
Robust Group Linkage

Pei Li
University of Zurich

peili@ifi.uzh.ch

Xin Luna Dong
Google Inc.

lunadong@google.com

Songtao Guo
LinkedIn

songtao.gg@gmail.com

Andrea Maurino
University of Milan-Bicocca

maurino@disco.unimib.it

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

ABSTRACT
We study the problem of group linkage: linking records that refer to
multiple entities in the same group. Applications for group linkage
include finding businesses in the same chain, finding social network
users from the same organization, and so on. Group linkage faces
new challenges compared to traditional entity resolution. First, al-
though different members in the same group can share some similar
global values of an attribute, they represent different entities so can
also have distinct local values for the same or different attributes,
requiring a high tolerance for value diversity. Second, we need to
be able to distinguish local values from erroneous values.

We present a robust two-stage algorithm: the first stage identi-
fies pivots–maximal sets of records that are very likely to belong to
the same group, while being robust to possible erroneous values;
the second stage collects strong evidence from the pivots and lever-
ages it for merging more records into the same group, while being
tolerant to differences in local values of an attribute. Experimental
results show the high effectiveness and efficiency of our algorithm
on various real-world data sets.

1. INTRODUCTION
Entity resolution aims at linking records that refer to the same

real-world entity and has been extensively studied in the literature
(surveyed in [6, 17]). In this paper we study a related but different
problem that we call group linkage: linking records that refer to
multiple entities in the same group.

One motivation for our work comes from the need to group the
millions of social network users (e.g., LinkedIn) by their organi-
zations, which improves matching and recommendation activities
in social networks. The organization information is often missing,
incomplete, or simply too heterogeneous to be recognized as the
same (e.g., “International Business Machines Corporation”, “IBM
Corp.”, “IBM”, “IBM-Almaden”, etc., all refer to the same orga-
nization). Contact phones, email addresses, and mailing addresses
of people all provide extra evidence for group linkage, but they can
also vary for different people even in the same organization.

We are also motivated by applications where we need to identify
business chains, multiple business entities that share a brand name

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
WWW 2015, May 18–22, 2015, Florence, Italy.
Copyright 2015 ACM 978-1-4503-3469-3/15/05 ...$15.00
http://dx.doi.org/10.1145/2736277.2741118.

Table 1: Identified top-5 US business chains. For each chain, we show
the number of stores, distinct business names, distinct phone numbers,
distinct URL domain names, and distinct categories.

Name #Store #Name #Phn #URL #Cat
SUBWAY 21,912 772 21,483 6 23

Bank of America 21,727 48 6,573 186 24
U-Haul 21,638 2,340 18,384 14 20

USPS - United State Post Office 19,225 12,345 5,761 282 22
McDonald’s 17,289 2401 16,607 568 47

and provide similar products and services (e.g., Walmart, McDon-
ald’s). With the advent of the Web and mobile devices, we are
observing a boom in local search: that is, searching local busi-
nesses under geographical constraints. Local search engines in-
clude Google Maps, Yahoo! Local, YellowPages, yelp, ezlocal, etc.
The knowledge of business chains can have a big economic value
to local search engines. However, business listings are rarely asso-
ciated with specific chains explicitly stated in real-world business-
listing collections. Sharing the same name, phone number, or URL
domain name can all serve as evidence of belonging to the same
chain. But the same value is often presented in different ways and
there are many erroneous values, as we soon show.

Group linkage differs from entity resolution in the following as-
pects. First, the type of heterogeneity in groups is different from
that in entities, which is mainly caused by typographical errors and
different representations of the same value. Instead, different mem-
bers in the same group can share some similar global values as
group identifier, and meanwhile can have distinct local values of
the same attribute as entity identifier. For example, many branches
in the same business chain provide a primary company-wide phone
number, while a significant number of branches may provide dif-
ferent local phone numbers. Traditional methods learn different
weights for different attributes so they can be tolerant on value va-
riety for some less coherent attributes; they fall short in our con-
text since global values and local values often occur in the same
attribute. Second, it is non-trivial to distinguish such differences
from erroneous values in the data. Finally, a group can contain tens
of thousands of members. Computation within such huge groups
can be very expensive; thus, scalability is a big challenge. We use
the following example throughout the paper for illustration.

EXAMPLE 1.1. We consider a set of 18M real-world business
listings in the US extracted from a local search engine, each de-
scribing a business by its name, phone number, URL domain name,
location, and category. Our algorithm automatically finds 600K
business chains and 2.7M listings that belong to these chains. Ta-
ble 1 lists the five largest chains we found. We observe that (1)
each chain contains up to 22K different branch stores, (2) different
branches from the same chain can have a large variety of names,

Table 2: Real-world business listings. We show only state for location
and simplify names of category. There is a wrong value in italic font.

RID name phone URL (domain) location category
r1 Home Depot, The 808 NJ furniture
r2 Home Depot, The 808 NY furniture
r3 Home Depot, The 808 homedepot MD furniture
r4 Home Depot, The 808 homedepot AK furniture
r5 Home Depot, The 808 homedepot MI furniture
r6 Home Depot, The 101 homedepot IN furniture
r7 Home Depot, The 102 homedepot NY furniture
r8 Home Depot, USA 103 homedepot WV furniture
r9 Home Depot USA 808 SD furniture
r10 Home Depot - Tools 808 FL furniture
r11 Taco Casa tacocasa AL restaurant
r12 Taco Casa 900 tacocasa AL restaurant
r13 Taco Casa 900 tacocasa, AL restaurant

tacocasatexas
r14 Taco Casa 900 AL food
r15 Taco Casa 900 AL food
r16 Taco Casa 701 tacocasatexas TX restaurant
r17 Taco Casa 702 tacocasatexas TX restaurant
r18 Taco Casa 703 tacocasatexas TX restaurant
r19 Taco Casa 704 NY food store
r20 Taco Casa tacodelmar AK restaurant

phone numbers, and URL domain names, and (3) even chains of
similar sizes can have very different numbers of distinct URL do-
mains (same for other attributes). Thus, rule-based linkage can
hardly succeed and scalability is essential.

Table 2 shows 20 business listings (with some abstraction) in this
data set. After investigating their webpages manually, we find that
r1−r18 belong to three business chains: Ch1 = {r1−r10},Ch2 =
{r11 − r15}, and Ch3 = {r16 − r18}; r19 and r20 do not belong
to any chain. Note the slightly different names for businesses in
chain Ch1; also note that r13 is integrated from different sources
and contains two URLs, one (tacocasatexas) being wrong.

Simple linkage rules do not work well on this data set. For exam-
ple, if we require only high similarity on name for chain linkage,
we may wrongly decide that r11− r20 all belong to the same chain
as they share a popular restaurant name Taco Casa. Traditional
linkage strategies do not work well either. If we apply Swoosh-
style linkage [24] and iteratively merge records with high similar-
ity on name and shared phone or URL, we can wrongly merge
Ch2 and Ch3 because of the wrong URL from r13. If we learn
different weights for different attributes, a high weight for phone
would split r6−r8 out of chain Ch1 because of their different local
phone numbers, but a low weight for phone would split r9 − r10

out of chain Ch1 since sharing the primary phone number, the main
evidence, is downweighted. 2

The key idea in our solution is to find sufficient strong evidence
that can glue group members together, while being tolerant to dif-
ferences in values specific for individual group members. For ex-
ample, we wish to reward sharing of primary values, such as pri-
mary phone numbers or URL domain names for chain linkage, but
would not penalize differences in local values, such as locations
and local phone numbers. For this purpose, our algorithm proceeds
in two stages. First, we identify pivots containing maximal sets of
records that are very likely to belong to the same group. Second, we
collect strong evidence from the resulting pivots, such as primary
phone numbers and URL domain names in business chains, based
on which we cluster the pivots and remaining records into groups.
Whereas our approach shares insights with other two-stage clus-
tering techniques in the literature [1, 18, 21, 25, 27, 3], our pivot
identification step guarantees both robustness to presence of erro-
neous values, which is critical for high precision, and generation of
maximal pivots, which is critical for high recall. The advantages of
our approach are verified in our experiments.

The group linkage problem we study in this paper is different
from the group linkage problems in [16, 22], which compute group-
level similarity between pre-specified groups of records from the
same entity. Our goal is to find records of multiple entities that
belong to the same group and we make three contributions.

1. We study pivot generation in the presence of erroneous data.
Our pivot is robust: even if we remove a few possibly er-
roneous records from a pivot, we still have sufficient strong
evidence that the other records belong to the same group.

2. We then reduce the group linkage problem to clustering piv-
ots and the remaining records. We learn different weights at
the value level, such that our clustering algorithm can lever-
age strong evidence collected from pivots and meanwhile be
tolerant to value variety of records in the same group.

3. Experiments on two real-world data sets based on our moti-
vating applications show high efficiency and effectiveness of
our proposed approach.

Note that this paper focuses on finding records that belong to the
same group. It does not require applying entity resolution to iden-
tify records that refer to the same individual entity. However, we
show empirically that combining our algorithm and entity resolu-
tion can improve the results of both.

In the rest of the paper, Section 2 discusses related work. Sec-
tion 3 defines the problem and provides an overview of our solution.
Sections 4-5 describe the two stages in our solution. Section 6 de-
scribes experimental results. Section 7 concludes. For reasons of
space, all proofs are omitted, and can be found in [20].

2. RELATED WORK
Entity resolution has been extensively studied in the past (sur-

veyed in [6, 17]). Traditional entity resolution techniques aim at
linking records that refer to the same real-world entity, so implicitly
assume value consistency between records that should be linked.
Group linkage is different in that it aims at linking records that
refer to different entities in the same group. The variety of indi-
vidual entities requires better use of strong evidence and tolerance
on different values even within the same group. These two features
differentiate our work from any previous linkage technique.

For record clustering in entity resolution, existing work may ap-
ply the transitive rule [15], do match-and-merge [24], or reduce it
to an optimization problem [14]. Our work is different in that our
pivot-linkage algorithm aims at being robust to a few erroneous
records; and our clustering algorithm emphasizes leveraging the
strong evidence collected from the pivots.

For record-similarity computation, existing work can be distance
based [5], rule based [15], or classification based [9]. There has
also been work on weight (or model) learning from labeled data [9,
26]. Our work is different in that in addition to learning a weight for
each attribute, we also learn a separate weight for each value based
on whether it serves as important evidence for the group. Note
that some previous works are also tolerant to different values, but
they leverage evidence that may not be available in our contexts:
[8] is tolerant to schema heterogeneity from different relations by
specifying matching rules; [13] is tolerant to possibly false values
by considering agreement between different data providers; [19] is
tolerant to out-of-date values by considering time stamps; we are
tolerant to value diversity within the same group.

Two-stage clustering has been proposed in DB and IR communi-
ties [1, 18, 21, 25, 27, 3]; however, they identify pivots in different
ways. Techniques in [18, 25] consider a pivot as a single record,
either randomly selected or selected according to the weighted de-

grees of nodes in the graph. Techniques in [27] generate pivots us-
ing agglomerative clustering but can be too conservative and miss
strong evidence. Techniques in [1] identify pivots as bi-connected
components, where removing any node would not disconnect the
graph. Although this corresponds to the 1-robustness requirement
in our solution (defined in Section 4), they generate overlapping
clusters; it is not obvious how to derive non-overlapping clusters
in applications such as business-chain linkage and how to extend
their techniques to guarantee k-robustness. Techniques in [18, 21]
require knowledge of the number of clusters for one of the stages,
so are inapplicable for linkage applications, where the number of
clusters is not known a priori. Techniques in [3] generate pivots
to collect evolution evidence for resolving entities that evolve over
time, but may not be robust against erroneous values. We exper-
imentally compare with these methods whenever applicable (Sec-
tion 6), showing that our algorithm is robust in presence of erro-
neous values and consistently generates high-accuracy results on
data sets with different features.

Link prediction [11, 23] aims to predict generic links (e.g., re-
ferring to the same entity, being in the same group) between a pair
of records. However, link prediction itself can make mistakes, and
clustering entities (into groups) by using straightforward methods
(such as the transitivity rule in [23]) is undesirable. Combining
link prediction with our robust techniques for group linkage is an
interesting direction of future work.

Finally, we distinguish our work from group linkage in [16, 22],
which has a different goal of matching groups of records associ-
ated with the same entity from multiple databases. On et al. [22]
compute similarity between pre-specified groups of records based
on record-level similarity. With the same goal, Huang [16] decides
group-level similarity using network evolution analysis. Our goal
is to find records of multiple entities that belong to the same group.

3. OVERVIEW

3.1 Problem Definition
Let R be a set of records describing entities by a set of attributes

A. For a record r ∈ R, we denote by r.A its value of attribute
A ∈ A. Records may contain erroneous or missing values.

Group linkage aims to find records that represent entities belong-
ing to the same real-world group. We focus on non-overlapping
groups, which often hold in applications. As an example applica-
tion, we wish to find business chains–a set of business entities with
the same or highly similar names that provide similar products and
services (e.g., Walmart, Home Depot, Subway and McDonald’s).

DEFINITION 3.1 (GROUP LINKAGE). Given a set R of records,
group linkage identifies a set of clusters CH of records in R, such
that records representing real-world entities in the same group be-
long to one and the same cluster, and vice versa. 2

EXAMPLE 3.2. Consider the records in Example 1.1, where each
record describes a business listing by attributes name, phone,
URL, location, and category.

The ideal solution to the group linkage problem contains 5 clus-
ters: Ch1 = {r1 − r10}, Ch2 = {r11 − r15}, Ch3 = {r16 − r18},
Ch4 = {r19}, and Ch5 = {r20}. Among them, Ch2 and Ch3

represent two different chains with the same name. 2

3.2 Overview of Our Solution
Group linkage is related to but different from traditional entity

resolution because it essentially looks for records that represent
entities in the same group, rather than records that represent ex-
actly the same entity. Different members in the same group often

share a certain amount of commonality (e.g., common name, pri-
mary phone, and URL domain of chain stores), but meanwhile can
also have a lot of differences (e.g., different addresses, local phone
numbers, and local URL domains); thus, we need to allow much
higher variety in some attribute values to avoid false negatives. On
the other hand, as we have shown in Example 1.1, simply lower-
ing our requirement on similarity of records or similarity of a few
attributes in clustering can lead to a lot of false positives.

The key intuition of our solution is to distinguish between strong
and weak evidence. For example, branches in the same business
chain often share URL domain names and those in North America
often share a few 1-800 phone numbers. Thus, a URL domain or
phone number shared among many business listings can serve as
strong evidence for chain linkage. In contrast, a phone number
shared by only a couple of entities is much weaker evidence, since
one might be an erroneous or out-of-date value.

To facilitate leveraging strong evidence, our solution consists of
two stages. The first stage collects records highly likely to belong
to the same group; for example, a set of business listings with the
same name and phone number are very likely to be in the same
chain. We call the results pivots; from them we can collect strong
evidence such as name, primary phone number, and primary URL
domain of chains. The goal is to be robust against erroneous values
and make as few false positives as possible, so we can avoid causing
incorrect ripple effect later; however, we need to keep in mind that
being too strict can miss important strong evidence.

The second stage clusters pivots and remaining records into groups
according to the discovered strong evidence. It decides whether
several pivots belong to the same group, and whether a record not
in any pivot actually belongs to some group. It treats weak evi-
dence differently from strong evidence. The intuition is to leverage
strong evidence and meanwhile be tolerant to value diversity in the
same group, so we can reduce false negatives in the first stage.

We illustrate our approach for business-chain linkage.

EXAMPLE 3.3. Continue with the motivating example. In the
first stage we generate three pivots: Cr1 = {r1 − r7},Cr2 =
{r14, r15}, Cr3 = {r16 − r18}. Records r1 − r7 form a pivot
because they have the same name, five of them (r1 − r5) share
phone number 808 and five of them (r3−r7) share URL homedepot.
Similar for the other two pivots. Note that r13 does not belong to
any pivot, because one of its URLs is the same as that of r11− r12,
and one is the same as that of r16 − r18, but except name, there
are no other common values between these two groups of records.
To avoid mistakes, we defer the decision on r13. Indeed, recall that
tacocasatexas is a wrong value for r13. For a similar reason, we
defer the decision on r12.

In the second stage, we generate groups – business chains. We
merge r8 − r10 with pivot Cr1, because they have similar names
and share either the primary phone number or the primary URL.
We also merge r11−r13 with pivot Cr2, because (1) r12−r13 share
the primary phone 900 with Cr2, and (2) r11 shares the primary
URL tacocasa with r12−r13. We do not merge Cr2 and Cr3 though,
because they share neither the primary phone nor the primary URL.
We do not merge r19 or r20 to any pivot, because there is again not
much strong evidence. We thus obtain the ideal result. 2

We describe pivot linkage in Section 4 and group linkage in Sec-
tion 5. Before we proceed, we first introduce an important concept
used in our algorithms.

3.3 Attribute categorization
To facilitate distinguishing between strong and weak evidence,

we classify attributes into three categories, based on different

relationship-cardinalities between attributes and groups.

• Common-value attribute: We call an attribute A a common-
value attribute if there is an m : 1 relation between groups
and A-values; that is, all entities in the same group have the
same or highly similar A-values (e.g., business-name for
chain linkage and organization for organization linkage).
• Primary-value attribute: We call an attribute A a primary-

value attribute if there is a 1 : n relation between groups and
A-values; that is, entities in the same group often share one
or a few primary A-values (but there can also be other val-
ues), and these values are seldom used by entities outside the
group (e.g., phone and URL-domain for chain, and phone-
prefix and email-server for organization).
• Multi-value attribute: We call an attribute A multi-value at-

tribute if there is a m : n relation between groups and A-
values (e.g., category for chain linkage).

According to the definition, for each attribute A we define three
measures to capture its features on labeled datasets. First, for each
group Ch and its primary A-value vACh (i.e., the A-value that oc-
curs most often inCh), we definemA

Ch as the percentage of records
in Ch that contain vACh, define sACh as the average similarity be-
tween vACh and other A-values in Ch, and define nA

Ch as the per-
centage of other groups that contain vACh. Then, we compute mA,
sA, nA as the average of the top-k% values; to avoid being biased
by small groups, we may filter groups of small sizes. According to
the categorization, A is a common-value attribute if sA is high; A
is a primary-value attribute if mA is high and nA is low; and A is
a multi-value attribute if nA is high. We decide whether a measure
is high or low using the largest gap between continuous measures.

Finally, we point out that despite the importance of attribute cat-
egorization, simply applying traditional entity resolution methods
while treating the attributes of different categories differently does
not work well (Figure 3).

4. PIVOT LINKAGE
The first stage creates pivots consisting of records that are very

likely to be in the same group. To this end, we only consider
common-value and primary-value attributes. This section starts
with pivot definition (Section 4.1), then describes how we construct
similarity graphs to facilitate pivot finding (Section 4.2), and finally
gives the algorithm for pivot linkage (Section 4.3).

4.1 Criteria for a Pivot
At the first stage, we wish to make only decisions that are highly

likely to be correct. First, we require that each pivot contains as
many highly similar records as possible so as not to miss important
strong evidence of a group, and different pivots are easily distin-
guishable from each other. Second, we wish that our results are
robust even in the presence of a few erroneous values in the data.
In Table 2, r1 − r7 form a good pivot, because 808 and homedepot
are popular values among these records. In contrast, r13 − r18 do
not form a good pivot, because records r14 − r15 and r16 − r18 do
not share any phone number or URL domain; the only “connector”
between them is r13, so they can be wrongly merged if r13 contains
erroneous values. Also, considering r13−r15 and r16−r18 as two
different pivots is risky, because (1) it is not very clear whether r13

is in the same chain as r14 − r15 or as r16 − r18, and (2) these two
pivots share one URL domain name so are not fully distinguishable.

We capture this intuition with connectivity of a similarity graph.
We define the similarity graph of a set R of records as an undi-
rected graph, where each node represents a record in R, and an edge

r11

r12

r15

r13

r16

r18

r17
r1

r2

r4 r3

r5

r6

r7

Clique

C2

C1

C3

C4

C5

r20

r19

r8
r9

r10

Figure 1: Similarity graph for records in Table 2.

connects two nodes if they may contain strong evidence indicating
a group. We consider two records sharing strong evidence if they
agree on common-value attributes and (at least one) primary-value
attribute. Note that our techniques are independent of the similarity
criteria we apply. Figure 1 shows the similarity graph for Table 2.

Each pivot would correspond to a connected subgraph of the sim-
ilarity graph. We would like such a subgraph to be robust such that
even if we remove a few nodes the sub-graph remains connected;
intuitively, even if there are some records with erroneous values,
without them we still have enough evidence showing that the rest
of the records should belong to the same group.

DEFINITION 4.1 (k-ROBUSTNESS). A graph G is k-robust if
after removing arbitrary k nodes and edges to these nodes, G is
still connected. A clique or a single node is defined to be k-robust
for any k. 2

In Figure 1, the subgraph with nodes r1−r7 is 2-robust. It is not
3-robust as removing r3 − r5 can disconnect it.

According to the definition, we can partition the similarity graph
into a set of k-robust subgraphs. As we do not wish to split any
pivot unnecessarily, we require maximal k-robust partitioning.

DEFINITION 4.2 (MAXIMAL k-ROBUST PARTITIONING). Let
G be a similarity graph. A partitioning of G is a maximal k-robust
partitioning if it satisfies the following properties.

1. Each node belongs to one and only one partition.
2. Each partition is k-robust.
3. The result of merging any partitions is not k-robust. 2

Note that a data set can have more than one maximal k-robust
partitioning. Consider r11 − r18 in Figure 1. There are three max-
imal 1-robust partitionings: {{r11}, {r12, r14 − r15}, {r13, r16 −
r18}}; {{r11− r12}, {r14− r15}, {r13, r16− r18}}; and {{r11−
r15}, {r16−r18}}. If we treat each partitioning as a possible world,
records that belong to the same partition in all possible worlds have
high probability to belong to the same group and so form a pivot.
So, we define a pivot as follows.

DEFINITION 4.3 (k-PIVOT). Let R be a set of records and
G be the similarity graph of R. The records that belong to the
same subgraph in every maximal k-robust partitioning of G form a
k-pivot of R. A pivot contains at least 2 records. 2

PROPERTY 4.4. A k-pivot is k-robust. 2

EXAMPLE 4.5. Consider Figure 1 and assume k = 1. There
are two connected sub-graphs. For records r1 − r7, the subgraph
is 1-robust, so they form a 1-pivot. For records r11− r18, there are
three maximal 1-robust partitionings, as we have shown. Two sub-
sets of records belong to the same subgraph in each partitioning:
{r14 − r15} and {r16 − r18}; they form two 1-pivots. 2

Table 3: Simplified inverted index for the graph in Figure 1.
Record V-Cliques Represent
r1/2 C1 r1 − r2
r3 C1, C2 r3
r4 C1, C2 r4
r5 C1, C2 r5

r6/7 C2 r6 − r7
r11 C3 r11
r12 C3, C4 r12
r13 C3, C4, C5 r13

r14/15 C4 r14 − r15
r16/17/18 C5 r16 − r18

The higher the k, the stronger is the requirement for robustness;
when k = 0, each connected subgraph is a pivot and the results
would be vulnerable to erroneous values. In our motivating exam-
ple, when k = 0, records r11 − r18 would be wrongly consid-
ered as a pivot and thus belonging to the same chain. Our exper-
iments show that a k in the range [1, 4] is the best, improving the
F-measure of the results by 10% over k = 0. Section 6.2.1 also
shows that higher-precision, smaller-sized pivots with significantly
lower recall can lead to low F-measure for the chains.

4.2 Constructing Similarity Graphs
Recall that we compare records by common-value and primary-

value attribute values. All records agreeing on the common-value
attributes and at least one value on a primary-value attribute form
a clique, which we call a v-clique. We thus represent the similarity
graph with a set of v-cliques, denoted by C; for example, the graph
in Figure 1 can be represented by five v-cliques (C1−C5). In addi-
tion, we maintain an inverted index L̄, where an entry corresponds
to a record r and contains the v-cliques that r belongs to.

Given the sheer number of records in R, it is not efficient to com-
pare every pair of records, so we assume a blocking method [12] is
applied to R to obtain a set of blocks. Still, the inverted index can
be huge. In fact, according to Theorem 4.6, records in only one and
the same v-clique belong to the same pivot, so we do not need to
distinguish them. Thus, we simplify the inverted index such that
for each v-clique we keep only a representative for nodes belong-
ing only to this v-clique. Table 3 shows the simplified index for the
similarity graph in Figure 1.

THEOREM 4.6. Let G be a similarity graph and G′ be a graph
derived from G by merging nodes that belong to one and the same
v-clique. Two nodes belong to the same pivot of G′ if and only if
they belong to the same pivot of G. 2

We can easily find v-cliques and construct the inverted index by
scanning values of primary-value attributes. The running time is
linear in the number of values from primary-value attributes.
Case study 1: On a data set with 18M records (Section 6), graph
construction finished in 1.9 hours. The original graph contains
18M nodes and 4.2B edges. The inverted index is of size 89MB,
containing 3.8M entries, each associated with at most 8 v-cliques;
in total there are 1.2M v-cliques. The simplified inverted index is of
size 34MB, containing 1.5M entries, where an entry can represent
up to 11K records. The simplified inverted index reduces the size
of the original graph by 3 orders of magnitude.

4.3 Identifying Pivots
We solve the pivot-linkage problem by reducing it to a Max-

flow/Min-cut Problem. However, computing the max flow for a
given graph G and a source-destination pair takes time O(|G|2.5),
where |G| denotes the number of nodes in G; even the simplified
inverted index can still contain millions of entries, so it can be very

G2 G1

r1 r2

r5

r3

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Figure 2: Two example graphs.

expensive. We thus first pre-process graphG in two steps (SCREEN
in Section 4.3.1): (1) merging certain v-cliques according to a suf-
ficient (but not necessary) condition for k-robustness and consider
them as a whole in pivot linkage; then (2) splitting G into sub-
graphs according to a necessary (but not sufficient) condition for
k-robustness. We find the max flow only on the resulting sub-
graphs, which are substantially smaller (SPLIT in Section 4.3.2).
Section 4.3.3 gives the full algorithm, which iteratively applies
SCREEN and SPLIT.

4.3.1 Screening
We explain how to reduce the search space for Max-flow by

screening. Experiments show that we reduce the input size by 4
orders of magnitude on a real-world data set of 18M records.

A graph can be considered as a union of v-cliques, so essentially
we need to decide if a union of v-cliques is k-robust. First, we can
prove the following sufficient condition for k-robustness.

THEOREM 4.7 ((k + 1)-CONNECTED CONDITION). LetG be
a graph consisting of a union Q of v-cliques. If for every pair of
v-cliques C,C′ ∈ Q, there is a path of v-cliques between C and
C′ and every pair of adjacent v-cliques on the path share at least
k + 1 nodes, graph G is k-robust. 2

Given Theorem 4.7, we define a (k + 1)-connected v-union as
a maximal union of v-cliques that satisfies (k + 1)-connected con-
dition. A (k + 1)-connected v-union (simplified as v-union) must
be k-robust but not vice versa. In Figure 1, subgraph {r1 − r7}
is a 3-connected v-union, because the only two v-cliques, C1 and
C2, share 3 nodes. Indeed, it is 2-robust. Graph G1 in Figure 2 is
2-robust but not 3-connected (there are 4 v-cliques, where each pair
of adjacent v-cliques share only 1 or 2 nodes). From Theorem 4.7,
we have that a (k + 1)-connected v-union is k-robust and accord-
ingly a k-pivot. Therefore for pivot linkage we consider graph G
as a set of v-unions instead of v-cliques.

Next, we present a necessary condition for k-robustness.

THEOREM 4.8 ((k + 1)-OVERLAP CONDITION). GraphG is
k-robust only if for every (k + 1)-connected v-union Q ∈ G, Q
shares at least k + 1 common nodes with the subgraph consisting
of the rest of the v-unions. 2

Accordingly, we define a (k + 1)-overlap graph as a graph that
satisfies (k + 1)-overlap condition. A k-robust graph must be a
(k + 1)-overlap graph but not vice versa. In Figure 1, subgraph
{r11 − r18} is not a 2-overlap graph, because there are two 2-
connected v-unions, {r11 − r15} and {r13, r16 − r18}, but they
share only one node; indeed, the subgraph is not 1-robust. On the
other hand, graph G2 in Figure 2 satisfies the 3-overlap condition,
as it contains four v-unions, Q1 − Q4, and each v-union shares 3
nodes in total with the others; however, it is not 2-robust (removing
r3 and r4 disconnects it). According to Theorem 4.8, if graph G is
not a (k + 1)-overlap graph, it cannot be k-robust. Therefore we
split G into a set of maximal (k+ 1)-overlap subgraphs, and check
k-robustness by Max-flow on each subgraph.

Now the problem is to split G into (k + 1)-overlap subgraphs.
Let G be a graph where a (k+ 1)-connected v-union overlaps with
the rest of the v-unions on no more than k nodes. We split G by
removing these overlapping nodes. For subgraph {r11 − r18} in
Figure 1, we remove r13 and obtain subgraphs {r11 − r12, r14 −
r15} and {r16 − r18} (recall from Example 4.5 that r13 cannot
belong to any pivot). Note that the result subgraphs may not be
(k + 1)-overlap graphs (e.g., {r11 − r12, r14 − r15} contains two
v-unions sharing one node), so we need to further screen them.

We now describe our screening algorithm, SCREEN, which takes
a graph G, represented by a set C of v-cliques and inverted list L̄,
as input, finds (k + 1)-connected v-unions in G and meanwhile
decides if G is a (k + 1)-overlap graph. If not, it splits G into
subgraphs for further examination.

1. IfG contains a single node, output it as a pivot if it represents
records belonging only to one v-clique.

2. For each v-clique C ∈ C, initialize a v-union Q(C). We
denote the set of v-unions by Q̄, and the common nodes of
C and C′ by B̄(C,C′).

3. For each v-clique C ∈ C, we merge v-unions as follows.
(a) For each unprocessed record r ∈ C, for every pair of
v-cliques C1 and C2 in r’s index entry, if they belong to dif-
ferent v-unions, add r to B̄(C1, C2).
(b) For each v-union Q 6= Q(C) where there exist C1 ∈ Q
and C2 ∈ Q(C) such that |B̄(C1, C2)| ≥ k + 1, merge Q
and Q(C).
At the end, Q̄ contains all (k + 1)-connected v-unions.

4. For each v-union Q ∈ Q̄, find its border nodes as B̄(Q) =
∪C∈Q,C′ 6∈QB̄(C,C′). If |B̄(Q)| ≤ k, split the subgraph it
belongs to, denoted by G(Q), into two subgraphs Q \ B̄(Q)
and G(Q) \Q.

5. Return the remaining subgraphs.

PROPOSITION 4.9. Denote by |L̄| the number of entries in in-
put L̄. Let m be the maximum number of blocks a record belongs
to, and a be the maximum number of adjacent v-unions a v-union
has. Algorithm SCREEN finds (k + 1)-overlap subgraphs in time
O((m2 + a) · |L̄|) and the result is independent of the order in
which we examine the v-cliques. 2

Note that m and a are typically very small, so SCREEN is basi-
cally linear in the size of the inverted index. For a similar reason as
in Theorem 4.6, we further simplifyG by keeping for each v-union
a representative for all nodes that only belong to it.

EXAMPLE 4.10. Consider Table 3 as input and k = 1. Step 2
creates five v-unions Q1 −Q5 for the input v-cliques.

Step 3 starts with v-clique C1. It has 4 nodes (in the simpli-
fied inverted index), among which 3 are shared with C2. Thus,
B̄(C1, C2) = {r3 − r5} and |B̄(C1, C2)| ≥ 2, so we merge Q1

and Q2 into Q1/2. Examining C2 reveals no other shared node.
Step 3 then considers v-clique C3. It has three nodes, among

which r12 − r13 are shared with C4 and r13 is also shared with
C5. Thus, B̄(C3, C4) = {r12 − r13} and B̄(C3, C5) = {r13}.
We merge Q3 and Q4 into Q3/4. Examining C4 and C5 reveals
no other shared node. We thus obtain three 2-connected v-unions:
Q̄ = {Q1/2, Q3/4, Q5}.

Step 4 then considers each v-union. For Q1/2, B̄(Q1/2) = ∅
and we thus split subgraph Q1/2 out and merge all of its nodes to
one r1/.../7. For Q3/4, B̄(Q3/4) = {r13} so |B̄(Q3/4)| < 2. We
split Q3/4 out and obtain {r11 − r12, r14/15} (r13 is excluded).
Similar for Q5 and we obtain {r16/17/18}. Therefore, we return
three subgraphs for further screening. 2

4.3.2 Reduction
Each result (k+1)-overlap subgraph is typically very small, and

as we soon show, in practice the majority of them are already k-
robust. Thus, in many cases SCREEN is adequate in finding pivots.
For completeness, we next briefly describe SPLIT that guarantees
k-robustness of the pivots.

Between two nodes a, b inG, consider the paths that do not share
any node except a and b. We denote the maximal number of such
paths between a and b by κ(a, b). According to Menger’s Theo-
rem [2], κ(a, b) is the minimum number of nodes removing which
disconnects a and b. Obviously, G is k-robust if κ(a, b) > k for
any nodes a, b in G. Note that for two nodes a, b in a (k + 1)-
connected v-union, we have κ(a, b) ≥ k+1. Theorem 4.11 further
gives k-robustness condition of G on adjacent v-unions in G.

THEOREM 4.11 (k-ROBUSTNESS CONDITION). Let G be a
similarity graph. Graph G is k-robust if and only if for every pair
of adjacent (k + 1)-connected v-unions Q and Q′, there exist two
nodes a ∈ Q \Q′ and b ∈ Q′ \Q such that κ(a, b) > k. 2

Computing κ(a, b) is reduced to a Max-flow Problem in [7], for
which we apply the well-known Ford & Fulkerson Algorithm [10].
If a graph G is not k-robust, we shall get the set S̄ of nodes that
separate G, which we call separator nodes. Suppose the separator
nodes separate G into X̄ and Ȳ (there can be more subgraphs). We
split G into X̄ ∪ S̄ and Ȳ ∪ S̄ for further processing. Note that
we need to include S̄ in both sub-graphs to maintain the integrity
of each v-union. As proved in [20], the separator nodes do not be-
long to any pivot, so we mark them as “separators” and eventually
exclude them from the returned pivots.

Algorithm SPLIT takes a (k + 1)-overlap subgraph G as input
and decides if G is k-robust. If not, it splits G into subgraphs on
which we will then re-apply screening.

1. For each pair of adjacent (k+1)-connected v-unionsQ,Q′ ∈
G, find a ∈ Q \ Q′, b ∈ Q′ \ Q. Apply Ford & Fulkerson
Algorithm [10] to compute κ(a, b).

2. Once we find nodes a, b where κ(a, b) ≤ k, find separa-
tor nodes S̄ that separate G. Remove S̄ and obtain several
subgraphs. Add S̄ back to each subgraph and mark S̄ as
“separators”. Return the subgraphs for screening.

3. Otherwise, G is k-robust and output it as a k-pivot.

EXAMPLE 4.12. Consider graph G1 in Figure 2 and k = 2.
There are four 3-connected v-unions (actually four v-cliques) and
six pairs of adjacent v-unions. For Q1 and Q2, we check nodes r2

and r4 and find κ(r2, r4) = 3. Similarly we check for every other
pair of adjacent v-unions and decide that the graph is 2-robust.

Now consider graph G2 and k = 2. There are four 3-connected
v-unions. When we check r1 ∈ Q1 and r6 ∈ Q3, we find S̄ =
{r3, r4}. We then splitG2 into subgraphs {r1−r4} and {r3−r6},
marking r3 and r4 as “separators”. 2

PROPOSITION 4.13. Let p be the total number of pairs of ad-
jacent v-unions, and g be the number of nodes in the input graph.
Algorithm SPLIT runs in time O(pg2.5). 2

Despite its high complexity, SPLIT is not expensive in practice
as g is very small (Case Study 2).

4.3.3 Full Algorithm
We now present the full algorithm, PIVOTLINKAGE (Algorithm 1).

It first initializes the working queue Q with only input G (Line 1).
Each time it pops a subgraph G′ from Q and invokes SCREEN

Algorithm 1 PIVOTLINKAGE(G, k)

Input: G: Simplified similarity graph, represented by C and L̄.
k: Robustness requirement.

Output: C̄ Set of pivots in G.
1: Let Q = {G}, C̄ = ∅;
2: while Q 6= ∅ do
3: Pop G′ from Q;
4: Let P̄ = SCREEN(G′, k, C̄);
5: if P̄ = {G′} then
6: Let S̄ = SPLIT(G′, k, C̄);
7: add graphs in S̄ to Q;
8: else
9: add graphs in P̄ to Q;

10: end if
11: end while

Table 4: Step-by-step pivot linkage in Example 4.15.
Input Method Output
G SCREEN G1 = {r1/.../7}, G2 = {r11, r12, r14/15},

G3 = {r16/17/18}
G1 SCREEN Pivot {r1 − r7}
G2 SCREEN G4 = {r11}, G5 = {r14/15}
G3 SCREEN Pivot {r16 − r18}
G4 SCREEN -
G5 SCREEN Pivot {r14 − r15}

(Lines 3-4). If the output of SCREEN is still G′ (so G′ is a (k+ 1)-
overlap subgraph) (Line 5), it invokes SPLIT on G′ (Line 6). Sub-
graphs output by SCREEN and SPLIT are added to the queue for
further examination (Lines 7, 9) and identified pivots are added to
pivot set C̄. It terminates when Q = ∅.

THEOREM 4.14. LetG be the input graph and q be the number
of v-unions in G. Define a, p, g,m, and |L̄| as in Propositions 4.9
and 4.13. Algorithm PIVOTLINKAGE finds correct pivots of G in
time O(q((m2 + a)|L̄|+ pg2.5)) and is order independent. 2

EXAMPLE 4.15. Consider the motivating example, with the in-
put shown in Table 3 and k = 1. Table 4 shows the step-by-
step pivot linkage process. Originally, Q = {G}. After invoking
SCREEN, we obtain three subgraphs G1, G2, and G3. SCREEN
outputs G1 and G3 as 1-pivots since each contains a single node
that represents multiple records. It further splitsG2 into two single-
node graphs G4 and G5, and outputs the latter as a 1-pivot. 2

Case study 2: On the data set with 18M records, we found 3-pivots
in 5.6 minutes. SCREEN was invoked 114K times and took 51 sec-
onds (15%) in total. Except the original graph, an input to SCREEN
contains at most 39.3K nodes; for 97% inputs there are fewer than
10 nodes and running SCREEN was very fast. SPLIT was invoked
only 41 times; an input contains at most 58 nodes (8 v-unions) and
on average 10 nodes (2.7 v-unions). Recall that the simplified in-
verted index contains 1.5M entries, so SCREEN reduced the size of
the input to SPLIT by 4 orders of magnitude. Only 1 input graph to
SPLIT did not passed the 3-robustness check.

5. GROUP LINKAGE
The second stage clusters the pivots and the remaining records,

which together we call elements, into groups. We apply an effi-
cient state-of-the-art hill-climbing algorithm for clustering (details
in [20]). Note that in this stage we also consider multi-value at-
tributes that may contain weak evidence. Comparing with cluster-
ing in traditional entity resolution, we make two changes in element-

cluster similarity computation. First, in addition to weighting at-
tributes, we weight attribute values according to their popularities
within a group such that similarity on primary values (strong evi-
dence) is rewarded more. Second, instead of learning weights for
each attribute, we treat all primary-value attributes as a whole so
that diverse local values in the same group are penalized less. Ex-
periments in Section 6.2.2 show benefits of the two changes.
Collecting strong evidence: We identify popular values within a
cluster as strong evidence. When we maintain the signature for
a pivot or a cluster, we keep all values of an attribute and assign
a high weight to a popular value. Specifically, let R̄ be a set of
records. Consider value v and let R̄(v) ⊆ R̄ denote the records in
R̄ that contain v. The weight of v is computed by w(v) = |R̄(v)|

|R̄| .

EXAMPLE 5.1. Consider phone for pivot Cr1 = {r1 − r7}
in Table 2. There are 7 business listings in Cr1, 5 providing 808
(r1 − r5), one providing 101 (r6), and one providing 102 (r7).
Thus, the weight of 808 is 5

7
= .71 and the weight for 101 and 102

is 1
7

= .14, showing that 808 is the primary phone. 2

Allowing diverse values: When we compute the similarity be-
tween an element e and a cluster Ch, we consider all primary-
value attributes together. To compute primary-value attribute simi-
larity, denoted by simprm(e, Ch), we reward sharing primary val-
ues (values with a high weight) but not penalizing different values,
unless there is no shared value. Specifically, if the primary value
of e is the same as that of Ch, we consider them having probabil-
ity p to be in the same group. Since we use weights to measure
whether the value is primary and allow slight difference on values,
with a value v from e and v′ from Ch, the probability becomes
p · we(v) · wCh(v′) · s(v, v′), where we(v) measures the weight
of v in e, wCh(v′) measures the weight of v′ in Ch, and s(v, v′)
measures the similarity between v and v′.

We compute simprm(e, Ch) as the probability that they belong
to the same group given several shared values.
simprm(e, Ch) = 1−

∏
v∈e,v′∈Ch

(1−p·we(v)·wCh(v
′)·s(v, v′)). (1)

When there is no shared primary value, simprm can be close to
0; once there is one such value, simprm can be significantly in-
creased, since we typically set a large p.

EXAMPLE 5.2. Consider element e = r8 and cluster Ch1 =
{r1− r7} in Example 1.1, where phone and domain are primary-
value attributes. Assume p = .9. Element e and Ch1 share the
primary domain, with weight 1 and 5

7
= .71 respectively, but have

different phone numbers (assuming similarity of 0). We compute
simprm(e,Ch1) = 1− (1− .9 · 1 · .71 · 1) · (1− 0) · (1− 0) · (1−
0) = .639; essentially, we do not penalize the difference in phone
numbers. However if domain homedepot appeared only once, so
was not a primary value, its weight would be .14 and accordingly
simprm(e,Ch1) = .126, indicating a much lower similarity.

If we treat phone and domain separately and compute simprm

as average of simph and simdm, we have simprm(e,Ch1) =
0+.71

2
= .355, also indicating a lower similarity. 2

We then learn weights for each attribute (treating primary-value
attributes as a whole), and compute element-cluster similarity as a
weighted sum of attribute similarities (details in [20]).

6. EXPERIMENTAL EVALUATION
We experiment on two real-world data sets, showing advantages

of our algorithm over rule-based or traditional machine-learning
methods on accuracy, and high scalability of our techniques.

Table 5: Statistics of the experimental data sets.
#Groups #Singletons Level of#Records
(size > 1)

Group size
(size = 1) distinction

BizLow 2446 1 2446 0 low
BizAvg 2062 30 [2, 308] 503 average
BizHigh 1149 14 [33, 269] 0 high

SIGMOD 590 71 [2, 41] 162 average

6.1 Experiment Settings
Data and gold standard: We experimented on two real-world data
sets. Biz contains 18M US business listings and each listing has
attributes name, phone, URL, location and category; we decide
which listings belong to the same business chain. In lieu of using a
social network data set with user privacy issues, we use SIGMOD,
which contains records of about 590 attendees of SIGMOD’98 and
each record has attributes name, affiliation, address, phone, fax
and email; we decide which attendees belong to the same institute.

We experimented on the whole Biz data set to study scalability of
our techniques. We evaluated accuracy of our techniques on four
sets of data with different properties (seen in Table 5). The first
three are from Biz. (1) BizLow contains 2446 listings for the same
business chain Allstate Insurance. These listings have the same
name, but 1499 provide URL “allstate.com”, 854 provide another
URL “allstateagencies.com”, while 130 provide both, and 227 list-
ings do not provide any value for phone or URL. (2) BizAvg con-
tains 2062 listings from Biz, where 1559 belong to 30 randomly se-
lected business chains, and 503 do not belong to any chain; among
the 503 listings, 86 are highly similar in name to listings in the
business chains and the rest are randomly selected. (3) BizHigh
data set contains 1149 listings with similar names and highly simi-
lar category values; they belong to 14 different chains. Among the
listings, 708 provide the same wrong name Texas Farm Bureau In-
surance and meanwhile provide a wrong URL farmbureauinsurance-
mi.com. Among these three subsets, the latter two are hard cases;
for each data set, we manually verified all the chains by checking
store locations provided by the business-chain websites and used
it as the gold standard. The last is the whole SIGMOD data set.
It has very few wrong values, but the same affiliation can be rep-
resented in various ways and some affiliation names can be very
similar (e.g., UCSC vs. UCSD). We manually identified 71 insti-
tutes with multiple attendees and 162 attendees who do not belong
to any of these institutes.

Measure: We considered each group as a cluster and compared
pairwise linking decisions with the gold standard. We measured the
quality of the results by precision (P), recall (R), and F-measure
(F). If we denote the set of true-positive pairs by TP , the set of
false-positive pairs by FP , and the set of false-negative pairs by
FN , then, P = |TP |

|TP |+|FP | , R = |TP |
|TP |+|FN| , F = 2PR

P+R
. We also

reported execution time.
Implementation: We implemented the technique we proposed in
this paper, and call it GROUP. Before applying GROUP, we merge
records that share highly similar values on pre-selected attributes
(i.e., name, city and address for biz). In pivot generation, by de-
fault we considered two records are similar for Biz if (1) their name
similarity is above .95; and (2) they share at least one phone or URL
domain name. For SIGMOD we require (1) affiliation similarity is
above .95; and (2) they share at least one of phone prefix (3-digit),
fax prefix (3-digit), or email server. We required 2-robustness for
pivots. In clustering, (1) for blocking, we put records whose name
similarity is above .8 in the same block; (2) for similarity compu-
tation, we computed string similarity by Jaro-Winkler distance [4],
we set p = .8, and we learned attribute weights from 1000 records
randomly selected from BizAvg data for Biz, and 300 records ran-
domly selected from SIGMOD.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

SAMENAME

PARTITION

YOSHIDA

GROUP

(a) BizLow data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

SAMENAME

PARTITION

YOSHIDA

GROUP

(b) BizAvg data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

SAMENAME

MERGE

YOSHIDA

GROUP

(c) Perturbed BizHigh data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

SAMENAME

MERGE

YOSHIDA

GROUP

(d) SIGMOD data

Figure 3: Overall results on Biz and SIGMOD data sets.

For comparison, we implemented the following baselines:

• SAMENAME groups Biz records with highly similar names
and groups SIGMOD records with highly similar affiliations
(similarity above .95);
• Traditional machine-learning methods include PARTITION,

CENTER and MERGE [14]; each computes record similarity
as wighted sum of attribute similarities with learnt attribute
weights, and applies a state-of-the-art clustering algorithm.
• Two-stage method YOSHIDA [27] generates pivots by ag-

glomerative clustering with threshold .9 in the first stage,
uses TF/IDF weights for features and applies linear algebra
to cluster records in the second stage.

We implemented the algorithms in Java. We used a Linux ma-
chine with Intel Xeon X5550 processor (2.66GHz, cache 8MB,
6.4GT/s QPI) and 8GB main memory. We used MySQL to store
the data and stored the index as a database table. Note that after
blocking, we can fit each block of nodes or elements in memory,
which is typically the case with a good blocking strategy.

6.2 Evaluating Effectiveness
We first evaluate effectiveness of our algorithms. Figure 3 com-

pares GROUP with the baseline methods, where for the three tradi-
tional linkage methods we plot only the best results. On BizHigh,
all methods put all records in the same chain because a large num-
ber (708) of listings have both a wrong name and a wrong URL. We
manually perturbed the data as follows: (1) among the 708 listings
with wrong URLs, 408 provide a single (wrong) URL and we fixed
it; (2) for all records we set name to “Farm Bureau Insurance”,
so removed hints from business names. Even after perturbing, this
data set remains the hardest and we use it hereafter instead of the
original one for other experiments.

We observe that (1) GROUP obtains the highest F-measure (above
.9) on each data set. It has the highest precision most of the time as
it applies pivot identification and leverages the strong evidence col-
lected from resulting pivots. It also has a very high recall (mostly
above .95) on each subset because the clustering phase is tolerant
to diversity of values within chains. (2) The F-measure of SAME-
NAME is up to 80% lower than GROUP. It can have false positives
when listings of highly similar names belong to different chains
and can also have false negatives when some listings in a chain
have fairly different names from other listings. It only performs
well in the easiest dataset BizLow, where it happens that all list-
ings have the same name and belong to the same chain. (3) The

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

PARTITION

PIVOT

CLUSTER

GROUP

(a) BizLow data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

PARTITION

PIVOT

CLUSTER

GROUP

(b) BizAvg data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

MERGE

PIVOT

CLUSTER

GROUP

(c) Perturbed BizHigh data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

MERGE

PIVOT

CLUSTER

GROUP

(d) SIGMOD data

Figure 4: Contribution of components on Biz and SIGMOD.

highest F-measure of traditional linkage methods can be 16-41%
lower than SAMENAME. It requires higher similarity than sharing
name values. As a result, it has a lower recall than SAMENAME.
(4) YOSHIDA has comparable precision to GROUP since its first
stage is conservative too, which makes it often improve over the
best of traditional linkage methods on Biz dataset where reducing
false positives is a big challenge; on the other hand, its first stage
is often too conservative (requiring high record similarity) so the
recall is 10-35% lower than GROUP, which also makes it perform
worse than traditional linkage methods on SIGMOD dataset where
reducing false negatives is challenging.
Contribution of different components: We compared GROUP
with (1) PIVOT, which conducts only pivot identification, and (2)
CLUSTER, which considers each individual record as a pivot (in
the spirit of [18, 25]) and conducts only clustering. Figure 4 shows
the results. First, we observe that PIVOT improves over traditional
linkage methods on precision by up to 79% but has a lower recall
(up to 34% lower) most of the time, because it sets a high require-
ment for merging records into groups. Note however that its goal
is indeed to obtain a high precision such that the strong evidence
collected from the pivots are trustworthy for the clustering phase.
Second, CLUSTER often has higher precision (by up to 77%) but
lower recall (by up to 32%) than the best traditional linkage meth-
ods; their F-measures are comparable on each data set. On BizAvg
it can obtain an even higher precision than PIVOT, because PIVOT
can make mistakes when too many records have erroneous values,
but CLUSTER may avoid some of these mistakes by considering
also weak evidence for similarity. However, applying clustering on
the results of CLUSTER would not change the results, but apply-
ing clustering on the results of PIVOT can obtain a much higher F-
measure, especially a higher recall (98% higher than CLUSTER on
BizAvg). This is because the result of CLUSTER lacks the strong ev-
idence collected from high-quality pivots so the final results would
be less tolerant to diversity of values, showing the importance of
pivot identification. Finally, we observe that GROUP obtains the
best results in most of the data sets.

We next evaluate various choices in the two stages. Unless spec-
ified otherwise, we observed similar patterns on all data sets, and
report the results on BizAvg or perturbed BizHigh data, whichever
has more distinguishable results.

6.2.1 Pivot Identification
Pivot generation: We first compared three pivot-generation strate-
gies: PIVOT iteratively invokes SCREEN and SPLIT, ONLYSCREEN
only iteratively invokes SCREEN, and YOSHIDAI generates piv-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

YOSHIDAI

ONLYSCREEN

PIVOT

(a) Pivot quality.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

YOSHIDAI

ONLYSCREEN

PIVOT

(b) Chain quality.

Figure 5: Pivot identification on perturbed BizHigh data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k=0 k=1 k=2 k=3 k=4 k=5 k=10 k=100

F-measure Precision Recall

(a) Pivot quality.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k=0 k=1 k=2 k=3 k=4 k=5 k=10 k=100

F-measure Precision Recall

(b) Chain quality.

Figure 6: Effect of robustness requirement on BizAvg data.

ots by agglomerative clustering [27]. Recall that by default we
apply PIVOT. Figure 5 compares them on the perturbed BizHigh
data. First, we observe similar results of ONLYSCREEN and PIVOT
on all data sets since most inputs to SPLIT pass the k-robustness
test. Thus, although SCREEN in itself cannot guarantee soundness
of the resulting pivots, it already does well in practice. Second,
YOSHIDAI has lower recall in both pivot and clustering results,
since it has stricter criteria in pivot generation.

Robustness requirement: We next studied how the robustness re-
quirement can affect the results (Figure 6). We have three observa-
tions. (1) When k = 0, we essentially take every connected sub-
graph as a pivot, so the generated pivots can have a much lower pre-
cision; those false positives cause both a low precision and a low re-
call for the resulting chains because we do not collect high-quality
strong evidence. (2) When we vary k from 1 to 4, the number of
false positives decreases while that of false negatives increases for
the pivots (Figure 6(a)), and the F-measure of the chains in Fig-
ure 6(b) increases but only very slightly. (3) When we continue in-
creasing k, the results of pivots and clusters remain stable. This is
because setting k=4 already splits the graph into single v-cliques,
so further increasing k would not change the pivots. This shows
that considering k-robustness is important, but k does not need to
be too high.

Graph generation: We compared three edge-adding strategies for
similarity graphs: SIM takes weighted similarity on each attribute
except location and requires a similarity of over .8; TWODOM re-
quires sharing name and at least two values on primary-value at-
tributes; ONEDOM requires sharing name and one value on primary-
value attributes. Recall that by default we applied ONEDOM. We
observe that (1) SIM requires similar records so has a high preci-
sion, with a big sacrifice on recall for the pivots (0.00025); as a
result, the F-measure of the chains is very low (.59); (2) TWODOM
has the strongest requirements and so has even lower recall than
SIM for the pivots (.00002), and in turn it has the lowest F-measure
for the chains (.52). This shows that only requiring high precision
for pivots with big sacrifice on recall can also lead to low F-measure
for the chains.

6.2.2 Clustering
Clustering strategy: We first compared our clustering algorithm
with two algorithms proposed for the second stage of two-stage
clustering: LIUII [21] iteratively applies majority voting to assign
each record to a cluster and collects a set of representative features

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F-measure Precision Recall

LIUII

YOSHIDAII

GROUP

Figure 7: Clustering strategies
on BizAvg data.

 5

 50

 500

 5000

 50000

 0 20 40 60 80 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

of record (%)

NAIVE
INDEX

SINDEX
UNION

PIVOT

Figure 8: Execution time of
pivot generation(we plot only
those below 10 hours).

for each cluster using a threshold (we set it to 5, which leads to
the best results); YOSHIDAII [27] is the second stage of YOSHIDA.
Figure 7 compares their results. We observe that our clustering
method improves the recall by 39% over LIUII and by 11% over
YOSHIDAII. LIUII may filter strong evidence by the threshold;
YOSHIDAII cannot handle records with null values well.

Value weight: We then compared the results with and without set-
ting popularity weights for values. We observe that setting the pop-
ularity weight helps distinguish primary values from unpopular val-
ues, thus can improve the precision. Indeed, on perturbed BizHigh
data it improves the precision from .11 to .98, and improves the
F-measure by 403%.

Attribute weight: We next considered our attribute weight learn-
ing strategy. We first compared SEPARATEDPRIMARY, which learns
separated weights for different primary-value attributes, and UNIT-
EDPRIMARY (our default), which considers all such attributes as a
whole and learns one single weight for them. On BizAvg the latter
improves over the former by 95% on recall and obtains slightly
higher precision, because it penalizes only if neither phone nor
URL is shared and so is more tolerant to different values for primary-
value attributes.

Robustness w.r.t. parameter p: We also ran experiments to test
robustness against parameter setting. We observed very similar re-
sults when we ranged p from .8 to 1.

6.2.3 Preprocessing
Attribute categorization: We studied attribute categorization on
both data sets. For Biz we used a labeled data set of 2062 records
and identified name as a common-value attribute (m = .94, s =
.85, n = .001); for SIGMOD we used a labeled data set of 369
records and identified affiliation as a common-value attribute (m =
.77, s = .85, n = 0).

Then for Biz we used a set of randomly selected 166, 236 records
and for SIGMOD we used all records. We considered only groups
of size above 10; we averagedm, s, n among top 1% values for Biz
and among all values for SIGMOD. For Biz data, we identify URL
domain and phone as primary-value attributes, and state and cat-
egory as multi-value attributes. For SIGMOD data, we identify
phone-prefix, fax-prefix and email-domain as primary-value at-
tributes, and state as a multi-value attribute.

Entity resolution vs group linkage: We studied the interaction be-
tween entity resolution and group linkage on BizAvg. We compared
three strategies: NO-ER does not conduct entity resolution; PRE-
ER (the default) conducts entity resolution before group linkage;
FULL-ER first conducts entity resolution (merging records with
highly similar name, address, city and the same phone or URL
domain), then conducts group linkage, while removing duplicates
within pivots or groups if they have highly similar address and
city. We have three observations. First, the three approaches ob-
tain similar results (F-measure all above .95). Second, applying
entity resolution slightly improves group linkage (F-measure from

.9639 to .9643). Third, among the 2062 records in BizAvg, PRE-ER
identifies 21 pairs of duplicates while FULL-ER identifies 59 pairs,
showing that group linkage can improve entity resolution too.

6.3 Evaluating Efficiency
Our algorithm finished in 8.3 hours on Biz data set with 18M

listings on a single machine. Note that simpler methods (which
we describe shortly) took over 10 hours for Stage I on 20% of the
same data set. Also note that using Hadoop can reduce execution
time for graph construction from 1.9 hours to 37 minutes; we skip
the details as it is not the focus of the paper.
Stage I: It spent 1.9 hours for graph construction and 2.2 minutes
for pivot generation. To test scalability, we randomly divided the
data set into five subsets of the same size; we started with one
subset and gradually added the others. We compared five pivot
generation methods: NAIVE applies SPLIT on the original graph;
INDEX optimizes NAIVE by using an inverted index; SINDEX sim-
plifies the inverted list by Theorem 4.6; UNION in addition merges
v-cliques into v-unions by Theorem 4.7; PIVOT in addition splits
the input graph by Theorem 4.8. Figure 8 shows the results and
we have five observations. (1) NAIVE was very slow. Even though
it applies SPLIT rather than finding the max flow for every pair of
nodes, so already optimizes by Theorem 4.11, it took 6.8 hours
on only 20% data and took more than 10 hours on 40% data. (2)
INDEX improved NAIVE by two orders of magnitude just because
the index simplifies finding neighborhood v-cliques; however, it
still took more than 10 hours on 80% data. (3) SINDEX improved
INDEX by 41% on 60% data as it reduces the size of the inverted
index by 64%. (4) UNION improved SINDEX by 47% on 60% data;
however, it also took more than 10 hours on 80% data. (5) PIVOT
improved UNION significantly; it finished in 2.2 minutes on the
whole data set so further reduced execution time by at least three
orders of magnitude, showing importance of splitting.
Stage II: After Stage I we have .7M pivots and 17.3M remaining
records. It spent 6.4 hours for Stage II: 1.7 hours for blocking and
4.7 hours for clustering. The long time for clustering is because of
the huge number of blocks. There are 1.4M blocks with multiple
elements (a pivot is counted as one element), with a maximum size
of 22.5K and an average of 4.2. On only 35 blocks clustering took
more than 1 minute and the maximum is 2.5 minutes, but for 99.6%
blocks the size is less than 100 and CLUSTER took less than 60 ms.
The average time spent on each block is only 9.6 ms.

6.4 Summary and Recommendations
We summarize our observations as follows.

1. Identifying pivots and leveraging strong evidence learned from
the pivots is crucial in group linkage.

2. There are often erroneous values in real-world data and it is
important to be robust against them; requiring k-robustness
with k ∈ [1, 4] already performs well on most data sets that
have reasonable number of errors.

3. Setting weights of values according to their popularity is crit-
ical for obtaining good clustering results.

4. Our algorithm is efficient and scalable.

7. CONCLUSIONS
In this paper we studied how to link records to identify groups.

We proposed a robust algorithm that is shown to be empirically
scalable and accurate over two real-world data sets. Future work
includes extending our techniques to find overlapping groups, and
applying our framework in other contexts where tolerance to value
diversity is critical, and erroneous data is prevalent.

8. REFERENCES
[1] N. Bansal, F. Chiang, N. Koudas, and F. W. Tompa. Seeking

stable clusters in the blogosphere. In VLDB, pages 806–817,
2007.

[2] H. Bruhn, R. Diestel, and M. Stein. Menger’s theorem for
infinite graphs with ends. J. Graph Theory, 50:199–211,
November 2005.

[3] Y.-H. Chiang, A. Doan, and J. F. Naughton. Tracking entities
in the dynamic world: A fast algorithm for matching
temporal records. PVLDB, 7(6):469–480, 2014.

[4] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for name-matching
tasks. In IIWEB, pages 73–78, 2003.

[5] D. Dey. Entity matching in heterogeneous databases: A
logistic regression approach. Decis. Support Syst.,
44:740–747, 2008.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.
Data Eng., 19(1):1–16, 2007.

[7] S. Even and E. R. Tarjan. Network flow and testing graph
connectivity. SIAM Journal on Computing, 4(4):507–518,
1975.

[8] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. PVLDB, 2(1):407–418, 2009.

[9] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the Americal Statistical Association,
64(328):1183–1210, 1969.

[10] L. R. Ford and D. R. Fulkerson. Flows in networks.
Princeton University Press, 1962.

[11] L. Getoor and C. P. Diehl. Link mining: A survey. SIGKDD
Explor. Newsl., 7(2):3–12, 2005.

[12] L. Getoor and A. Machanavajjhala. Entity resolution:
Theory, practice & open challenges. PVLDB,
5(12):2018–2019, 2012.

[13] S. Guo, X. Dong, D. Srivastava, and R. Zajac. Record
linkage with uniqueness constraints and erroneous values.
PVLDB, 3(1):417–428, 2010.

[14] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller.
Framework for evaluating clustering algorithms in duplicate

detection. PVLDB, pages 1282–1293, 2009.
[15] M. A. Hernandez and S. J. Stolfo. Real-world data is dirty:

Data cleansing and the merge/purge problem. Data Mining
and Knowledge Discovery, 2:9–37, 1998.

[16] S. Huang. Mixed group discovery: Incorporating group
linkage with alternatively consistent social network analysis.
International Conference on Semantic Computing,
0:369–376, 2010.

[17] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In SIGMOD, pages
802–803, 2006.

[18] B. Larsen and C. Aone. Fast and effective text mining using
linear-time document clustering. In KDD, pages 16–22,
1999.

[19] P. Li, X. L. Dong, A. Maurino, and D. Srivastava. Linking
temporal records. PVLDB, 4(11):956–967, 2011.

[20] P. Li, X. Luna Dong, S. Guo, A. Maurino, and D. Srivastava.
Robust Group Linkage. http://arxiv.org/abs/1503.00604,
Mar. 2015.

[21] X. Liu, Y. Gong, W. Xu, and S. Zhu. Document clustering
with cluster refinement and model selection capabilities. In
SIGIR, pages 191–198, 2002.

[22] B. W. On, N. Koudas, D. Lee, and D. Srivastava. Group
linkage. In ICDE, pages 496–505, 2007.

[23] B. Taskar, M. fai Wong, P. Abbeel, and D. Koller. Link
prediction in relational data. In Advances in Neural
Information Processing Systems, 2003.

[24] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking.
In SIGMOD, pages 219–232, 2009.

[25] D. T. Wijaya and S. Bressan. Ricochet: A family of
unconstrained algorithms for graph clustering. In DASFAA,
pages 153–167, 2009.

[26] W. E. Winkler. Methods for record linkage and bayesian
networks. Technical report, U.S. Bureau of the Census, 2002.

[27] M. Yoshida, M. Ikeda, S. Ono, I. Sato, and H. Nakagawa.
Person name disambiguation by bootstrapping. In SIGIR,
pages 10–17, 2010.

