
Incremental Record Linkage

Anja Gruenheid
ETH Zurich

anja.gruenheid@inf.ethz.ch

Xin Luna Dong
Google Inc.

lunadong@google.com

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

ABSTRACT
Record linkage finds records that refer to the same real-world entity
and is often a crucial step in data cleaning and data integration. The
rapid growth of data in the big data era raises the challenges that ap-
plying record linkage on the huge volume of data often takes a long
time, and the high velocity of data quickly makes previous linkage
results obsolete. To address these challenges, this paper presents a
set of incremental linkage algorithms. These algorithms not only
allow merging records in the updates with existing clusters, each
representing records that refer to the same entity, but also allow
leveraging the new evidence from the updates to fix previous link-
age errors. Experimental results on two real-world data sets show
that our algorithms can significantly reduce linkage time without
sacrificing linkage quality.

1. INTRODUCTION
Record linkage finds records (i.e., database tuples) that refer to

the same real-world entity (e.g., businesses, persons) and is often
a crucial step in data cleaning and data integration (surveyed in [5,
8]). It typically proceeds in three steps. First, it puts records into
(multiple, possibly overlapping) blocks, such that records that share
some commonality and may refer to the same real-world entity co-
occur in at least one block. Second, for records in the same block,
it computes pairwise similarity. Third, it clusters the records based
on pairwise similarity, such that records that refer to the same real-
world entity belong to the same cluster, and records that refer to
different entities belong to different clusters.

The big data era raises two challenges for record linkage. First,
the volume of data is often huge and applying record linkage usu-
ally takes a long time. Second, the velocity of data updates is of-
ten high, quickly making previous linkage results obsolete. These
challenges call for an incremental linkage scheme, such that we can
quickly update linkage results when data updates arrive. There are
two goals for incremental linkage. First, we wish that the incre-
mental approach obtains the same or very similar results as apply-
ing batch linkage. Second, we wish to conduct incremental linkage
significantly faster than batch linkage.

A natural thought for incremental linkage is that for each inserted
record, we compare it with existing clusters, then either put it into
an existing cluster (i.e., referring to an existing entity), or create a
new cluster for it (i.e., referring to a new entity). However, every
linkage algorithm may make mistakes and the extra information
from the data updates can often help us identify and fix such mis-
takes, as we illustrate next with an example.

EXAMPLE 1.1. Figure 1(a) shows a set of 10 business records
that represent 5 businesses. For the purpose of illustration, we com-
pute pairwise similarity in a simple way: we compare (1) name,
(2) address excluding house number, (3) house number in ad-
dress, (4) city, and (5) phone; the similarity is 1 if all of the
five values are the same, .9 if four are the same, .8 if three are
the same, and 0 otherwise. Figure 1(b) shows the similarity graph
between the records, where each node represents a record and each
edge represents the pairwise similarity. It also shows the results of
correlation clustering (we describe it in Section 2) as the linkage
result. Note that it wrongly clusters r4 with r1 − r3 because of the
wrong phone number from r4 (in italic); it fails to merge r5 and
r6 because of the missing information in r6; and it wrongly merges
r9 with r7 − r8 instead of with r10, because r9 appears similar to
r7− r8 while r10 does not (different name, different house number,
and missing phone).

Now consider four updates ∆D1 − ∆D4 in Figure 2(a); they
together insert records r11 − r17; Figure 3 shows the updated sim-
ilarity graph and the results of the aforementioned naive approach.
This result (1) contains a separate cluster for r11 as it is differ-
ent from any existing record, (2) merges r12 − r13 to C2 as they
are more similar to r5 than to r6, (3) merges r14 − r15 to C1, (4)
merges r16 toC5 as it is not similar to r7−r8 inC4, and (5) merges
r17 to C4.

However, a more careful analysis of the inserted nodes allows
fixing some previous mistakes and obtaining a better clustering
(shown in Figure 2(b)). First, because r12 − r13 are both similar
to r5 and r6, they fill in the missing information for r6 and provide
extra evidence to merge r5 and r6. Second, because r14 − r15 are
both similar to r1 − r3 but quite different from r4, they dilute the
similarity of r4 to the rest of the cluster and suggest moving r4 out.
Third, with r16− r17, r9 appears to be more similar to r10 and r16
than to r7 − r8, suggesting moving r9 from C4 to C5. 2

Incremental record linkage has been studied before in [10, 11],
where the main focus is incremental linkage for evolving match-
ing rules. In [11] the authors briefly discussed evolving data and
identified a condition under which we can apply the same linkage
algorithm on previous clustering results and the singleton clusters
for newly inserted nodes, while obtaining the same results. This
condition requires the linkage algorithm to be general incremental;
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BizID ID name address city phone
B1 r1 Starbucks 123 MISSION ST STE ST1 SAN FRANCISCO 4155431510
B1 r2 Starbucks 123 MISSION ST SAN FRANCISCO 4155431510
B1 r3 Starbucks 123 Mission St San Francisco 4155431510
B2 r4 Starbucks Coffee 340 MISSION ST SAN FRANCISCO 4155431510

D0
B3 r5 Starbucks Coffee 333 MARKET ST SAN FRANCISCO 4155434786
B3 r6 Starbucks MARKET ST San Francisco
B4 r7 Starbucks Coffee 52 California St San Francisco 4153988630
B4 r8 Starbucks Coffee 52 CALIFORNIA ST SAN FRANCISCO 4153988630
B5 r9 Starbucks Coffee 295 California St San Francisco 4159862349
B5 r10 Starbucks 295 California St San Francisco
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Figure 1: Original business listings and record linkage results.

BizID ID name address city phone
∆D1 B6 r11 Starbucks Coffee 201 Spear Street San Francisco 4159745077

∆D2
B3 r12 Starbucks Coffee MARKET ST San Francisco 4155434786
B3 r13 Starbucks 333 MARKET ST San Francisco 4155434786

∆D3
B1 r14 Starbucks 123 MISSION ST STE ST1 SAN FRANCISCO 4155431510
B1 r15 Starbucks 123 Mission St Ste St1 San Francisco 4155431510

∆D4
B5 r16 Starbucks 295 CALIFORNIA ST SAN FRANCISCO 4159862349
B4 r17 Starbucks 52 California Street SF 4153988630
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Figure 2: Updates for business listings and record linkage results with all updates.

that is, for any arbitrary subset of records, first applying the linkage
algorithm on the subset and then on the resulting clustering and the
rest of the nodes obtain the same results. However, this condition
is rather demanding: first, a lot of clustering algorithms, such as
the aforementioned naive approach, do not satisfy this condition;
second, many clustering algorithms, such as correlation clustering
(we shall explain it soon), operate on records rather than subsets of
records. In this paper we ask two questions. First, in case the batch
linkage algorithm is not general incremental, can we do better than
just conducting linkage from scratch? Second, how can we make
a trade-off between quality of the linkage results and efficiency of
the algorithm?

This paper presents a set of algorithms that can incrementally
conduct record linkage when new records are inserted, existing
records are deleted or changed (i.e., values are modified). We note
that among the three steps of record linkage, performing block-
ing and pairwise similarity computation in an incremental fashion
is fairly straight-forward when the previous results are available.
Thus, we focus on the third step, clustering; that is, reclustering
the existing records and the updated records based on the previ-
ous clustering results. In particular, we make the following three
contributions.

• First, we propose two algorithms that apply clustering on a
subset of the records rather than all records. We can prove
their optimality if the clustering criteria satisfy a set of prop-
erties that are weaker than being general incremental.
• Second, we design a greedy approach that conducts link-

age incrementally in polynomial time by merging and split-
ting clusters connected to the updated records, and moving
records between those clusters.
• Third, we instantiate our algorithms on two clustering meth-

ods that do not require knowing the number of clusters a pri-
ori and are used often in record linkage: correlation cluster-
ing and DB-index clustering. Our experiments on real-world
data sets show that our algorithms run significantly faster
than batch linkage while obtaining similar results.

The rest of the paper is organized as follows. Section 2 for-
mally defines the problem and reviews clustering algorithms used
for batch record linkage. Sections 3-4 describe our incremental
linkage algorithms. Section 5 presents our experimental results,
Section 6 discusses related work, and Section 7 concludes.
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Figure 3: Results of a baseline incremental linkage algorithm.

2. PROBLEM STATEMENT
This section formally defines the problem of incremental record

linkage and reviews techniques for batch record linkage.

2.1 Problem definition
Given a set of records, blocking functions, and a pairwise sim-

ilarity function, record linkage is essentially a clustering problem,
where each cluster should correspond to a single distinct real-world
entity. We denote by D a set of records and by LD a clustering
of records in D as record-linkage results. Ideally, the clustering
should have both high precision (i.e., records in the same cluster
refer to the same real-world entity) and high recall (i.e., records
referring to the same real-world entity belong to the same cluster).
We denote by F the batch linkage method that obtains LD on D;
that is, F (D) = LD.

We consider three types of update operations: Insert adds a
new record; Delete removes an existing record; and Change
modifies one or a few values for an existing record. Note that
Change can be achieved by first removing the old record and than
inserting the new record; however, as we show later, considering
Change directly can be more efficient. We call the update opera-
tions (Insert, Delete, and Change) made at the same time
an increment, denoted by ∆D. We denote the result of applying
∆D to D by D + ∆D. Note that because ∆D can contain deletes
and changes, the number of the resulting records may be lower than
the sum of the number of the original records and the number of
records in the increment; that is, |D + ∆D| ≤ |D| + |∆D|. In
this paper, we assume every increment ∆D is valid: the record in a
Delete or Change operation already exists in D, and the record
in an Insert does not exist in D (an identical record with the
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same record ID would be removed from the increment). We can
now define incremental linkage.

DEFINITION 2.1 (INCREMENTAL LINKAGE). Let D be a set
of records and ∆D be an increment to D. Let LD be the clustering
of records in D. Incremental linkage clusters records in D + ∆D
based on LD. We denote the incremental linkage method by f , and
denote the results by f(D,∆D,LD). 2

The goal for incremental linkage is two-fold. First, incremental
linkage should be much faster than conducting batch linkage, espe-
cially when the number of operations in the increment is small; that
is, applying f(D,∆D,LD) should be much faster than applying
F (D + ∆D) when |∆D| � |D|. Second, incremental linkage
should obtain results of similar quality to batch linkage; that is,
f(D,∆D,LD) ≈ F (D + ∆D), where≈ denotes clustering with
similar precision and recall.

EXAMPLE 2.2. Consider the motivating example. The original
data set is D0 = {r1 − r10}, and the linkage result LD0 is shown
in Figure 1(b). As we have explained, the clustering is incorrect.

Figure 2(a) shows 4 increments ∆D1 −∆D4, each containing
one to two Insert operations. We apply incremental linkage four
times, one for each increment. The final result contains 6 clusters,
as shown in Figure 2(b). Indeed, this is the correct result and as we
show later, it is the result we would obtain when we conduct batch
clustering on records r1 − r17. 2

Graph representation: We construct a similarity graph G(V,E)
for records in D, where each node vr ∈ V represents a record
r ∈ D and each edge (vr, vr′) ∈ E with weight sim(r, r′) (0 ≤
sim(r, r′) ≤ 1) represents the similarity between records r, r′ ∈
D. We can simplify the graph by omitting an edge if the similar-
ity is below a threshold. As an example, the similarity graph for
D = {r1 − r10} is shown in Figure 1(b). Record linkage can be
considered as graph clustering and we denote the result also asLG.
We now consider how an update would change the graph.

• Insert: Inserting a record is equivalent to adding a node
and edges to the node.
• Delete: Deleting a record is equivalent to removing a node

and edges to the node.1

• Change: Changing a record is equivalent to removing ex-
isting edges and adding new edges to the node.

In the rest of the paper, we focus on adding a node, removing
a node, and changing edges to a node as update operations. We
denote the changes of an increment to a graph by ∆G, the result
graph by G + ∆G, and the result of incremental linkage also as
f(G,∆G,LG).

2.2 Background
To obtain similar quality of linkage, we shall design the incre-

mental linkage method f according to the batch linkage method
F . We next review two classical methods for record linkage: cor-
relation clustering [1] and DB-index clustering [4]. Both methods
evaluate a clustering by an objective function and choose the clus-
tering that optimizes the value of the objective function; in this way,
we reward high cohesion, measuring the similarity or closeness of
nodes in the same cluster, and penalize high correlation, measuring
the similarity or closeness of nodes across clusters.
1Note that one may decide to use other semantics; for example, if a business
record is deleted because of business closing, the node and edges may be
kept to facilitate linkage in the future.

We focus on these two methods for three reasons. First, unlike
some agglomerative clustering methods such as Swoosh [2], they
allow splitting of previously formed clusters as we observe more
records and collect more evidence; indeed, many agglomerative
clustering algorithms are general incremental, so according to [11]
we can simply apply the algorithm on the previous clustering re-
sults and the increments. Second, unlike the clustering methods
that require a priori knowledge of the number of clusters, such as
K-means clustering, these two methods can be applied when such
knowledge does not exist, so are suitable for record linkage. Third,
each of these two methods represents one of the two categories of
graph-clustering methods [7]: correlation clustering represents the
category that uses adjacency-based measures and DB-index clus-
tering represents the category that uses distance-based measures.
We now review each method in more detail.
Correlation clustering: The goal of correlation clustering is to
find a partition of nodes in G that agrees as much as possible with
the edge labels. To achieve this goal, we can either maximize agree-
ments between the clustering and the labels or minimize disagree-
ments. The two strategies are equivalent but differ from the approx-
imation point of view. We focus on the latter strategy in the rest of
the paper. For each pair of nodes in the same cluster, there is a co-
hesion penalty being the complement of the similarity; for each pair
of nodes in different clusters, there is a correlation penalty being
the similarity. We wish to minimize the sum of the penalties:

CC(LG) =
∑

C∈LG,r,r
′∈C

(1− sim(r, r′))

+
∑

C,C′∈LG,C 6=C′,r∈C,r′∈C′
sim(r, r′). (1)

A special case for correlation clustering is when we take bi-
nary similarities: the similarity between two records is either 0
(dissimilar) or 1 (similar). It is proved that correlation cluster-
ing is NP-complete even for this special case and an algorithm
called CAUTIOUS with complexityO(|V |2) can obtain a 9( 1

δ2
+1)-

approximation, where δ is a threshold applied in the algorithm [1].
It is also shown in [1] that for graphs with weighted edges, round-
ing the weights to 0 or 1 and applying CAUTIOUS can obtain a
( 18
δ2

+ 10)-approximation.

EXAMPLE 2.3. Consider clustering LD0 in Figure 1(b). The
clustering has a cohesion penalty .2 + .2 + .1 + .1 + 1 = 1.6 for
C1 and .2 + .2 = .4 for C4. It also has a correlation penalty of .8
between C4 and C5. Thus, CC(LD0) = 1.6 + .4 + .8 = 2.8; it is
the lowest penalty among all possible clusterings for D0. 2

DB-Index clustering: Davies-Bouldin index was originally de-
fined for a Euclidean space [4]; applying it to record linkage re-
quires some adjustment for the definition of distance. We adopt the
definition in [6], described as follows.

For each cluster C, the intra-cluster distance is defined as the
complement of average similarity between records in the cluster;
that is, D(C) = 1−Avgr,r′∈Csim(r, r′). For each pair of distinct
clusters C and C′, the inter-cluster distance is defined as the com-
plement of average similarity between records across the clusters;
that is, D(C,C′) = 1 − Avgr∈C,r′∈C′sim(r, r′). The separa-
tion measure between C and C′ is then defined as M(C,C′) =
D(C)+D(C′)+α
D(C,C′)+β , where α and β are small positive numbers2 such

that the denominator or numerator would affect the result even
when the other is 0. For each cluster C, we define its separation
2In our experiments we set α = .05 and β = .001 such that splitting a
complete subgraph with edges of weight 1 would have a high penalty.
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measure as M(C) = maxC′ 6=CM(C,C′). DB-index is defined
as the average separation measure for all clusters and we wish to
minimize it:

DB(LG) = AvgC∈LG
M(C). (2)

Guo et al. [6] showed that DB-index clustering is also intractable
and presented a hill-climbing algorithm with complexityO(l|V |4),
where l is the number of iterations in hill climbing.

EXAMPLE 2.4. Consider the clustering in Figure 1(b). The
intra-cluster distance for C1 is 1 − Avg{.8, .8, .9, .9, 1, 0} = .27;
that for C4 is .13; and that for the other clusters is 0. The inter-
cluster distance between C4 and C5 is 1−Avg{.8, 0, 0} = .73 and
that between any other pair of clusters is 1. Taking C4 as an exam-
ple. If α = .01 and β = .001, the separation measure for C4 and
C5 is .13+0+.01

.73+.001
= .19; that for C4 and C1 is .13+.27+.01

1+.001
= .41;

and that for C4 and C2 (or C3) is .13+0+.01
1+.001

= .14. Thus, we
have M(C4) = max{.41, .14, .14, .19} = .41. The DB-index has
value Avg{.41, .28, .28, .41, .28} = .332 and this clustering has
the lowest DB-index among all possible clusterings. 2

3. OPTIMAL INCREMENTAL SOLUTION
Both correlation clustering and DB-index clustering aim at mini-

mizing a penalty function. Ideally, we wish to design an incremen-
tal linkage algorithm that is guaranteed to find an optimal clustering
on the update result. We say such an algorithm is optimal.

DEFINITION 3.1 (OPTIMAL INCREMENTAL LINKAGE). Let
LoptG be an optimal clustering onG. An incremental linkage method
f is optimal if for every G,∆G, and LoptG , result f(G,∆G,LoptG )
is an optimal clustering on G+ ∆G. 2

In this section, we present two incremental linkage algorithms
that are optimal for correlation clustering. However, they are not
optimal for DB-index clustering, which lacks basic desirable prop-
erties for clustering.

3.1 Desirable properties of linkage
Before we present our algorithm, we first describe several desir-

able properties for a graph clustering method. As we show later,
these properties are critical for designing optimal incremental link-
age methods.

DEFINITION 3.2 (LINKAGE PROPERTIES). Let F be a graph
clustering method. Let G be a similarity graph and LoptG be an
optimal clustering of G according to F .

Connectivity: Let LG be a clustering of G and L′G be a clustering
obtained by merging two disconnected clusters in LG. We say F
satisfies connectivity if for every such LG and L′G, LG is consid-
ered better than L′G (i.e., having a lower penalty).

Locality: Let G1 and G2 be a split of G such that there is no edge
between G1 and G2 (Figure 4(a)). We say F satisfies locality if for
every suchG,G1, andG2, LoptG1

∪LoptG2
forms an optimal clustering

for G.

Monotonicity: Let v1, v2 ∈ V be two nodes in the same cluster in
LoptG . Let G′ be a graph obtained by increasing the weight of edge
(v1, v2) in G. We say F satisfies positive monotonicity if for every
such G and G′, LoptG is also an optimal clustering of G′.

Let v1, v2 ∈ V be two nodes in different clusters in LoptG . Let
G′ be a graph obtained by decreasing the weight of edge (v1, v2)
in G. We say F satisfies negative monotonicity if for every such G
and G′, LoptG is also an optimal clustering of G′.

G 
G2 G1 

(a) Locality

G G’ 

(b) Exchangeability

G 
G3 G1 

G2 

(c) Separability

Figure 4: Linkage properties (Definition 3.2).

We say F satisfies monotonicity if it satisfies both positive mono-
tonicity and negative monotonicity.

Exchangeability: Let C̄ ⊆ LoptG be a subset of clusters and G′ ⊆
G be the subgraph containing only nodes in C̄ and edges between
them (Figure 4(b)). We say F satisfies exchangeability if for every
such G and C̄, C̄ is an optimal clustering for G′ and replacing C̄
with any other optimal clustering of G′ obtains an optimal cluster-
ing for G.

Separability: Let G1, G2, G3 be a partition of G such that (1) G1

and G3 are disconnected; (2) there exists an optimal clustering for
G1 ∪ G2 with no cluster across G1 and G2; and (3) there exists
an optimal clustering for G2 ∪ G3 with no cluster across G2 and
G3 (Figure 4(c)). We say F satisfies separability if for every such
G,G1, G2 andG3, there exists an optimal clustering forG with no
cluster across two or three of the subgraphs G1 −G3. 2

Among these properties, the first three are basic and a good clus-
tering model should be able to satisfy them. The last two are more
demanding. We can prove that correlation clustering has all of these
desired properties.

THEOREM 3.3. Correlation clustering (Eq.(1)) satisfies connec-
tivity, locality, monotonicity, exchangeability, and separability. 2

PROOF. Connectivity: The clustering LG has lower cohesion
penalty and the same correlation penalty than L′G. So LG is con-
sidered better.

Locality: Suppose in contrast there are better clusterings and we
denote the best by LG. According to connectivity, nodes in G1

and G2 cannot be in the same cluster in LG, so we can split LG
into clusters for G1 and clusters for G2. Since there is no correla-
tion between the two sets of clusters, without losing generality, the
clustering for G1 must have a lower penalty than LoptG1

, contradict-
ing with LoptG1

being optimal.
Monotonicity: We first prove for positive monotonicity. Suppose

the weight of (v1, v2) increases from w1 to w2 > w1. Suppose
LoptG has penalty popt on G, then it has penalty popt + w1 − w2

on G′. For every clustering L on G with penalty p, we have p ≥
popt. If v1 and v2 are in the same cluster in L, the penalty of
L on G′ becomes p + w1 − w2 ≥ popt + w1 − w2. If v1 and
v2 are in different clusters in L, the penalty of L on G′ becomes
p − w1 + w2 > popt + w1 − w2. So LoptG is still optimal on G′.
We can prove for negative monotonicity similarly.

Exchangeability: Suppose in contrast there are better clusterings
for G′ and we denote the best by LoptG′ . Replacing C̄ in LoptG with
clusters in LoptG′ will obtain a clustering that has lower penalty for
subgraph G′, the same penalty for subgraph G \ G′, and the same
correlation penalty between clusters inG and those inG\G′. Thus,
the new clustering has a lower penalty, contradicting with LoptG be-
ing optimal. Finally, replacing C̄ with another optimal clustering
on G′ obtains a clustering with the same penalty for subgraph G′

and the same correlation penalty between G′ and G \ G′, so the
new clustering is also optimal.
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Figure 5: An example that violates properties in Definition 3.2 for
DB-index.

Separability: According to connectivity, no cluster in LoptG is
across G1 and G3. We now prove that there exists an optimal clus-
tering that does not contain a cluster across G1 − G3. Then, ac-
cording to exchangeability, we can find an optimal clustering of G
such that no cluster is across G1 and G2, or across G2 and G3.

Suppose in an optimal clustering there is a clusterC acrossG1, G2,
andG3. We consider partitioningC intoC1 ∈ G1, C2 ∈ G2, C3 ∈
G3 such that C1 ∪ C2 ∪ C3 = C and consider replacing C with
C1, . . . , C3 to obtain a new clustering L. Since we have the same
cohesion penalty within C1, C2, C3 for C and for C1, . . . , C3, the
only difference is the cohesion penalty between C1 − C3 for LoptG

and the correlation penalty between them for L. Let p12 be the
correlation penalty between C1 and C2 and p23 be the correlation
penalty between C2 and C3 (note that the correlation penalty be-
tween C1 and C3 is 0 since they are disconnected). Then the cor-
relation penalty for L is p = p12 + p23 and the cohesion penalty
for LoptG is p′ = |C1||C2| − p12 + |C2||C3| − p23 + |C1||C3|. We
next prove that p ≤ p′, so L is optimal.

We first prove there must exist a clustering of G1 ∪ G2 that
contains clusters C1 and C2. Consider an optimal clustering L12

with no cluster across G1 and G2. First, if L12 contains a super-
cluster of C1 (similar for C2), denoted by C′1, we can show that
adding C′1 \ C1 into C would obtain a clustering with equal or
less penalty for G. Since Lopt is already optimal, there must be
another optimal clustering of G1 ∪ G2 that contains C1 and C2.
Second, if L12 splits C1 (similar for C2), we can show that split-
ting C in a similar way would obtain a clustering with equal or
less penalty for G. Since Lopt is optimal, there must be another
optimal clustering of G1 ∪ G2 that contains C1 and C2. Finally,
we can prove the same claim if L12 splits C1 and each cluster also
contains other nodes (similar for C2). Since the optimal clustering
contains C1 and C2, we must have p12 ≤ |C1||C2| − p12. Simi-
larly, p23 ≤ |C2||C3| − p23. Therefore, we must have p ≤ p′.

We consider DB-index clustering because it represents distance-
based clustering; however, because DB-index averages separation
measures, none of these desirable properties holds, as the following
theorem shows.

THEOREM 3.4. DB-index clustering does not satisfy connectiv-
ity, locality, exchangeability, separability, or monotonicity. 2

PROOF. Figure 5 shows a counter example for these properties.
Connectivity: Clustering L′G contains n + 1 clusters: C0 −

Cn, n > 2. Among them, C0 contains two subgraphs C′0 and
C′′0 , where C′0 has m nodes. The intra-cluster distance of C0 is
1 − .5∗m(m−1)/2+.5

(m+2)(m+1)/2
= .5 + 2m

(m+2)(m+1)
. When m is large, the

distance can be arbitrarily close to .5, and we denote it by .5 + δ,
where δ is a positive number close to 0. For Ck, k ∈ [1, n], the
intra-cluster distance is 1 − (.5 + 2δ) = .5 − 2δ. For C0 and
Ck, the inter-cluster distance is 1. For Ck and Ck′ , k, k′ ∈ [1, n],

the inter-cluster distance is 1 − 12δ
1−δ /4 = 1−4δ

1−δ . For simplicity,
we assume α = β = 0; we can prove the same conclusion when
α > 0 or β > 0. The separation measure for C0 is M(C0) =
.5+δ+.5−2δ

1
= 1 − δ. The separation measure for Ck and C0 and

that for Ck and Ck′ are the same, 1− δ, so M(Ck) = 1− δ. Thus,
the DB-index is 1− δ.

Now consider splitting C0 into C′0 and C′′0 to obtain LG. The
intra-cluster distance for C′0 (or C′′0 ) is .5 and the separation mea-
sure is 1. The separation measure for Ck remains the same. Thus,
the DB-index is 1+1+(1−δ)n

n+2
= 1 − nδ

n+2
> 1 − δ, so the new

clustering is worse instead of better.
Locality: When α = 1, clustering L′G is the optimal cluster-

ing for G. Consider splitting G into G1 = {C0} and G2 =
{C1, . . . , Cn}. The optimal clustering for G1 contains two clus-
ters C′0 and C′′0 . The optimal clustering for G2 contains clusters
C1, . . . , Cn. However, as we know, {C′0, C′′0 , C1, . . . , Cn} is not
the optimal clustering for G.

Monotonicity: Consider increasing the weight of the edge in
cluster C′′0 from .5 to 1. Before the change, {C0, . . . , Cn} forms
the optimal clustering. After the change, however, {C′0, C′′0 , C1, . . . ,
Cn} forms the optimal clustering. We can prove violation of nega-
tive monotonicity by reducing the weight of edges between Ck and
C′k, k, k

′ ∈ [1, n] from 12δ
1−δ to 0, where {C′0, C′′0 , C1, . . . ,

Cn} becomes the optimal clustering after the change.
Exchangeability: The optimal clustering LG is not optimal for

the subgraph {C0}.
Separability: LetG1 = {C′0}, G2 = {C′′0 }, G3 = {C1, . . . , Cn}.

They satisfy the condition, but the optimal clustering forG contains
a cluster across G1 and G2.

Comparison with [11]: Incremental linkage was briefly discussed
for data updates in [11]. It is proved that if F (1) operates on clus-
ters, and (2) is general incremental, then we can use F directly
as f (i.e., F (G,∆G,LG) = F (G + ∆G).) Here, F is general
incremental if for every subgraph G′ ⊂ G, we have F (G′, G \
G′,LG′) = F (G). However, both CAUTIOUS for correlation clus-
tering and the batch algorithm for DB-index clustering [6] operate
on nodes rather than on clusters.

The properties in Definition 3.2 are for the objective function
used in clustering rather than for the clustering algorithm F (e.g.,
there can be many algorithms aiming at minimizing the penalty
for correlation clustering). Our goal is to design the incremental
algorithm f , which is based on F but can be different from F , such
that f(G,∆G,LG) ≈ F (G+ ∆G) (recall that ≈ denotes that the
results have similar quality).

We next describe two incremental clustering algorithms that are
optimal under these aforementioned properties for linkage.

3.2 Connected component algorithm
Intuitively, when the clustering algorithm satisfies connectivity

and locality, it is safe to consider only the subgraph that is directly
or indirectly connected to the changed nodes. We call this subgraph
the connected component of the increment.

DEFINITION 3.5 (CONNECTED COMPONENT). LetG be a sim-
ilarity graph and ∆G be an increment on G. We define the transi-
tive closure of a node as the connected subgraph inG+∆G includ-
ing the node, and the transitive closure of an edge as the connected
subgraph in G + ∆G including the edge. The connected compo-
nent of ∆G, denoted by T (∆G), contains the transitive closure of
each (added, removed, or changed) node or edge in ∆G. 2

In addition, when monotonicity holds, we can simplify the con-
nected component by ignoring changes of increasing weights for
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intra-cluster edges and of decreasing weights for inter-cluster edges.
Similarly, for a deleted node, we can ignore its associated edges to
other clusters, as their weights essentially drop to 0. We call the
result subgraph the monotone connected component.

DEFINITION 3.6 (MONOTONE CONNECTED COMPONENT).
Let G be a similarity graph and LoptG be the given optimal cluster-
ing onG. Let ∆G be an increment onG. The monotone connected
component of ∆G, denoted by T̂ (∆G), is defined as follows.

• For each inserted node v ∈ ∆G, T̂ (∆G) contains its tran-
sitive closure.
• For each deleted node v ∈ ∆G, T̂ (∆G) contains its cluster

in LoptG , but does not contain v and edges to v.
• For each edge e ∈ ∆G with increased weight, if e is across

clusters in LoptG , T̂ (∆G) contains its transitive closure.
• For each edge e ∈ ∆G with decreased weight, if e is within

a cluster in LoptG , T̂ (∆G) contains its transitive closure. 2

Given G,∆G,LoptG , the connected component algorithm, CON-
NECTED, proceeds in three steps.

1. Find the connected component T (∆G).
2. Find the optimal clustering on T (∆G).
3. Construct the new clustering fromLoptG by replacing the clus-

ters involving nodes in T (∆G) with the optimal clusters for
T (∆G).

Note that instead of using connected component, we can also
use monotone connected component and we call this alternative
MONOCONNECTED.

EXAMPLE 3.7. Consider increment ∆D4 in Figure 2(a). It in-
serts nodes r16, r17, and the associated edges. The transitive clo-
sure of r16 contains nodes r7 − r10, r17 and the same for r17 (see
Figure 2(b)). So the connected component for ∆D4 contains the
subgraph with nodes r7 − r10, r16 − r17. The optimal clustering
under correlation clustering for this subgraph contains two clus-
ters: C′4 and C′5. Thus, we replace the old C4 and C5 with C′4 and
C′5 to obtain a new clustering, which leads to the optimal clustering
for the whole graph under correlation clustering.

Now in contrast consider an increment ∆D5 that removes node
r4. The transitive closure of r4 within its cluster C′′1 contains only
r4. Thus, the connected component is empty and we simply remove
C′′1 to obtain the new clustering, which is optimal for the graph
with nodes r1 − r3, r5 − r17 under correlation clustering. 2

We can prove that MONOCONNECTED is optimal if and only
if connectivity, locality, and monotonicity hold for the clustering
method.

LEMMA 3.8. Algorithm CONNECTED is optimal if and only if
the batch linkage method satisfies connectivity and locality. 2

PROOF. If: Under connectivity, the clusters in LoptG for the con-
nected component (excluding the inserted nodes) must be disjoint
from the clusters for the rest of the graph; we denote them by L′G
and L′′G respectively. CONNECTED finds an optimal clustering on
the connected component; under locality, L′′G must be optimal on
the rest of the graph. Thus, the new optimal clusters together with
L′′G must form an optimal clustering for G+ ∆G under locality.

Only if: First, the algorithm is valid only if connectivity holds;
otherwise, L′G and L′′G may be overlapping. Second, if locality
does not hold, there must be an instance G,G1, G2 such that the
optimal clustering for G1 and that for G2 do not form the opti-
mal clustering for G. Let G1 be the original graph and G2 be
the increment; CONNECTED does not find the optimal solution on
G1 +G2.

THEOREM 3.9 (OPTIMALITY OF MONOCONNECTED). Algo-
rithm MONOCONNECTED is optimal if and only if the batch link-
age method satisfies connectivity, locality, and monotonicity. 2

PROOF. If: Consider the subgraph that is included in the con-
nected component but not in the monotone connected component.
We now prove clustering for this subgraph will not change under
monotonicity. There are two cases:

• A node is connected to a changed edge but the edge has an
increased weight and is within a cluster in LoptG . Since such
a weight change would not change the optimal clustering un-
der positive monotonicity, clustering for these nodes will not
change.
• A node is connected to a deleted node in another cluster

in LoptG or to a changed edge but the edge has a decreased
weight and is across clusters in LoptG . Since such changes
would not change the optimal clustering under negative mono-
tonicity, clustering for these nodes will not change.

Only if: If positive monotonicity does not hold, there must be
an instance G and an edge (v1, v2) ∈ E whose weight increases
such that the optimal clustering for G is not optimal for the new
graph. LetG be the original graph and the weight change be the in-
crement; the monotone connected component is empty, so MONO-
CONNECTED does not find the optimal solution on the new graph.
We can prove for negative monotonicity similarly.

COROLLARY 3.10. MONOCONNECTED is optimal for corre-
lation clustering but not optimal for DB-index clustering. 2

Finally, we show the complexity of the algorithm.

PROPOSITION 3.11 (COMPLEXITY OF MONOCONNECTED).
Let s ≤ |G| be the size of the monotone connected component for
the increment and f(s) be the complexity of finding the optimal
clustering on a graph of s nodes. The complexity of MONOCON-
NECTED is O(s+ f(s)). 2

3.3 Iterative algorithm
Although MONOCONNECTED requires examining only a sub-

graph, the subgraph can be large when the similarity graph is well
connected. One opportunity for optimization is to consider the
nodes that are only closely connected. The iterative algorithm first
considers a subgraph with only clusters that are directly connected
to the increment, which we call directly connected component, and
expands the subgraph iteratively if the optimal clustering changes.

DEFINITION 3.12 (DIRECTLY CONNECTED COMPONENT).
Let G be a similarity graph and LoptG be the given optimal cluster-
ing on G. Let ∆G be an increment on G. The directly connected
component of ∆G, denoted by T̄ (∆G), is defined as follows.

• For each inserted node v ∈ ∆G, T̄ (∆G) contains v and its
connected clusters in LoptG .
• For each deleted node v ∈ ∆G, T̄ (∆G) contains its cluster

in LoptG , but does not contain v and edges to v.
• For each edge e ∈ ∆G with increased weight, if e is across

clusters C1, C2 ∈ LoptG , T̄ (∆G) contains C1 and C2.
• For each edge e ∈ ∆G with decreased weight, if e is within

a cluster C ∈ LoptG , T̄ (∆G) contains C. 2

EXAMPLE 3.13. Consider ∆D4 in Figure 2(a). The inserted
node r16 is connected to C4 and C5, whereas r17 is connected to
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Figure 6: An instance where ITERATIVE can be much faster than
MONOCONNECTED.

C4. Thus, the directly connected component contains r7−r10, r16−
r17, the same as the monotone connected component.

Now consider Figure 6 with the inserted node v. The directly
connected component contains v and its neighbor cluster C, much
smaller than the monotone connected component, the whole graph.
2

The iterative algorithm, ITERATIVE, starts with the directly con-
nected component and expands it only when necessary. In particu-
lar, it proceeds in four steps.

1. Find the directly connected component of the increment, T̄ (∆G),
and put each of its connected subgraphs into queue Q. The
previous clustering for each subgraph follows LoptG and puts
each inserted node into a singleton cluster.

2. For each subgraph G′ ∈ Q, dequeue it and find the optimal
clustering. For each cluster that does not exist in the previous
clustering, find its directly connected clusters and form a new
subgraph G′′.

3. If G′′ has never been added to Q, go over Q for subgraphs
that are connected or overlapping with G′′. Remove them
from Q and merge them with G′′ for a new subgraph to be
added to Q.

4. Repeat Steps 2-3 until Q is empty.

For the example in Figure 6, ITERATIVE would start with the
subgraph containing the inserted node v and its neighbor cluster
C. Since v is connected to only one node in C, ITERATIVE would
decide to keep the current clustering and so terminate without con-
sidering any other cluster; thus, it can be much faster than MONO-
CONNECTED. However, in some extreme cases ITERATIVE can
iteratively expand to the whole monotone connected component,
so can be slower than MONOCONNECTED. If we consider the
longest chain between clusters in the graph, the number of itera-
tions is bounded by the number of clusters on the chain. We next
show the complexity of the algorithm formally.

PROPOSITION 3.14 (COMPLEXITY OF ITERATIVE). Let s′ ≤
|G| be the maximum size of the subgraphs in Q, n be the number of
connected subgraphs in G, and l be the number of clusters on the
longest chain between clusters in G. The complexity of ITERATIVE
is O(nl(s′ + f(s′))). 2

Finally, we show that ITERATIVE is guaranteed to be optimal
if and only if the clustering method satisfies connectivity, locality,
exchangeability, separability, and monotonicity.

THEOREM 3.15 (OPTIMALITY OF ITERATIVE). Algorithm
ITERATIVE is optimal if and only if the batch linkage method satis-
fies connectivity, locality, exchangeability, separability, and mono-
tonicity. 2

PROOF. We only need to prove that if and only if exchangeabil-
ity and separability hold, ITERATIVE obtains the same clustering on
the monotone connected component as MONOCONNECTED, which
is optimal under connectivity, locality, and monotonicity.

If: Let G1 be the subgraph that contains all clusters in the re-
sult clustering but not in LoptG , G2 be the subgraph with neighbor
clusters of G1, and G3 be T̂ (∆G) \ (G1 ∪ G2). The algorithm
guarantees that we have an optimal clustering for G1 ∪ G2 with
no cluster across G1 and G2. Exchangeability guarantees that we
have an optimal clustering for G2 ∪ G3 with no cluster across G2

and G3.
Suppose in contrast, there are better clusterings for T̂ (∆G), and

we denote the best by L. Because of separability, we can find such
L with no cluster across the three subgraphs. Let L12 ⊆ L be the
subset of clusters for nodes in G1 ∪ G2 and L3 = L \ L12 be
those for G3. Consider replacing L12 with the clusters ITERATIVE
obtains on G1 ∪ G2 and replacing L3 with those for G3 in LoptG .
Because of exchangeability, the new clustering is also optimal on
G. The result is exactly the result of ITERATIVE on T̂ (∆G), con-
tradicting with the assumption that L is better.

Only if: If exchangeability or separability does not hold, we
can construct a counter example where ITERATIVE obtains a sub-
optimal clustering.

(1) If exchangeability does not hold, we must have G and C̄
such that replacing C̄ with an optimal clustering on G′ obtains a
non-optimal clustering onG. There must be one optimal clustering
L for G′ that contains multiple clusters. Let C̄′ ⊆ C̄ be the subset
of clusters that are connected to G \G′.

Suppose C̄′ 6= C̄. Let C̄ \ C̄′ be the increment and the rest
of the graph be the original similarity graph. ITERATIVE can first
generate L for G′; because there is no change for clusters in C̄′,
ITERATIVE would terminate. However, the resulting clustering is
not optimal on G.

Suppose instead, C̄′ = C̄, so C̄ \ C̄′ is empty. We add a new
node r toG and for eachC ∈ C̄, add an edge from r to a node inC
with a weight very close to 0. Because of connectivity, the optimal
clustering for G and for G′ remain the same except that there is a
new cluster for r. Let r be the increment and the rest of the graph
be the original similarity graph. ITERATIVE can first generate L for
G′; because there is no change for clusters in C̄, ITERATIVE would
terminate. However, the resulting clustering is not optimal on G.

(2) If separability does not hold, we must have G1, G2, G3 such
that all optimal clusterings forG1∪G2∪G3 contain at least a clus-
ter across two or three clusters even when the required conditions
are satisfied. Let G1 be the increment and G2 ∪G3 be the original
graph. ITERATIVE can terminate with a clustering where there is
no cluster across the subgraphs, thus not optimal.

COROLLARY 3.16. ITERATIVE is optimal for correlation clus-
tering but not optimal for DB-index clustering. 2

4. GREEDY SOLUTION
As we have shown, neither the connected component algorithm

nor the iterative algorithm is ideal: the former may require con-
sidering an unnecessarily big subgraph when the similarity graph
is well-connected; the latter may require repeated efforts in exam-
ining quite a few subgraphs before convergence. In addition, as
we have discussed, finding an optimal solution for correlation clus-
tering or DB-index clustering is intractable. In this section, we
describe a greedy solution, GREEDY, with two goals. First, the al-
gorithm should take only polynomial time. Second, although the
algorithm iteratively expands the subgraphs for examination as IT-
ERATIVE does, clustering in each later round should be built upon
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the clustering of the previous round. Specifically, GREEDY differs
from ITERATIVE in two ways. In ITERATIVE, the working queue
Q stores subgraphs and each iteration applies batch clustering on a
subgraph. In GREEDY, the working queue, denoted by Qc, stores
clusters, and for each cluster we examine whether we wish to adjust
nodes between it and its neighbor clusters. In other words, ITERA-
TIVE iterates at the coarse granularity of subgraphs that consist of
multiple directly connected clusters, whereas GREEDY iterates at
the finer granularity of clusters.

In the rest of the section, we first describe the framework of the
algorithm (Section 4.1), and then discuss how to instantiate it for
particular clustering methods (Sections 4.2-4.3).

4.1 Greedy algorithm
In the greedy algorithm, each time we examine a cluster C from

the working queue Qc and consider three possible operations that
we may apply to the cluster: merging C with some other cluster(s),
splitting C to one or more clusters, and moving some of the nodes
of C to another cluster or vice versa. We next describe the three
operations in detail and then give the full algorithm.

Merge: Given a cluster C ∈ Qc, we consider whether merging it
with other clusters would generate a better clustering (lower value
for the objective function). To finish the exploration in polynomial
time, we consider merging only pairs of clusters. The algorithm,
MERGE, proceeds as follows.

1. For each neighbor clusterC′ ofC, evaluate whether merging
C with C′ generates a better clustering.

2. Upon finding a better clustering, (1) merge C with C′, (2)
add C ∪ C′ to Qc, and (3) remove C′ from Qc if C′ ∈ Qc.

EXAMPLE 4.1. First, consider increment ∆D1 in Figure 2(a)
and correlation clustering. Cluster C6 = {r11} is not connected
to any node so we do not merge it with another cluster.

Next, consider ∆D2, which puts clusters C7 = {r12} and C8 =
{r13} to the working queue Qc. We first merge C7 with C2 =
{r5} (reducing the penalty from 4.2 to 3.4), then gradually merge
also with C8 and C3 = {r6} (final penalty .8), obtaining C′2 in
Figure 2(b). 2

Split: Given a cluster C ∈ Qc, we consider whether splitting
it into several clusters would generate a better clustering. To re-
strict the algorithm to polynomial time, we consider splitting into
two clusters and we examine one node each time. The algorithm,
SPLIT, proceeds as follows.

1. For each node v ∈ C, evaluate whether splitting v out gen-
erates a better clustering.

2. Upon finding such a node v, create a new cluster C′ = {v}
and conduct steps 3-4.

3. For each remaining node v′ ∈ C, evaluate whether moving
v′ to C′ obtains a better clustering. If so, move v′ to C′ and
repeat Step 3.

4. Add C and C′ to Qc if they are connected to other clusters.

EXAMPLE 4.2. Consider increment ∆D3 in Figure 2(a), which
adds clusters C11 = {r14} and C12 = {r15} to Qc. Since they
are closely connected with C1, merging them into C1 reduces the
penalty under correlation clustering from 8.2 to 4. When we exam-
ine the new cluster {r1− r4, r14, r15}, we find that splitting out r4
reduces the penalty to 2.2. There is no more node to be moved out
and we terminate with two clusters C′1 and C′′1 . 2

Algorithm 1: Greedy(G(V,E),∆G,LG)

Input : G(V,E): Original similarity graph;
∆G: Increment;
LG: clustering of the original graph

Output : New clustering in LG
Qc ← ∅;1

G′ ← T̄ (∆G);2
Put each cluster in G′ to Qc;3
while Qc 6= ∅ do4

dequeue C ∈ Qc;5
changed← false;6
// operations return true if they change the clustering
changed← MERGE(C,G+ ∆G,LG,Qc);7
if ¬changed then8

changed← SPLIT(C,G+ ∆G,LG,Qc);9

if ¬changed then10
changed← MOVE(C,G+ ∆G,LG,Qc);11

return LG;12

Move: Given a clusterC ∈ Qc, we consider whether moving some
of its nodes to other clusters or moving some nodes of other clusters
into it would generate a better clustering. Again, we consider node
moving between two clusters such that the algorithm finishes in
polynomial time. The algorithm, MOVE, proceeds as follows.

1. For each neighbor cluster C′ of C, do Steps 2-3.
2. For each node v ∈ C that is connected to C′ and for each
v ∈ C′ connected to C, evaluate whether moving v to the
other cluster generates a better clustering. Upon finding such
a node v, move it to the other cluster.

3. Repeat Step 2 until there is no more node to move. Then,
(1) add the two new clusters to Qc, and (2) dequeue C′ if
C′ ∈ Qc.

EXAMPLE 4.3. Consider C′′4 and C′′5 in Figure 3, where no
merging or splitting can improve the clustering. However, moving
r9 from C′′4 to C′′5 reduces the penalty under correlation clustering
from 2.4 to 2.2. 2

Full algorithm: We show the full algorithm GREEDY in Algo-
rithm 1. Initially, it starts with the directly connected component
(Ln.2) It then puts each cluster in T̄ (∆G) (each inserted node
is considered as a singleton cluster) into the working queue Qc

(Ln.3).
For each cluster C ∈ Qc in the queue, it checks the three oper-

ations for C in the order of merging (Ln.7), splitting (Ln. 9), and
moving (Ln.11). This is because (1) moving is more expensive
than merging or splitting, and (2) in our experiments we observed
much more merging than splitting, and in turn than moving (Sec-
tion 5). Once there are changes to any cluster, the algorithm puts
the changed clusters back to the queue and considers the next clus-
ter in Qc (Lns.8, 10). This process continues until Qc is empty
(Ln.4).

EXAMPLE 4.4. Consider increment ∆D4 in Figure 2(a). Ta-
ble 1 shows the trace of GREEDY under correlation clustering.

Initially, we put C = {r16} and C′ = {r17} into Qc. We first
examine C and decide to merge it with C5 = {r10}; this puts
C′′ = {r10, r16} to Qc. We then examine C′ and decide to merge
it with C4 = {r7 − r9}; this puts C′′′ = {r7 − r9, r17} to Qc.
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Table 1: Working queue for Example 4.4.

Rnd Removed Added Qc

1 - C = {r16}, C′ = {r17} {C,C′}
2 C C′′ = {r10, r16} {C′, C′′}
3 C′ C′′′ = {r7 − r9, r17} {C′′, C′′′}
4 C′′ C′4 = {r7 − r8, r17} {C′4, C′5}

C′5 = {r9 − r10, r18}
5 C′4 - {C′5}
6 C′5 - ∅

After that we examine C′′ and decide to move r9 from C′′′ to C′′,
generating clusters C′4 and C′5 (Figure 2(b)); we remove C′′′ from
Qc and add C′4 and C′5. Examining C′4 and C′5 does not make any
change, so we terminate. 2

We next discuss the complexity of the greedy algorithm. Note
that in practice, the number of clusters that ever occur in Qc is
typically much smaller than the upper bound.

THEOREM 4.5 (COMPLEXITY OF GREEDY). LetG and ∆G
be the input. Let s′′ ≤ |G| be the maximum size of the encountered
clusters, c be the maximum number of neighbor clusters of each
cluster, and m be the largest number of clusters in G+ ∆G at the
same time. Let n ≤ (m+s′′)|G|2 be the total number of clusters in
Qc. Denote by g(|G|) the time of evaluating the objective function
for graph G. The complexity of GREEDY is O(ncs′′2g(s′′)). 2

PROOF. We prove n ≤ (m+s′′)|G|2. Consider a node v ∈ G+
∆G and the sequence of clusters containing v in Qc. According
to the algorithm, we would observe that in the sequence, the initial
cluster expands (i.e., superset) for a few times, then reduces (i.e.,
subset) for a few times, and then expands and reduces again till
convergence. We call each sequence of expansions and reductions
one round. In each round the number of expansions is at most m
and the number of reductions is at most s′′. In each round we move
out at least one node that would never be added back to the same
cluster as v; otherwise, there is a cluster in a later round that is a
superset of the current cluster. So there are at most |G| − 1 rounds.
Thus, there are no more than (m+ s′′)|G| clusters in the sequence
for v, and so no more than (m+ s′′)|G|2 clusters in Qc.

4.2 Instantiation for correlation clustering
We now instantiate the greedy algorithm for correlation cluster-

ing (GREEDYCORR). We show that 1) many simplifications made
by the greedy algorithm, such as merging only two clusters each
time or splitting out one node each time, would not affect the qual-
ity of the clustering results, and 2) we can further simplify the al-
gorithm for each operation (the framework remains the same).
Merge: According to the objective function Eq.(1) for correlation
clustering, we merge two clustersC andC′ when

∑
v∈C,v′∈C′ w(v, v′)

> |C|·|C′|
2

. We next show that if merging a few clusters leads to
a better clustering, MERGE can do so by iteratively merging two
clusters in each step.

THEOREM 4.6 (PROPERTY OF MERGE). LetG,∆G,LoptG be
the input and C1, . . . , Cn be the set of clusters in T̄ (∆G) and
LoptG . If merging clusters C1, . . . , Cn leads to a better clustering,
MERGE would do the merging iteratively. 2

PROOF. According to the connectivity property of correlation
clustering, C1, . . . , Cn must be connected. We next prove that
from C1 − Cn we must be able to find two connected clusters
to merge; the result would be put to Qc and the process would
continue until all clusters are merged together. Because merging

Algorithm 2: SPLITCORR(C,G,LG ,Qc)
Input : C: cluster for consideration;

G: similarity graph after updates;
LG : current clustering of G;
Qc: working queue

Output : LG and Qc updated according to splitting of C
C′ ← ∅;1
foreach v ∈ C do2

d(v)← FETCHCONN(v, C); // FETCHCONN obtains the3
sum of edge weights between v and every other node in
C from an auxiliary data structure.

while |C| 6= ∅ do4
Select v0 as the node with the lowest d(v0);5

if d(v0) > |C|−|C′|−1
2

then6
break;7

Move v0 to C′;8
foreach v ∈ C do9

d(v)← d(v)− 2 ∗ w(v, v0);10

if C′ 6= ∅ then11
Add C′ into LG ;12
Add C and C′ into Qc if connected with other clusters;13

C1, . . . , Cn leads to a better clustering, we must have
∑n−1
i=1

∑n
j=i+1

pij >
∑n−1

i=1

∑n
j=i+1 |Ci||Cj |

2
, where pij is the correlation penalty

between Ci and Cj . There must exist k, k′ ∈ [1, n] such that
pk,k′ >

|Ck||Ck′ |
2

. One of Ck and Ck′ cannot be contained in
LoptG so must be contained in Qc; otherwise, it contradicts with
LoptG being optimal. Thus, we will merge Ck and C′k.

Split: We can simplify SPLIT as follows. First, in Step 1, instead
of considering every node in C, we only consider the node that
has the lowest connectivity within C, where connectivity is com-
puted as the average similarity with other nodes in C. If the lowest
connectivity is above .5, we can stop. Second, in Step 3, instead
of considering every remaining node in C, we consider the node
v with the lowest difference of pC(v) − pC′(v), where pC(v) is
the sum of the edge weights between v and each node in C, and
pC′(v) is the sum of the edge weights between v and each node in
C′. If pC(v) − pC′(v) > |C|−|C′|−1

2
, we can stop. We note that

this condition is the same as the previous condition if we consider
C′ = ∅.

Instead of computing pC(v)−pC′(v) from scratch each time, we
can maintain it incrementally as we split out nodes. We show the
revised algorithm, namely SPLITCORR, in Algorithm 2. Lines 2-3
show how we initialize the difference from an auxiliary data struc-
ture, which computes the sum of edge weights between a node v
and a cluster C. Lines 9-10 show how we maintain the difference
incrementally. Now we show that SPLITCORR can find the best
way to split C into two clusters.

THEOREM 4.7. If the best split of C ∈ Qc is C1 and C2,
SPLITCORR can generate these two clusters. 2

PROOF. We first prove that if such a split exists, there must be
a node whose connectivity is at most .5; thus, SPLITCORR will
move one node out. Let p12 be the correlation penalty between
C1 and C2. Then, we must have p12 < |C1||C2|

2
. Let p(v) be

the sum of the edge weights between v ∈ C1 and each node in
C2. Then,

∑
v∈C1

p(v) < |C1||C2|
2

. For this inequation to hold,

9
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Figure 7: An example showing that the greedy algorithm cannot
“switch” nodes between clusters in moving.

the node in C1 with the lowest connectivity, denoted by v1, must
satisfy p(v1) < |C2|

2
≤ |C1|+|C2|−1

2
= |C|−1

2
, so the connectivity

of v1 is at most .5.
Without losing generality, assume the node with the lowest con-

nectivity, denoted by v1, is contained in C1. We now prove that
given any C′1 ⊂ C1 and C′2 = C \ C′1, there must exist a node
v ∈ C′′1 = C1 \ C′1 such that pC′2(v) − pC′1(v) ≤ |C′2|−|C

′
1|−1

2
;

thus, SPLITCORR will move this node from C′2 to C′1. This pro-
cess would continue until C1 and C2 are obtained. Let p′11 be the
correlation penalty between C′′1 and C′1, and p′12 be the correlation
penalty betweenC′′1 andC2. SinceC1 andC2 are the best splitting,
we must have a lower penalty for it; that is, |C′′1 ||C′1|−p′11+p′12 <

|C′′1 ||C2|−p′12 +p′11, so p′12−p′11 <
|C′′1 |(|C2|−|C′1|)

2
. Let pC′2(v)

be the sum of the edge weights between v ∈ C′′1 and each node in
C2 and pC′1(v) be the sum of the edge weights between v and each

node in C′1. Then,
∑
v∈C′′1

(pC′2(v)− pC′1(v)) <
|C′′1 |(|C2|−|C′1|)

2
.

For this inequation to hold, the node in C′′1 with the lowest differ-
ence between pC′2(v) and pC′1(v) must satisfy pC′2(v)−pC′1(v) <
|C2|−|C′1|

2
≤ |C

′
2|−|C

′
1|−1

2
. This proves the claim.

Move: We can simplify MOVE in a similar way to SPLIT. In Step
2, instead of considering every node in C ∪ C′, we choose the
node v ∈ C with the lowest pC(v)− pC′(v) and do the moving if
pC(v)−pC′(v) ≤ |C|−|C

′|−1
2

; otherwise, we choose the node v ∈
C′ with the lowest pC′(v)− pC(v) and do the moving if pC′(v)−
pC(v) < |C′|−|C|−1

2
. We call the result algorithm MOVECORR.

In a similar way to SPLITCORR, we can prove that MOVECORR
can find the best way to move a subset of nodes between C and C′.

THEOREM 4.8. Let C,C′ ∈ Qc be two clusters for consider-
ation. If the best split of C ∪ C′ is Ĉ and Ĉ′ where Ĉ ⊂ C or
Ĉ ⊃ C, MOVE can generate these two clusters. 2

Note however that MOVE does not necessarily generate the best
split of C ∪ C′, as the next example shows.

EXAMPLE 4.9. Consider Cl1 and Cl2 in Figure 7, where each
edge has a weight of 1. MOVE will not move any node between
them and the final penalty is 1 + 1 + 7 = 9. The best split of
Cl1 ∪ Cl2, however, requires switching nodes r3 − r4 with nodes
r5− r6, obtaining Cl′1 and Cl′2 with a penalty of 0 + 1 + 6 = 7. 2

The previous discussions show that for each operation, the greedy
algorithm can find the “local” optimal solution. However, combin-
ing these local optimal solutions may not lead to a global optimal
solution. Indeed, Mathieu et al. [9] shows that if the increment
contains only inserted nodes and we apply only MERGE, the ap-
proximation bound is O(2|G|+ 1).

These aforementioned simplifications can reduce the complex-
ity of the algorithm, shown as follows. In addition, GREEDYCORR
can benefit from pre-computing intra- and inter-penalties and in-
crementally maintaining them in the iterations.

PROPOSITION 4.10 (COMPLEXITY OF GREEDYCORR). Define
the same parameters as in Theorem 4.5. The complexity of GREEDY-
CORR is O(ncs′′2). 2

Table 2: Statistics of data sets according to Corr. Clus.
Statistics Biz (5k) Biz (1k) Cora (Jac.) Cora (M-E)

Number 5000 1000 997 997
Node Avg #neighbors 2.7 2.1 34 50

Max #neighbors 38 13 139 172
Number 2769 477 481 726

Cluster Avg #nodes 1.8 2.1 2.1 1.2
Avg #neighbors 1.1 .4 16 40
Max #neighbors 37 13 70 172

Number 1832 424 87 55
Subgraph Avg #nodes 2.7 2.4 12 18

Max #nodes 84 14 795 900

4.3 Instantiation for DB-index clustering
Instantiation for DB-index (GREEDYDB) is exactly the same as

the framework itself. However, to simplify the computation for
DB-index, we recompute separation measures for only the clusters
for examination and those that have the highest separation measure
with these clusters. In addition, we can maintain the same auxil-
iary data structure as in GREEDYCORR to avoid repeated computa-
tion. We cannot prove the properties in Theorems 4.6-4.8; however,
we show empirically that the greedy algorithm works well on real
world data for DB-index clustering as well (Section 5).

PROPOSITION 4.11 (COMPLEXITY OF GREEDYDB). Define
the same parameters as in Theorem 4.5. The complexity of GREEDYDB
is O(nc2s′′3). 2

5. EXPERIMENTAL EVALUATION
We present experimental results on two real-world data sets with

different characteristics. The experimental results show the promise
of the incremental algorithms, especially showing that GREEDY
typically has the highest efficiency and the highest quality com-
pared with batch linkage and other incremental linkage algorithms.

5.1 Experiment setup
Data sets: We experimented on two data sets. The first data set,
Biz, contains 87 snapshots of business records in the San Francisco
area; we took the first snapshot as the original data set, and com-
puted an increment for each later snapshot. We evaluated corre-
lation clustering on the full data set and evaluated DB-index clus-
tering on a subset with 20% of the data, because batch linkage for
DB-index took a very long time. We next discuss our observations
on the full data set and summarize for both data sets in Table 2.
The first snapshot of Biz contains 5K records. The increments con-
tain on average 120 Inserts, 118 Deletes, and 59 Changes,
and the maximum number of operations in an increment is 4120.
The top part of Figure 8(a) (with the Y-axis on the right side of the
figure) shows a break down of the updates for each increment. We
applied the Monge-Elkan [3] string similarity for pairwise similar-
ity computation and ignored edges with a similarity below .7. The
similarity graphs are fairly sparse: (1) each node is connected to 2.7
nodes on average and to 38 nodes at most; (2) there are 1832 con-
nected subgraphs, each containing 2.7 nodes on average, 84 nodes
and 73 clusters at most. We do not have a gold standard for this
data set; from the results of correlation clustering over all itera-
tions, we observed that the clusters are typically small and sparsely
connected: (1) there are 2769 clusters on average in each similarity
graph, each containing 1.8 nodes on average and 38 nodes at most;
(2) each cluster is directly connected to 1.1 clusters on average and
37 clusters at most.

The second data set, Cora3, contains 997 publication records.
We applied two string similarity metrics on this data set: Jaccard
3http://www.cs.umass.edu/mccallum/data/cora-refs.tar.gz
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(a) Correlation clustering on Biz (5K).
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(b) DB-index clustering on Biz (1K).
Figure 8: Comparison of various algorithms under CONT on Biz.

and Monge-Elkan [3]. The similarity graph is very dense for both
metrics, and even denser for the latter metric. Below we discuss
only for the Jaccard metric and we summarize for both metrics in
Table 2. (1) Each node is connected to 34 nodes on average and to
139 nodes at most. (2) There are 87 connected subgraphs, each con-
taining 12 nodes on average and 795 nodes at most; (3) each clus-
ter is directly connected to 16 clusters on average and 70 clusters
at most. (4) according to the gold standard, there are 191 clusters,
each containing 5.2 records on average and 102 records at most.
On this data set we have a single snapshot and we generate the in-
crement as follows. In the first increment we randomly remove 1
record; in the i-th increment we add back the records removed in
the (i − 1)-th increment and randomly remove 2i−1 records. in
the last (i.e., 10-th) increment, we only add back the previously re-
moved (512) records. We repeated 100 times and took the average.

We note that these two data sets have different features: Biz con-
tains a large number of records but the connections between the
records are quite sparse; Cora contains only a small number of
records but the similarity graph is well connected.

Implementations: For each of correlation clustering and DB-index
clustering, we compared four algorithms: BATCH, the baseline,
applies the batch linkage algorithm (CAUTIOUS [1] for correla-
tion clustering and the hill climbing algorithm in [6] for DB-index
clustering); CC applies CONNECTED; IT applies ITERATIVE; and
GREEDY applies the greedy algorithm. Our implementation has
two variations: in RESET the starting point for each increment is
reset to the batch linkage results from the previous increment; in
CONT the starting point is the incremental linkage results from the
previous increment. In practice, we are more likely to use CONT
for updates and periodically apply batch linkage. In CAUTIOUS,
we used parameter δ = .1 [1]; in DB-INDEX, we set α = .05 and
β = .001. We implemented in Java, and experimented on a Linux
machine with four Intel Xeon(R) X3360 cores (2.83GHz, cache

6MB).

Measures: We measure efficiency and quality of our algorithms.
For efficiency, we repeated the experiments 100 times and reported
the average execution time. We focused on clustering and only
reported clustering time; note however that when we count also
blocking and pairwise similarity computation, incremental linkage
would have even higher benefit over batch linkage. For quality,
we report (1) the penalty and (2) the F-measure when we have the
gold standard. Here, precision measures among the pairs of records
that are clustered together, how many are correct; recall measures
among the pairs of records that refer to the same real-world entity,
how many are clustered together; and F-measure is computed as
2·precision·recall
precision+recall

.

5.2 Experiments on Biz
Overview: Figure 8 (with the Y-axis on the left side of the figure)
shows the execution time for each increment for the four methods
under CONT; Figure 9 shows the penalty of the results under CONT;
and Table 3 gives a summary.

We have three observations on correlation clustering. First, all
three incremental linkage algorithms significantly improve over BATCH;
indeed, for 69% of the increments GREEDY reduced linkage time
by 2-3 orders of magnitude. Second, among the three incremental
algorithms, GREEDY has the smallest execution time: it reduced
execution time by 32% over CC and by 47% over IT; it is faster
than CC on 88% of the increments and than IT on 97% of the incre-
ments. This is because each iteration builds upon the previous one
and greedily explores Merge, Split, and Move operations. Third,
CC has comparable penalty to BATCH (on average 1949 vs. 1941)
and IT has slightly higher penalty (2% higher than BATCH); this
is because we applied CAUTIOUS for correlation clustering, which
often returns sub-optimal clustering and may return different re-
sults each time we run it. On the other hand, GREEDY has much
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Figure 9: Penalty for CONT on Biz.

Table 3: Comparison of various algorithms on Biz. Highest perfor-
mance is highlighted in bold.

Method Time (ms) Impro. Penalty
BATCH 10205 - 1941

CC 333 96.7% 1949
Corr CONT IT 431 95.8% 1979
Clust. GREEDY 228 97.8% 1239
(5k) CC 331 96.8% 1947

RESET IT 431 95.8% 1949
GREEDY 248 97.6% 1833
BATCH 3.8 hr - 211

DB- CC 673 99.9995% 147
Index CONT IT 1060 99.9992% 162
(1k) GREEDY 189 99.9999% 182

lower penalty (36% lower than BATCH) (note that under RESET the
penalty is higher, since it cannot benefit from the improvement on
the previous increments); this shows that whereas both GREEDY
and CAUTIOUS output sub-optimal results, GREEDY often obtains
a higher quality than CAUTIOUS. In addition, as we show soon (Ta-
ble 5), GREEDY has a lot of merges and splits on existing clusters,
showing that the ability to fix previous errors is important to obtain
high quality of linkage.

For DB-index clustering, the batch algorithm, which is essen-
tially a hill-climbing algorithm, is very expensive as it looks for the
local optimal solution at each step; in total it took 3.8 hours on all
increments. The advantage of GREEDY is even more pronounced
here: on average it improved over BATCH by 4 orders of magni-
tude and improved over CC by 72%. However, GREEDY did not
have the lowest penalty: as we have shown, DB-index lacks the
many desired properties as we described in Defn 3.2; thus, the re-
sults are more random and there is not a consistent pattern over all
increments. However, we observed that the incremental algorithms
obtain a lower penalty on average than the batch algorithm.

IT vs. CC: We now compare CC and IT in more detail. Table 4
compares them on the top-5 and bottom-5 increments in terms of
size, and Table 5 shows detailed statistics for CONT and correlation
clustering. (1) Because of the sparsity of the graph, IT converged
in only 2.0 iterations on average and 3 iterations at most; actually,
for 86% of the increments, it converged in 2 iterations. (2) It did
end up examining smaller subgraphs on average; however, for 35%
of the increments it examined the same subgraph as CC, and even

Table 4: Comparison on top-5 and bottom-5 increments on Biz
(Correlation Clustering (5k), DB-index (1k), CONT).

Corr. Clust. (ms) DB-index (ms)
Size CC IT GREEDY Size CC IT GREEDY

4120 23 47 27 1999 54.7 101 21.4
4108 27 45 49 1696 43.5 87 27.1

Top 2395 25 46 21 1023 15.5 58 10.5
1982 17 30 16 1001 18.7 54.6 11.3
1172 12 16 9 995 11.9 45.5 9.5

2 .042 .032 .028 2 .078 .62 .079
4 .042 .039 .039 4 .065 .002 .04

Bott. 7 .133 .163 .138 6 .174 1.04 .232
10 .152 .195 .101 10 .209 .817 .15
15 .654 .301 .221 13 .243 .761 .158

Table 5: Details on Biz (Corr. Clust. CONT, averaged).
CC IT GREEDY

time (ms) 333 431 227
#Iterations 1 2.0 2.8
#Nodes 526 488 500
#Edges 1001 932 945
#Total-nodes - 722 1469
#Total-edges - 1431 6346
#Examined-Merge - - 173
#Real-Merge - - 95
#Examined-Split - - 56
#Real-Split - - 17
#Examined-Move - - 12
#Real-Split - - 0

for the rest of the increments, the subgraphs it examined were not
significantly smaller (on average 11% fewer nodes and 10% fewer
edges). (3) Because of its iterative nature, it may examine the same
part of a subgraph multiple times when there are more than one
iteration. If we take into consideration the number of times it ex-
amined each node and edge, for 78% of the increments it ended up
examining more nodes and edges in total than CC; on average it
examined 37% more nodes and 43% more edges. (4) When IT ex-
amined fewer nodes and edges in total, it can be significantly faster
than CC: for 14% of the increments it examined fewer nodes and
is 49% faster than CC; however, for the rest of the increments, it is
33% slower than CC. (5) As shown in Table 4, for correlation clus-
tering, IT is faster on smaller increments, where the execution time
is low, but slower on larger increments, where the execution time
is high, so its total execution time is 29% higher than CC; for DB-
index clustering, IT is slower most of the time because theobjective
function is expensive to compute.

GREEDY: We now compare GREEDY with CC and IT; again, Ta-
ble 4 and Table 5 show the statistics. We have three observations.
First, although GREEDY iterates at the cluster granularity, it does
not have many more iterations than IT, which iterates at the sub-
graph granularity; indeed, on average it finished in only 2.8 itera-
tions. Second, we observe that GREEDY also ended up examining
nearly the same number of nodes and edges as CC, and turned out
to examine more nodes and edges in total than IT; however, be-
cause each iteration is based on the previous iteration, GREEDY
does not have many wasted efforts and is much faster than both CC
and IT: taking correlation clustering as an example, for 3 out of the
5 largest increments, it was the fastest and saved 15% execution
time over CC, and for 4 out of the 5 smallest increments, it was
the fastest and saved 35% execution time over CC. This suggests
that operating on clusters rather than subgraphs is highly benefi-
cial. Third, on average GREEDY examined merging 173 times and
conducted merging 95 times (55%); it examined splitting 56 times
and conducted splitting 17 times (30%); it examined moving 12
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Figure 10: Experimental results on Cora (JACCARD).

times but did not conduct any moving. This justifies the order in
which we consider these three operations; also 10.5% of merging
and all of splitting is to fix previous errors, showing the benefit of
our approach.

5.3 Experiments on Cora
Figure 10 shows the execution time and quality of our proposed

methods using Jaccard similarity and correlation clustering on Cora.
We observed the same trend on Monge-Elkan and on DB-index
clustering. Most of our observations are consistent with the ob-
servations on Biz. Here we highlight several differences or new
observations. First, we observe that because of the high connectiv-
ity of this data set, CC finished in nearly the same time as BATCH;
indeed, recall that the number of subgraphs is only 87, so CC ended
up examining 80% on average and 96% at most of the graph. Sec-
ond, same as on Biz, IT is slower than CC when it examines nearly
the same subgraph; because of the high connectivity of this sub-
graph, this happens even more often and IT is faster than CC only
for the first two increments, where each increment contains a very
small number of inserts and deletes. Third, GREEDY continues to
be much better than any other algorithm: on average 84% faster
than BATCH, 9% higher F-measure, and 33% lower penalty (note
the correlation between penalty and F-measure). Fourth, the execu-
tion time for BATCH and CC decreased from the first increment to
the ninth increment, and then increased at the tenth increment, be-
cause the total size of the graph first decreases and then increases.
The execution time for IT and GREEDY increased for the first three
increments because for iterative approaches, when the size of the
increment is small, the size of the increment determines the execu-
tion time, but when the size of the increment is large, the size of the
resulting data set determines the execution time as the algorithms
are likely to examine the whole graph or a large part of the graph.
Finally, we note that even in the last round, where the number of in-
serted nodes is the same as the number of existing nodes, GREEDY
was still 82% faster than BATCH, showing the high effectiveness
of GREEDY.

6. RELATED WORK
Record linkage has been extensively studied in the literature (sur-

veyed in [5, 8]); however, most of the research focuses on batch

linkage rather than performing linkage in an incremental fashion to
improve the efficiency. To the best of our knowledge, incremental
linkage has been studied only in [10, 11]; however, they focused
on evolving matching rules and discussed evolving data only very
briefly. We have compared with their work in detail in Section 3.1.

For batch clustering, there are typically three steps. First, it
puts records into (multiple, possibly overlapping) blocks, such that
records that share some commonality and may refer to the same
real-world entity co-occur in at least one block. Second, for records
in the same block, it computes pairwise similarity. Third, it clus-
ters the records based on pairwise similarity, such that records that
refer to the same real-world entity belong to the same cluster, and
records that refer to different entities belong to different clusters.
Since performing blocking and pairwise similarity computation in-
crementally is fairly straight-forward when the previous results are
available, this paper focuses on incremental clustering.

There have been many clustering algorithms proposed, and we
can classify them into two categories: hierarchical clustering and
objective-function based clustering. Hierarchical clustering for record
linkage mainly contains agglomerative clustering such as SWOOSH [2].
Indeed, most of the agglomerative clustering algorithms are gen-
eral incremental, so according to [11], we simply need to apply the
batch algorithm on the previous clustering results and the single-
ton clusters for the inserted nodes. Our paper considers objective-
function based clustering and focuses on those that do not require
a priori knowledge of the number of clusters and thus are suitable
for record linkage, where the number of entities in the data is typ-
ically unknown. We designed algorithms that are widely applica-
ble; we proved optimality of MONOCONNECTED and ITERATIVE
when the objective function satisfies a natural set of desired fea-
tures, and we show empirically the effectiveness of our algorithms
instantiated for correlation clustering and DB-index clustering on
real-world data sets. Finally, we note that incremental correlation
clustering has been studied for the case where (1) one vertex is
added each time, and (2) already identified clusters need to be pre-
served [9]. In contrast, our algorithms allow leveraging new evi-
dence from updates for fixing previous clustering errors.

7. CONCLUSION
This paper describes a set of algorithms that conduct record link-

age in an incremental fashion when updates of the data arrive. Our
algorithms not only allow merging records in the updates with ex-
isting clusters, each representing records that refer to the same en-
tity, but also allow leveraging the new evidence from the updates to
fix previous linkage errors. We conducted experiments on two real-
world data sets showing the high efficiency and quality of our algo-
rithms. Future work includes studying the problem on Web-scale
data sets and for incremental linkage involving entity mentions in
unstructured texts.
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