes a good

source and much more trustable than it really is.

To address this issue, we next describe a way that derives the
false positive rate from the precision and recall of a source. The
advantage of this approach is that the precision of a source can
be easily computed according to the training data and would not
be affected by the quality of other sources. Using Bayes’ Rule on
Pr (t | Si |= t) we obtain a formula similar to Eq. (5), and then we
apply the conditional probability expressions for pi, ri, and qi:

Pr (t | Si |= t) =
αPr (Si |= t | t)

αPr (Si |= t | t) + (1− α) Pr (Si |= t | ¬t)
(1)(2)
===⇒ pi =

αri
αri + (1− α)qi

=⇒ qi =
α

1− α ·
1− pi
pi

· ri

For our example, we would compute the precision of S as 4
7
=

0.57. Assuming α = 0.5, we can derive q1 = 0.5
1−0.5

· 1−0.57
0.57

·
0.67 = 0.5, implying that S1 is a borderline source, with fairly low
quality (recall that r1 = 0.67 > 0.5). Note that for qi to be valid, it
needs to fall in the range of [0, 1]. The next theorem formally states
the derivation and gives the condition for it to be valid.

THEOREM 3.5. Let Si, i ∈ [1, n], be a source with precision pi
and recall ri.
• If α ≤ pi

pi+ri−piri
, we have qi = α

1−α ·
1−pi
pi
· ri

• If pi > α, Si is a good source (i.e., qi < ri).

Finally, we show in the next proposition that a triple provided by
a high-precision source is more likely to be true, whereas a triple
not provided by a good, high-recall source is more likely to be false,
which is consistent with our intuitions.

PROPOSITION 3.6. Let S ′ = S ∪ {S′} and O′ = O ∪ {O′}.
Let S ′′ = S ∪ {S′′} and O′′ = O ∪ {O′′}. The following hold.
• If rS′ = rS′′ , pS′ > pS′′ , and S′ |= t and S′′ |= t, then

Pr (t | O′t) > Pr (t | O′′t ).
• If pS′ = pS′′> α, rS′ > rS′′ , and S′ 6|= t and S′′ 6|= t, then

Pr (t | O′t) < Pr (t | O′′t ).

Comparison with LTM [25]
The closest work to our independent model is the Latent Truth Model
(LTM) [25]; it treats source quality and triple correctness as latent
variables and constructs a graphical model, and performs inference
using Gibbs sampling. LTM is similar to our approach in that (1) it
also assumes triple independence and open-world semantics, and (2)
its probability computation also relies on recall and false positive
rate of each source. However, there are three major differences.
First, it derives the correctness probability of a triple from the Beta
distribution of the recall and false positive rate of its providers;
our model applies Bayesian analysis to maximize the a posteriori
probability. Using the Beta distribution enforces assumptions
about the generative process of the data, and when this model does
not fit the actual dataset, LTM has a disadvantage against our non-
parametric approach. Second, it computes the recall and false
positive rate of a source as the Beta distribution of the percentage



of provided true triples and false triples; our model derives false
positive rate from precision and recall to avoid being biased by
very good sources or very bad sources. Third, it iteratively decides
truthfulness of the triples and quality of the sources; we derive
source quality from training data.

We compare LTM with our basic approach experimentally, show-
ing that we have comparable results in general and sometimes better
results; we also show that the correlation model we will present in
the next section obtains considerably better results than LTM, which
assumes independence of sources.

4. FUSING CORRELATED SOURCES
Theorems 3.1 and 3.5 summarize our approach for calculating

the probability of a triple based on the precision and recall of each
source. In this section, we extend the results to account for corre-
lations among sources. Before we proceed, we first show several
scenarios where considering correlation between sources can signif-
icantly improve the results.

EXAMPLE 4.1. Consider a set of n good sources S = {S1, . . . ,
Sn}. All sources in S have the same recall r and false positive rate
q, r > q. Given a triple t provided by all sources, Theorem 3.1
computes µindep = ( r

q
)n.

Scenario 1 (Source copying): Assume that all sources in S are
replicas. Ideally, we want to consider them as one source; indeed,
their joint recall is r and joint false positive rate is q. Thus, we
compute µcorr = r

q
< µindep, which results in a lower probability

for t; in other words, a false triple would not get a high probability
just because it is copied multiple times.
Scenario 2 (Sources overlapping on true triples): Assume that all
sources in S derive highly overlapping sets of true triples but each
source makes independent mistakes (e.g., extractors that use differ-
ent patterns to extract the same type of information). Accordingly,
their joint recall is close to r and their joint false positive rate is
qn. Thus, we compute µcorr ≈ r

qn
> µindep, which results in a

higher probability for t; in other words, we will have much higher
confidence for a triple provided by all sources.
Scenario 3 (Sources overlapping on false triples): Consider the
opposite case: all sources have a high overlap on false triples but
each source provides true triples independently (e.g., extractors that
make the same kind of mistakes). In this case, the joint recall is
rn and the joint false positive rate is close to q. Thus, we compute
µcorr ≈ rn

q
< µindep, which results in a lower probability for t;

in other words, considering correlations results in a much lower
confidence for a common mistake.
Scenario 4 (Complementary sources): Assume that all sources are
nearly complementary: their overlapping triples are rare but highly
trustable (e.g., three extractors respectively focus on info-boxes,
texts, and tables that appear on a Wikipedia page). Accordingly, the
sources have low joint recall but very high joint precision; assume
their joint recall is r′ � r, and their joint false positive rate is q′,
which is close to 0. Then, we compute µcorr = r′

q′ ≈ ∞; in other
words, we highly trust the triples provided by all sources.

Under the same scenario, consider a triple t′ provided by only one
source S ∈ S . Considering the negative correlation, the probability
that a triple is provided only by S is r for true triples and q for
false triples; thus, µ′corr = r

q
> r

q
· ( 1−r

1−q )
n−1 = µ′indep, which

results in higher probability for t′. In other words, considering the
negative correlation, the correctness probability of a triple won’t be
penalized if only a single source provides the triple.

These scenarios exemplify the differences of our work and copy
detection in [5]. Copy detection can handle scenario 1 appropriately;

in scenarios 2 and 3 it may incorrectly conclude with copying and
compute lower probability for true triples; it cannot handle anti-
correlation in Scenario 4.

We first present an exact solution, described by Theorem 4.2.
However, exact computation is not feasible for problems involving
a large number of sources, as the number of terms in the compu-
tation formula grows exponentially. In Section 4.2, we present an
aggressive approximation, which can be computed in linear time
by enforcing several assumptions, but may have low accuracy. Our
elastic approximation (Section 4.3) relaxes the assumptions gradu-
ally, and can achieve both good efficiency and good results. Note
that we can compute joint precision and joint recall, and derive joint
false positive rate exactly the same way as we compute them for a
single source (Section 3.2).

4.1 Exact solution
Recall that Eq. (6) and (7) compute Pr (Ot | t) and Pr (Ot | ¬t)

by assuming independence between the sources. Now, we show
how to compute them in the presence of correlations. Using St to
represent the set of sources that provide t, and St̄ to represent the
set of sources that do not provide t, we can express Pr (Ot | t) as:

Pr (Ot | t) = Pr

( ∧
S∈St

S |= t

)
∧

 ∧
S′∈St̄

S′ 6|= t

 ∣∣∣∣ t
 (9)

We apply the inclusion-exclusion principle to rewrite the formula
using the joint recall of the sources:

Pr (Ot | t) =
∑
S∗⊆St̄

(−1)|S
∗| Pr ({St ∪ S∗} |= t | t)

=
∑
S∗⊆St̄

(−1)|S
∗| rSt∪S∗ (10)

Note that when the sources are independent, Eq. (10) computes
exactly

∏
Si∈St ri

∏
Si∈St̄

(1− ri), which is equivalent to Eq. (6).
We compute Pr (O | ¬t) in a similar way, using the joint false posi-
tive rate of the sources, which can be derived from joint precision
and joint recall as we described in Theorem 3.5:

Pr (Ot | ¬t) =
∑
S∗⊆St̄

(−1)|S
∗| qSt∪S∗ (11)

Theorem 4.2 extends Theorem 3.1 for the case of correlated
sources.

THEOREM 4.2. Given a set of sources S = {S1, . . . , Sn}, the
joint recall and joint false positive rate for each subset of the sources,
the probability of a triple t is Pr (t | O) = 1

1+ 1−α
α
· 1
µ

, where

µ =
Pr (Ot | t)
Pr (Ot | ¬t)

(12)

and Pr (Ot | t), Pr (Ot | ¬t) are computed by Eq. (10) and (11).

COROLLARY 4.3. Given a set S = {S1, . . . , Sn}, where all
sources are independent, the correctness probabilities computed
using Theorems 3.1 and 4.2 are equal.

EXAMPLE 4.4. Triple t8 of Figure 1a is provided by St8 =
{S1, S2, S4, S5}. We use notations r{S1,S2,S4,S5} and r1245 inter-
changeably. We can compute joint recall for a set of sources as we
do for a single source (Section 3.2), but here we assume that all the
joint recall and joint false positive rate parameters are given.



S1 S2 S3 S4 S5

C+ 0.11
0.67∗0.167

= 1 1 0.75 1.5 1.5
C− 0.037

0.5∗0.037
= 2 1 1 3 3

Figure 3: Correlation parameters of the aggressive approxima-
tion computed for each source of Figure 1a.

We compute Pr (Ot | t8) and Pr (Ot | ¬t8), according to Eq. (10):

Pr (Ot8 | t8) =r1245 − r12345 = 0.22− 0.11 = 0.11

Pr (Ot8 | ¬t8) =q1245 − q12345 = 0.22− 0.037 = 0.185

Assuming a-priori probability α = 0.5, we derive Pr (t8 | O) =
1

1+ 0.185
0.11

= 0.37. Note that although t8 is provided by four out of

the five sources, S1, S4, and S5 are correlated, which reduces their
contribution to the correctness probability of t8. Using correlations
allows us to correctly classify t8 as false, whereas the independence
assumption leads to the wrong result, as shown in Example 3.3.

Even though accounting for correlations can significantly improve
accuracy, it increases the computational cost. The computation
of Pr (Ot | t) and Pr (Ot | ¬t) is exponential in the number of
sources that do not provide t, thus impractical when we have a large
number of sources. We next describe two ways to approximate
Pr (Ot | t) and Pr (Ot | ¬t).

4.2 Aggressive approximation
In this section, we present a linear approximation that reduces

the total number of terms in the computation by enforcing a set of
assumptions. We first present the main result for the approximation
in Definition 4.5, and we show how we derive it later.

DEFINITION 4.5 (AGGRESSIVE APPROXIMATION). Given a
set of sources S = {S1, . . . , Sn}, the recall ri and false positive
rate qi of each source Si, and the joint recall and joint false positive
rate for sets S and S − Si, the aggressive approximation of the
probability Pr (t | Ot) is defined as: 1

1+ 1−α
α
· 1
µaggr

, where

µaggr =
∏
Si∈St

C+
i ri

C−i qi

∏
Si∈St̄

(
1− C+

i ri

1− C−i qi

)
(13)

C+
i =

r1...n

ri · r12...(i−1)(i+1)...n

(14)

C−i =
q1...n

qi · q12...(i−1)(i+1)...n

(15)

Eq. (13) differs from (8) in that it replaces ri (resp. qi) with
C+
i ri (resp. C−i qi). Intuitively, C+

i and C−i represent the corre-
lation between Si and the rest of S, in the case of true and false
triples respectively. Eq. (13) weighs ri and qi by these “correlation”
parameters. When the sources are independent, C+

i = C−i = 1,
and the approximation obtains the same result as Theorem 3.1. In
contrast with Definition 2.4, aggressive approximation only uses
2n+ 1 instead of 2(2n − n− 1) correlation parameters.

COROLLARY 4.6. Given a set S = {S1, . . . , Sn}, where all
sources are independent, the correctness probabilities computed
using Theorem 3.1 and Definition 4.5 are the same.

EXAMPLE 4.7. Consider triple t8 in Figure 1a. Figure 3 shows
the correlation parameters for each source and illustrates how they
are computed for S1. These parameters indicate that S1, S4 and
S5 are positively correlated for false triples; for true triples, S3 is

anti-correlated with the rest of the sources, whereas S4 and S5 are
correlated. Accordingly, we compute µaggr as follows:

µaggr =
0.67 · 0.5 · (1− 0.75 · 0.67) · 1.5 · 0.67 · 1.5 · 0.67

2 · 0.5 · 0.67 · (1− 0.167) · 3 · 0.33 · 3 · 0.33 = 0.3

Thus, we compute Pr (t8 | O) = 1

1+ 1
µaggr

= 0.23, which is

lower than the exact computation in Example 4.4. Both approaches
correctly determine that t8 is false.

Obviously, the computation is linear in the number of sources.
Also, instead of having an exponential number of joint recall and
false positive rate values, we only need C+

i and C−i for each Si, i ∈
[1, n], which can be derived from a linear number of joint recall and
false positive rate values. However, as the following proposition
shows, this aggressive approach can produce bad results for special
cases with strong correlation (i.e., sources are replicas), or strong
anti-correlation (i.e., sources are complementary to each other).

PROPOSITION 4.8. If all sources in S provide the same data,
Definition 4.5 computes probability α for each provided triple.

If every pair of sources in S are complementary to each other.
Definition 4.5 does not compute a valid probability for any triple.

Next, we proceed to describe the three major steps that lead to
Definition 4.5.

I. Correlation factors
Accounting for correlations, the probability that a set S∗ of sources
all provide a true triple is rS∗ instead of

∏
Si∈S∗ ri (similarly for a

false triple). We define two correlation factors: CS∗ and C¬S∗ :

CS∗ =
Pr (S∗ |= t | t)

Prindep (S∗ |= t | t) =
rS∗∏
Si∈S∗

ri
(16)

C¬S∗ =
Pr (S∗ |= t | ¬t)

Prindep (S∗ |= t | ¬t) =
qS∗∏
Si∈S∗

qi
(17)

If the sources in S∗ are independent, then CS∗ = C¬S∗ = 1.
Deviation from independence may produce values greater than 1,
which imply positive correlations (e.g., for S4 and S5 in Figure 1a,
C45 = 0.67

0.67·0.67
= 1.5 > 1), or lower than 1, which imply negative

correlations, also known as anti-correlations (e.g., for S1, S3 in
Figure 1a, C13 = 0.33

0.67·0.67
= 0.75 < 1).

Using separate parameters for true triples and false triples allows
for a richer representation of correlations. In fact, two sources may
be correlated differently for true and false triples. For example,
sources S2 and S3 in Figure 1a are independent with respect to true
triples (C23 = 1), and negatively correlated with respect to false
triples (C¬23 = 0.5 < 1).

Using correlation factors, Pr (O | t8) in our running example can
be rewritten as follows:

Pr (Ot8 | t8) =C1245r1r2r4r5 − C12345r1r2r3r4r5

II. Assumptions on correlation factors
To transform the equations with correlation factors into a simpler
form, we make partial independence assumptions. Before we for-
mally state the assumptions, we first illustrate it using an example.

EXAMPLE 4.9. Consider sources S = {S1 . . . S5} and assume
S4 is independent of the set of sources {S1, S2, S3} and of sources
{S1, S2, S3, S5}. Then, we have r123 · r4 = r1234 and r12345 =
r1235 · r4. Thus, r123r12345 = r1234r1235. Using the definition of
the correlation factors, it follows that C123C12345 = C1234C1235.



Accordingly, we can rewrite the correlation factors; for example
C123 = C1234C1235

C12345
, and similarly, C23 = C1234C1235C2345

(C12345)2
. Com-

bining Eqs (14) and (16), the following equations hold: C+
1 =

C12345
C2345

, C+
4 = C12345

C1235
, C+

5 = C12345
C1234

. Using these, we can
rewrite the following correlation factors: C123 = C12345

C+
4 C

+
5

and

C23 = C12345

C+
1 C

+
4 C

+
5

.

According to Eqs.(14–17), we can compute C+
i = CS

CS\{Si}
and

C−i =
C¬S

C¬S\{Si}
. As illustrated in Example 4.9, partial independence

assumptions lead to the following equations:

CS∗ =
CS∏

Si∈S\S∗ C
+
i

and C¬S∗ =
C¬S∏

Si∈S\S∗ C
−
i

(18)

As a special form, when S∗ = ∅, we have CS∗ = C¬S∗ = 1, so,

CS =
∏
Si∈S

C+
i and C¬S =

∏
Si∈S

C−i (19)

Under these assumptions, Pr (O | t8) in our running example can
be rewritten as follows:

Pr (Ot8 | t8) =
C12345

C+
3

r1r2r4r5 − C12345r1r2r3r4r5

III. Transformation
We are ready to transform the equation into a simpler form, which
is the same as the one in Definition 4.5. We continue illustrating the
main intuition with our running example:

Pr (Ot8 | t8) =
C12345

C+
3

r1r2r4r5(1− C+
3 r3)

(19)
==

C+
1 C

+
2 C

+
3 C

+
4 C

+
5

C+
3

r1r2r4r5(1− C+
3 r3)

=(C+
1 r1)(C

+
2 r2)(1− C+

3 r3)(C
+
4 r4)(C

+
5 r5) (20)

4.3 Elastic approximation
So far we have presented two solutions: the exact solution gives

precise probabilities but is computationally expensive; the aggres-
sive approximation enforces partial independence assumptions re-
sulting in linear complexity, but in the worst case can compute
probabilities independent of the quality of the sources. In this sec-
tion, we present an elastic approximation algorithm that makes a
tradeoff between efficiency and quality.

The key idea of the elastic approximation is to use the linear
approximation as a starting point and gradually adjust the results
by relaxing the assumptions in every step. We call the algorithm
“elastic” because it can be configured to iterate over different levels
of adjustments, depending on the desired level of approximation.
We illustrate this idea with our running example.

EXAMPLE 4.10. Triple t8 is provided by four sources St8 =
{S1, S2, S4, S5} (Figure 1a). We will adjust the linear approxi-
mation of Pr (Ot8 | t8) from Eq. (20), by adding specific terms
at every level. We refer to the degree of a term in the aggres-
sive approximation, as the number of recall (or false positive rate)
parameters associated with that term. The aggressive approxi-
mation for Pr (Ot8 | t8) contains two terms of degrees 4 and 5:
C+

1 C
+
2 C

+
4 C

+
5 r1r2r4r5 and C+

1 C
+
2 C

+
3 C

+
4 C

+
5 r1r2r3r4r5 respec-

tively (directly derived from Eq. (20)).
Elastic approximation makes corrections to the aggressive ap-

proximation based on terms of a given degree at every level. At

Algorithm 1 ELASTIC (Elastic approximation)

1: R← rSt
∏
Si∈St̄

(1− C+
i ri);

2: Q← qSt
∏
Si∈St̄

(1− C−i qi);

3: for l = 1→ λ do . λ ≥ 1 is the desired adjustment level
4: for all subsets S∗ ⊆ St̄ of size l do
5: Sl ← {St ∪ S∗};
6: R← R+ (−1)l(CSl − CSt

∏
Si∈S∗ C

+
i )

∏
Si∈Sl ri;

7: Q← Q+ (−1)l(C¬Sl − C
¬
St

∏
Si∈S∗ C

−
i )

∏
Si∈Sl qi;

8: return R
Q

;

level-0 we consider the terms with degree of |St8 | + 0 = 4, i.e.,
the term C+

1 C
+
2 C

+
4 C

+
5 r1r2r4r5; the exact coefficient of the term

is C1245 but we approximated it to C+
1 C

+
2 C

+
4 C

+
5 based on the as-

sumption thatC1245 = C12345

C+
3

= C+
1 C

+
2 C

+
4 C

+
5 . To remove the as-

sumption, we need to replace (C+
1 r1)(C

+
2 r2)(C

+
4 r4)(C

+
5 r5) with

C1245r1r2r4r5 = r1245. Since r1245 = q1245 = 0.22, we have

µ =
0.22

0.22
· 1− 0.75 · 0.67

1− 0.167
= 0.6

Note that the level-0 adjustment affects not only terms with degree
4, but actually all terms as we show next.

At level-1, we consider the terms with degree of |St8 | + 1 = 5.
After level-0 adjustment, the 5-degree term is C1245C

+
3 r1r2r3r4r5.

We will replace C1245C
+
3 with the exact coefficient C12345, which

will now give us the exact solution.
In summary, the µaggr parameter calculated by the aggressive

approximation, the level-0 adjustment, and the level-1 adjustment
are 0.3, 0.6, and 0.59 respectively. Note that, as is the case in this
example, we don’t need to compute all the levels; stopping after a
constant number of levels can get close to the exact solution.

Our ELASTIC algorithm (Algorithm 1) contains the pseudo code
of our elastic approximation. Lines 1–2 compute the initial values
of the numerator R and denominator Q for µ. Note that they have
already applied the level-0 adjustment. Then for each level l from
1 up to the required level λ (line 3), we consider each term with
degree |St|+ l (lines 4–5), and make up the difference between the
exact coefficient and the approximate coefficient (lines 6–7). Finally,
line 8 returns R

Q
as the value of µ.

PROPOSITION 4.11. Given a set of n sources, a set of m triples
for probability computation, and an approximation level λ, ELAS-
TIC takes times O(m · nλ) and the number of required correlation
parameters is in O(m · nλ).

5. EVALUATION
This section describes a thorough evaluation of our models on

three real-world datasets as well as synthetic data. Our experimental
results show that (1) considering correlations between sources can
significantly improve fusion results; (2) our elastic approximation
can effectively estimate triple probability with much shorter execu-
tion time; and (3) even in presence of only independent sources, our
model can outperform state-of-the-art data fusion approaches.

Datasets
We first describe the real-world datasets we used in our experiments;
we describe our synthetic data generation in Section 5.2.
REVERB: The ReVerb ClueWeb Extraction dataset [11] samples
500 sentences from the Web using Yahoo’s random link service and



uses 6 extractors to extract triples from these sentences. The gold
standard contains 2407 extracted triples (616 true and 1791 false).
RESTAURANT: The restaurant dataset from [17] consists of triples on
the location of a collection of 1000 restaurants provided by 7 sources
(Yelp, Foursquare, OpenTable, MechanicalTurk, YellowPages, City-
Search, MenuPages). The gold standard contains 93 triples (68 true
and 25 false), selected by majority vote over 10 Mechanical Turk
responses.
BOOK: The book dataset from [6] was collected by crawling abe-
books.com. The dataset consists of 5900 unique book-author triples
from 879 seller sources. The gold standard consists of 225 randomly
sampled books for which the authors are manually identified from
book covers; 482 authors are correctly provided for these books and
935 authors are wrongly provided. Note that our version of this
dataset has more noise than the one used in [25], resulting in a more
challenging setting.
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We observe that these datasets
display varied characteristics:
the sources in RESTAURANT all
have high precision, and most
have high recall; the sources in
REVERB have fairly low preci-
sion and recall; the sources in
BOOK have large variations in
precision, and most of them have
low recall. Such differences al-
low us to evaluate our models in
a variety of scenarios.

Comparisons
We compared our models with several state-of-the-art techniques
that apply to the independent-triple and open-world semantics.
UNION-K: Considers a triple to be true if at leastK% of the sources
provide it. Union-50 is equivalent to majority voting.
3-ESTIMATE [13]: Iteratively computes trustworthiness of sources,
trustworthiness of triples, and truthfulness of triples. This is the best
model among the three proposed in [13], and we observed similar
results from the other two models on our datasets.
LTM [25]: Constructs a graphical model and uses Gibbs sampling
to determine source quality and truthfulness of each triple. We used
the default parameters suggested by [25].
PRECREC (Section 3): Computes truthfulness of each triple from the
precision and recall of each source. We set α = 0.5 and computed
source precision and recall according to the gold standard.
PRECRECCORR (Section 4): Extends PRECREC by considering corre-
lation between sources. By default we report the results for the exact
solution; however, as we show in Figure 5, we obtain similar results
using level-3 elastic approximation. We computed joint precision
and recall according to the gold standard. Note that BOOK is consid-
erably larger than the other two datasets, which poses challenges for
deriving the correlation parameters: (a) the number of correlation
parameters is very large, and (b) there may not be enough support
data to understand the correlation among the sources. We overcome
this issue using a simple clustering approach: we divide sources
into clusters based on their pairwise correlations, and assume that
sources across clusters are independent.

We used a C# implementation of LTM and we implemented the
other models in Java. For REVERB, RESTAURANT, and synthetic data,
we ran experiments on a Macbook Air with 4GB RAM, 1.7 GHz In-
tel Core i5 processor, and OSX Lion 10.7.5. The BOOK experiments
were run on a m1.large Amazon EC2 server instance [1].

Metrics
We present results according to three metrics.
Precision/Recall/F1: We measure the correctness of binary deci-
sions with three metrics. Precision measures among the returned
true triples, how many are indeed true; recall measures among the
provided true triples, how many are returned; F-measure computes
their harmonic mean (i.e., F1 = 2·prec·rec

prec+rec
).

PR-curve/ROC-curve: We rank the provided triples in decreasing
order of the computed truthfulness score (for UNION-K, we rank
in decreasing order of the number of providers). As we add the
triples gradually, PR-curve plots the precision versus the recall after
adding each triple and ROC-curve plots the true positive rate versus
the false positive rate. In addition, we compute the area under the
curve, called AUC-PR and AUC-ROC respectively. These curves and
measures allow us to examine whether the correctness probabilities
we compute are consistent with the reality.
Execution time: We report execution time for each method.

5.1 Real-World Data
We first compare the different models on the three real-world data

sets. Figure 4 reports the precision, recall, and F-measure of each
method on each dataset. We also plot the PR-curve and ROC-curve
of the methods on each data set. Note that the curves for UNION-K
of different K are the same so we plot only one; also note that the
results of 3-ESTIMATE are significantly worse than other methods,
so we did not plot its curves to avoid cluttering.

Overall, we observe that among different datasets, most of the
methods obtain higher quality results on RESTAURANT and BOOK,
but lower quality on REVERB. This is not surprising given that the
data sources in REVERB have fairly low precision and recall and
they extract a lot of wrong triples. PRECRECCORR obtains the best
results on all datasets: comparing with PRECREC, its F-measure is
5.2% higher on average, its AUC-PR is 10.3% higher on average,
and its AUC-ROC is 3.3% higher on average. We note that although
the improvement on F-measure is not that large, the improvement
for AUC-PR and AUC-ROC is significant; this is because with
consideration of correlations between the sources, we often compute
a much higher probability for a true triple and a lower probability
for a false triple, but this difference may be hindered when we apply
the threshold and make binary decisions.

Among the methods that assume independence between sources,
PRECREC obtains the best results: on average its F-measure is 14%
higher than LTM and 41% higher than 3-ESTIMATE. For LTM, its
F-measure is comparable to PRECREC on RESTAURANT and BOOK,
but much lower on REVERB because of a very low precision. Its
PR-curves and ROC-curves are not in a very good shape; indeed, its
AUC-PR is 24% lower than PRECREC and its AUC-ROC is 20.8%
lower on average. We observed that the probabilities it outputs typi-
cally fall in extreme ranges; for example, for most of the triples that
it considers as true on RESTAURANT, it computes a probability very
close to 1. 3-ESTIMATE obtains very low recall in all of the three
datasets; as a result, its F-measure is the lowest among all methods.

For UNION-K, increasing K increases the precision but drops the
recall. UNION-25 turns out to have the best F-measure, comparable
to PRECREC on each data set, but lower than PRECRECCORR. How-
ever, its PR-curves and ROC-curves are in slightly worse shapes
comparing with PRECREC; indeed, its AUC-PR and AUC-ROC is
lower than that of PRECREC by up to 4.5%. As we show later on
synthetic data, UNION-K is sensitive on source quality; for example,
even UNION-25 can obtain very low F-measure when the sources
have low precision or low recall.

Figure 5b shows the execution time of the different models.
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(a) Fusion results, and Precision-Recall and ROC curves for the REVERB data set.

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1

Union-25

Union-50

Union-75

 

3Estimate

LTM

PrecRec

PrecRecCorr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
P

re
c
is

io
n

Recall

PrecRec

PrecRecCorr

Union

LTM
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

PrecRec

PrecRecCorr

Union

LTM

(b) Fusion results, and Precision-Recall and ROC curves for the RESTAURANT data set.
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(c) Fusion results, and Precision-Recall and ROC curves for the BOOK data set.

Figure 4: Our experiments show that PRECREC and PRECRECCORR result in better fusion results compared to other approaches. In
the REVERB dataset both PRECREC and PRECRECCORR showed significant improvement in the F-measure compared to the state-of
the art (3-ESTIMATE, and LTM). In the RESTAURANT and BOOK datasets, LTM and UNION-25 are comparable to the results of PRECREC,
but the PR and ROC curves demonstrate that PRECRECCORR provides significantly better truthfulness estimates for triples.

UNION-K is very efficient, while 3-ESTIMATE and PRECREC are
the next most efficient, with runtimes up to one order of magnitude
longer than UNION. We terminated LTM after 10 iterations; each
iteration on average took 5.6 times longer than PRECREC. PRECREC-
CORR is one order of magnitude slower than PRECREC on average;
however, the level-3 elastic approximation obtained similar results
but finished in only half of the time. For our largest dataset (BOOK),
level-3 approximated the exact solution in 40 minutes; we con-
sider these runtimes reasonable, since this is an offline cleaning
process. Parallelization can significantly improve the efficiency of
PRECRECCORR, as the terms at different levels and across different
clusters can be computed independently. With maximum paralleliza-
tion PRECRECCORR terminates in 80 seconds, however a systematic
study of these improvements is outside the scope of this paper.

Elastic approximation: Figure 5 demonstrates the behavior of our
aggressive approximation and elastic approximation (Algorithm 1)
over the three datasets. We observe that the aggressive estimate is
much worse than the exact solution on REVERB and RESTAURANT,

while comparable on BOOK; it is even worse than PRECREC, which
does not consider correlation. Each line in the graph shows the
progression of the approximation from the aggressive estimate to the
exact computation. At every level, the elastic approximation refines
the probability estimates of the earlier levels to gradually approach
PRECRECCORR. Since the elastic approximation is heuristic in nature,
there is no guarantee that the method improves the estimate with
every level (e.g., on REVERB the elastic approximation performs
worse at level 2 than level 1). However, for all datasets, the elastic
approximation comes close to the exact result within a small number
of levels. We observe that on all three data sets, the result of level-3
approximation is already quite close to that of the exact solution,
whereas the execution time is much shorter.

Discovered correlations: To better understand the improvement
of PRECRECCORR over PRECREC, we examine in more detail the
discovered correlations between the sources.

REVERB has 6 sources. With respect to true triples, we detect
strong correlation on a group of 2 sources and on a group of 3
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time(sec) REVERB RESTAURANT BOOK

UNION-25 0.39 0.56 3.86
UNION-50 0.14 0.32 3.71
UNION-75 0.11 0.35 3.00
3-ESTIMATE 0.7 0.06 39
LTM (10 iter) 49 5.3 3791
PRECREC 2.6 0.3 35
PRECRECCORR 124 5.4 6786
PRECRECCORR-LVL3 79 2.25 2452

(b) Runtimes of algorithms (in seconds) for all datasets.

Figure 5: As expected, our elastic approximation gradually approaches the result of PRECRECCORR.

 0

 0.2

 0.4

 0.6

 0.8

 1

p=0.1
r=0.025

p=0.1
r=0.075

p=0.1
r=0.125

p=0.1
r=0.175

p=0.1
r=0.225

F
-m

e
a

s
u
re

Source quality

Majority
Union-25

Union-75
 

3Estimate
LTM

PrecRec
PrecRecCorr

(a) Low precision sources, with low to fair
recall, in a dataset of 25% true triples.
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(b) High precision sources, with increasing
recall, in a dataset of 50% true triples.
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(c) Low recall sources, with increasing pre-
cision, in a dataset of 25% true triples.

Figure 6: Experimental results on synthetic data with independent sources. Our techniques are particularly effective with sources of
low quality, and demonstrate significant gains in many configurations.

sources. With respect to false triples, 2 pairs of sources are strongly
correlated, and one source is strongly anti-correlated with every
other source. Of the 7 RESTAURANT sources, we detect strong corre-
lation on a group of 4 sources and fairly strong anti-correlation on a
pair of sources, with respect to true triples. For false triples, there is
strong correlation on a group of 6 sources. Finally, for BOOK, there
are 333 sources that provide triples in the gold standard. Recall that
we cluster the sources according to their correlation. In terms of true
triples, we obtain three clusters of size 22, 3, and 2. In terms of false
triples, we obtain four clusters of size 22, 3, 2, and 2. Interestingly,
except two sources between which we find strong correlation both
on true triples and on false triples, the clusters for true triples and
for false triples contain very different sources.

These observations indicate that our model of correlation is much
richer than what can be captured by pure copying relationships, as
in [6]. For our datasets, [6] applies only to BOOK dataset by consid-
ering the author list as a whole, but not the other datasets. In BOOK,
this approach achieves high precision of 0.97 as it successfully de-
tects copying and reduces the vote counts of false values. However,
it has a low recall of 0.82, since it also discounts vote counts on true
values and ignores other types of correlations. We leave an effective
combination of that approach and ours for future work.

5.2 Synthetic Data
We generated synthetic data to evaluate our algorithms under a

large range of scenarios; in this section we present interesting cases
that arise both in the case of independent sources, as well as in the
case of correlations.

Our first set of experiments compares the different models on

independent sources. We generated 5 sources providing data on
1000 triples according to a pre-configured precision and recall; we
averaged 10 repetitions and show the results in Figure 6. Our results
show that even without correlations, PRECREC provides significant
improvements over existing approaches, while PRECRECCORR has
similar performance. Figure 6a shows the performance of all the
algorithms against a dataset of low quality sources. LTM is quite
robust to variations in source quality, and performs well in this
challenging setting; however, it does not benefit much from increases
in source quality, and PRECREC quickly becomes better as recall
increases over 0.15. In Figures 6b and 6c, we vary recall and
precision respectively, while keeping the other constant. In both
cases, our techniques perform remarkably well in comparison to the
other algorithms. Note that UNION-25 is very sensitive to source
quality and performs badly with low-quality sources.

Our second set of experiments considers correlated sources. Fig-
ure 7 demonstrates two cases: (1) a set of four sources are positively
correlated on true triples, and (2) the sources are negatively corre-
lated on false triples. In both cases, PRECRECCORR demonstrates
significantly better performance than all the other approaches.

6. RELATED WORK
There has been extensive work in the area of data fusion (i.e.,

resolving conflicts and finding the truth); [4, 8] surveyed early ap-
proaches and [15] compared recent approaches on Deep Web data.
Among these approaches, [6, 14, 19, 20, 21, 23, 24] jointly infer truth
and source quality, but they assume the conflicting-triple, closed-
world semantics. COSINE and 3ESTIMATE [13] can be applied
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Figure 7: Experimental results on synthetic data with corre-
lated sources. PRECRECCORR obtains better results compared
to all other approaches.

under the independent-triple, open-world semantics. Instead of
using precision and recall of sources, it considers a single quality
metric–accuracy of a source; we compared with them in our experi-
ments (Section 5). The model closest to ours is LTM [25]; we have
made detailed comparisons in Section 3 and in experiments. All of
these approaches assume independence between sources.

Correlation between sources are studied in two bodies of works.
First, copy detection has been surveyed in [10] for various types
of data and studied in [3, 5, 6, 7, 16] for structured data. Our ap-
proach is different in three aspects. First, in addition to copying, we
consider broader scopes of correlations, including positive correla-
tions not caused by copying (e.g., extractors employing common
extraction patterns), and also negative correlations. Second, instead
of just discounting votes from copiers, we may boost contribu-
tions from providers correlated on true triples and reduce penalty
from non-providers anti-correlated on true triples. Third, we as-
sume independent-triple and open-world semantics, opposite to
their conflicting-triple, closed-world semantics. We have compared
with this approach in our experiments.

Second, there are other ways of measuring correlations. Qi
et al. [22] constructed a graphical model that clusters dependent
sources into groups and measures the quality of each group as a
whole (instead of each individual source). Kappa measure [12] mea-
sures correlation by taking into account the agreement by chance.
We measure correlations by the joint precision and recall for subsets
of sources. Our measures have much higher expressiveness in that
(1) they consider both positive and negative correlations; (2) they
distinguish correlation on true data and on false data; and (3) they
essentially consider correlation for every subset of sources.

7. CONTRIBUTIONS AND FUTURE WORK
In this paper we presented a novel technique for fusing data that

contains correlations, which uses Bayesian analysis to derive the
truthfulness of a fact based on the quality of sources that provide it.
We evaluated our approach against other state-of-the-art techniques,
and showed that our algorithms achieve significant improvements in
the fusion results. The power of our approach lies in its generality:
our algorithms do not need to have any knowledge of possible
correlations, and all required parameters can be computed from
a training set. As a result, PRECREC and PRECRECCORR perform
well even in low quality datasets that prove challenging for other
techniques.

There are still several interesting challenges in this problem. Our
model uses independent-triple, open-world semantics, which allows
our techniques to consider multiple truth values for an entity (e.g., a
person may have multiple professions). However, this assumption
may not always apply (e.g., a person only has a single birth date). We

consider modifications in our model to account for such scenarios
in future work. Another challenge is that source quality may vary,
based on the domain. For example, a source may have low overall
precision, but may be particularly accurate with respect to Pizzerias,
or restaurants in the Bay Area. In our model, we can consider
domains separately, but deriving the proper domain subdivisions
automatically is not straightforward.
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