ABSTRACT

Modern information management applications often require integrating data from a variety of data sources, some of which may copy or buy data from other sources. When these data sources model a dynamically changing world (e.g., people’s contact information changes over time, restaurants open and go out of business, etc.), sources often provide out-of-date data. Errors can also creep into data when sources are updated often. Given out-of-date and erroneous data provided by different, possibly dependent, sources, it is challenging for data integration systems to provide the true values. Straightforward ways to resolve such inconsistencies (e.g., voting) may lead to noisy results, often with detrimental consequences.

In this paper, we study the problem of finding true values and determining the copying relationship between sources, when the update history of the sources is known. We model the quality of sources over time by their coverage, exactness and freshness. Based on these measures, we conduct a probabilistic analysis. First, we develop a Hidden Markov Model that decides whether a source is a copier of another source and identifies the specific moments at which it copies. Second, we develop a Bayesian model that aggregates information from the sources to decide the true value for a data item, and the evolution of the true values over time. Experimental results on both real-world and synthetic data show high accuracy and scalability of our techniques.

1. INTRODUCTION

Modern information management applications often require integrating data from a variety of data sources. Among these sources, some may cite others (often without proper attribution on the web), crawl or aggregate data from others (e.g., Google), exchange data with or buy data from other sources [1]. Sources often provide out-of-date and erroneous data, and such data can be propagated by copiers. Resolving conflicts in data from different sources and determining the true values is critical for improving quality of integrated data. Recent work on this topic focuses on resolving conflicts from a snapshot of data [5, 13]. However, the real world is dynamically changing (e.g., people’s contact information changes over time, restaurants open and go out of business, etc.), and sources often frequently update their data to capture the changes. Such evolution presents new challenges to truth discovery.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires a fee and/or special permission from the publisher, ACM.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Example 1.1. We collected data on Manhattan restaurants from 12 web sources (listed in Table 1) weekly from 1/2009 to 3/2009 and examined opening and closing of restaurants. There are 5149 restaurants mentioned by at least 2 data sources and among them we found that 248 went out of business recently.

We decided life period of each of the 5149 restaurants from the data and the copying relationship between the sources (shown in Figure 1). Accordingly, we computed for each source its coverage (how many existing restaurants are provided and how many updates are
correct at the time of being made), freshness (how quickly sources capture changes and update), and the number of closed restaurants they still provide in their lists (shown in Table 1)\(^1\). We observe that sources do provide stale data, their quality measures vary highly, and some do copy from others. In particular, we found that source FoodBuzz, which may be an aggregator, seems to have copied from several other sources, including some out-of-date listings, and accordingly has a lower exactness.

In this paper, we examine the update history of sources and study how to decide the evolving copying relationship between sources and the evolving true values. Our first contribution is to propose several quality measures of data sources, which play a key role in our probabilistic analysis. These measures include coverage—how many values in the history a source covers, exactness—how many updates conform to the reality, and freshness—how quickly a source captures a new value (Section 2). Note that these measures are orthogonal and all contribute to the accuracy of the latest version of the data, because a low accuracy of current data can be due to either: a low exactness of provided data (erroneous data), or a low coverage or freshness for capturing recent transitions (outdated data).

Our second contribution is a set of Hidden Markov Models (HMM) that decide whether a source copies from another source and at which moment it copies (Section 3). Our models consider not only whether two sources share similar update history while one often updates later than the other, but also the coverage, freshness and exactness of the sources, to avoid identifying slow updaters as copiers. In addition, although the copying relationship between a pair of sources can evolve over time, frequent radical change is less likely; in other words, a copier is more likely to remain as a copier. Our HMM models capture this intuition and so are able to make more accurate decisions both on the copying relationship and on when the copying is conducted.

Third, we develop a Bayesian model to decide when the true value for a particular data item changes and what the new value is (Section 4). Our model considers both source quality and data copying, and so is less affected by possible wrong updates, stale data, and copied data. In addition, we consider different publish patterns, including instant publishing and delayed batch-mode publishing (Section 5).

We describe experimental results on both real-world data and synthetic data, showing that our models are accurate and scalable both in detection of the evolving copying relationship and discovery of transitions of true values (Section 6).

We note that although we propose our techniques in the framework of truth discovery, our techniques for detecting copying and evaluating source quality are of independent interest in a variety of data-integration tasks, including source recommendation, plagiarism detection, query optimization in an online query-answering system, and so on.

\(^1\)We describe the data set, the measures, and our techniques in detail in the rest of this paper. As we show in Section 6, we have evidence to support some copyings we discovered.

2. OVERVIEW

This section formally defines the problem we solve in this paper and defines quality measures of data sources.

2.1 Problem definition

Let \(\mathcal{O}\) be a set of objects. Each object \(O \in \mathcal{O}\) is associated with a value at a particular time \(t\) and can be associated with different values at different times; if \(O\) does not exist at \(t\), we consider it associated with a special value \(\bot\). Formally, we define the life span of \(O\) as a sequence of transitions \((t_1, v_1), \ldots, (t_r, v_r)\), where \(1 \leq l\) is the number of periods in \(O\)'s life time; \(2\) the value of \(O\) changes to \(v_i\) at time \(t_i, i \in [1, l]\); \(3\) \(v_i \neq \bot\), and \(v_i \neq v_{i+1}\) for each \(i \in [1, l - 1]\); and \(4\) \(t_1 < t_2 < \cdots < t_r\). We denote by \(\odot\) the beginning time we are interested in and \(t_{r1} = \odot\) if an object already exists at that time. In our paper we focus on atomic categorical values; we can treat set (or list) of atomic values as a whole and adapt techniques in [13] for value similarity.

Let \(S\) be a set of structured data sources. Each source \(S \in S\) can (but not necessarily) provide a value for an object at a particular time, and when the value of the object evolves, \(S\) can change the value accordingly. We observe data provided by \(S\) at different times; by comparing an observation with its previous observation, we can infer recent updates. Formally, we denote by \(\mathcal{T} = \{t_1, \ldots, t_n\}\) the set of observation points and by \(U(S, t_i), i \in [0, n]\), the updates we infer at time \(t_i\); as a special case, \(U(S, t_0)\) contains values \(S\) provides at \(t_0\). Note that an update can happen at any time in \([t_{i-1}, t_i]\) and we may miss updates that are later overwritten. Our techniques can be adapted to the case where we know exact timestamps of each update.

We classify data sources into independent ones and copiers. An independent source updates according to its own observation of the real world. A copier can copy from one or more other sources. When a copier copies, it may copy only a subset of updates and may meanwhile observe the real world independently and conduct updates accordingly (validating or modifying a copied value is also considered as independent updating). A copier may not copy all the time: it can copy at some times and update independently at other times. On the other hand, a copier can stop copying from a particular source and vice versa. Note that the case of a source being independent and the case of a source being a copier but not copying at a particular moment are conceptually different, but not distinguishable from behavior of the source at that moment.

For now we consider instant publishing—publishing a value right after it is observed (from the real world or from another source); in other words, the published updates conform to the observation at the point of publishing (though the observation may be false and do not conform to the reality). We consider other publish patterns in Section 5.

Example 2.1

Consider the (synthetic) data sources in Table 2. They provide information on affiliations of five database researchers: Stonebraker(S), Dewitt(D), Bernstein(B), Carey(C), Haleyv(H) and we observe their data each year since 2000. Among the five sources, \(S_1\) and \(S_2\) are independent; \(S_3\) was once a copier of \(S_2\) and then changed to be a copier of \(S_3\) since 2006 (despite difference of their latest data); \(S_4\) is a copier of \(S_3\); \(S_5\) is a copier of \(S_5\) but copies only periodically. \(\Box\)

The goal of our research is to determine the evolving copying relationship between sources and the evolving true values of objects. Formally, we decide

\(^2\)We assume a source starts providing data before \(t_0\), but our techniques can be easily adapted for the opposite case.
Table 2: Researcher affiliation example. We emphasize the last update on each object by each source.

<table>
<thead>
<tr>
<th>Life span</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>S₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (UCB)</td>
<td>03, MIT</td>
<td>00, UCB</td>
<td>01, UC Berkeley</td>
<td>05, MIT</td>
<td>03, MIT</td>
</tr>
<tr>
<td>(02, MIT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (Google)</td>
<td>00, Wisc</td>
<td>00, UCB</td>
<td>01, Wisc</td>
<td>01, Wisc</td>
<td>05, Wisc</td>
</tr>
<tr>
<td>(09, MSR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (UCB)</td>
<td>00, MS</td>
<td>00, MS</td>
<td>01, MS</td>
<td>01, MS</td>
<td>07, MS</td>
</tr>
<tr>
<td>(08, MSR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H (Google)</td>
<td>00, UCB</td>
<td>00, Wisc</td>
<td>01, Wisc</td>
<td>05, UCB</td>
<td>05, UCB</td>
</tr>
<tr>
<td>(07, Google)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **copying:** for every \(S_1, S_2 \in S \) and \(t \in T \), the probability that \(S_1 \) is a copier of \(S_2 \) at \(t \) and if so, the probability of \(S_1 \) actively copying from \(S_2 \) at \(t \).

2. **life span:** for every object \(O \in O \) and \(t \in T \), the true value (including \(\perp \)) of \(O \) at \(t \).

In this paper we do not consider simultaneous cyclic copying, which happens rarely in practice.

2.2 Quality of data sources

Before we present our solutions to copying detection and life span discovery, we first introduce three quality measures of data sources, namely, coverage, exactness, and freshness, as a whole referred to as the CEF-measure, on which we rely heavily in our probabilistic analysis.

Consider a source \(S \in S \). Intuitively, its coverage measure the percentage of all transitions of different objects that it captures; its (in)exactness measures the percentage of all transitions it mis-captures (by providing a wrong value); its freshness measure how quickly it captures the transitions. Source \(S \) is high-coverage, exact and fresh, if it provides a new value for an object if and only if, and right after, the true value of the object evolves to that value. The definition of CEF-measure relies on two notions, capture and mis-capture, which we define next.

An update of \(S \) on a particular object \(O \) can be triggered either by a transition of \(S \) (to reflect the value change) or by a previous update of \(S \) (to fix a previous error). Thus, we consider all transition points of \(O \) and update points of \(S \) on \(O \) and sort them in ascending order. These points divide the whole observation period into a set of slices. The real value of \(O \) in each slice is the real value at the beginning of the slice. As an example, Figure 2 depicts the life span of Dewitt's affiliation and updates by \(S_5 \) on it; we divide the whole observation period into 5 slices.

A slice is **captured** if at its beginning, the value provided by \(S \) is different from the real value. A capturable slice is **captured** if it ends with an update of \(S \) to the real value. A slice is **mis-captured** if it can update to a wrong value; when there are more than two values in the domain of \(O \), each slice is mis-capturable. A mis-capturable slice is **mis-captured** if it ends with an update of \(S \) to a wrong value. Thus, a slice that does not end with an update is neither captured nor mis-captured. In Figure 2, all 5 slices are mis-capturable, and \(L_1, L_2, L_3, \) and \(L_4 \) are capturable. Among them, \(L_1 \) and \(L_2 \) are mis-captured, and \(L_3 \) is captured.

3. **Discovering Copying of Sources**

This section describes how we discover copying between data sources. As we need to reason about update pattern over time, a natural choice is to use a Hidden Markov Model (HMM) [11] which we compare with other options and validate its advantage in experiments (Figure 16). We start from a review of the HMM model (Section 3.1), then describe a basic HMM model for copying discovery (Section 3.2), and next extend it for periodical copying (Section 3.3). This section assumes knowledge of the life span of each object and we present how we compute it in Section 4.

3.1 Review of HMM

A Hidden Markov Model (HMM) [11] contains a set of hidden states \(H = \{h_1, h_2, \ldots, h_N\}, N \geq 1 \), and a set of observation symbols \(O = \{o_1, o_2, \ldots, o_M\}, M \geq 1 \). At each time \(t \), the model is in a particular hidden state \(q_t \in H \) and we observe a particular observation symbol \(e_t \in O \). An HMM \(\lambda = (A, B, \pi) \) contains three components:

- the state transition probabilities, \(A_{N \times N} = \{a_{ij}\mid i,j \in [1,N]\} \), where \(a_{ij} = P(q_{t+1} = h_i \mid q_t = h_j) \) is the probability that the model transits from state \(h_j \) to \(h_i \);

- the observation probability distribution in each state, \(B_{N \times M} = \{b_{ij}\mid i \in [1,N], j \in [1,M]\} \), where \(b_{ij} = P(e_t = o_j \mid q_t = h_i) \) is the probability of observing \(o_j \) in state \(h_i \);

- the initial state distribution, \(\pi = \{\pi_i\mid i \in [1,N]\} \), where \(\pi_i = P(q_1 = h_i) \) is the initial probability of state \(S_i \).

Given a sequence of observations, we can apply Forward-backward inference to decide the probability of each state at each time point. In addition, by applying Baum-Welch learning, we can decide the parameters in \(A, B \) and \(\pi \) from a set of observation sequences [11].
3.2 The basic HMM

Let S_1 and S_2 be two data sources. We decide if one of them copies from the other. We apply an HMM, where the hidden states correspond to whether S_1 or S_2 is copying at a particular moment and the observations correspond to their updates. We next describe our model in detail.

3.2.1 Hidden states

We first decide the set of hidden states. As we assume acyclic copying, at each moment there can be at most one copier between S_1 and S_2. In case a particular source is a copier, it can copy or independently update at a particular observation point. Thus, there are five hidden states: $I, C_1, C_1\sim, C_2, C_2\sim$. State I represents independence of S_1 and S_2. States $C_1, C_1\sim$ represent that S_1 is a copier of S_2, while the former represents S_1 actively copying from S_2 and the latter represents S_1 not copying at that moment. Similarly, states $C_2, C_2\sim$ represent S_2 copying or not copying while being a copier of S_1.

Note that $C_1\sim, C_2\sim$, and I are not distinguishable from the action of S_1 and S_2: in all cases S_1 and S_2 make independent updates. One may suggest we merge them into the same state; however, as we show later, the probability of transition from one of these states to state $C_1\sim$ (or $C_2\sim$) can be different: intuitively, S_1 is more likely to actively copy from S_2 (so in state $C_1\sim$) next when it is in state $C_1\sim$ than in state I. To avoid ambiguity, we disallow transition between $C_1\sim$ and any of $I, C_2, C_2\sim$ (similar for $C_2\sim$); thus, the period of S_1 being a copier starts from and ends after a real copying. Figure 3 shows the transition graph.

3.2.2 Initial and transition probabilities

We now consider how to assign initial and transition probabilities for the states. Note that many transitions include the same behavior, such as transformation between copiers and being independent; thus, instead of having different transition probabilities for the 15 possible transitions, we can compute them using only a few parameters, as we describe next.

Since the period of a source being a copier starts with a real copying, the initial state cannot be $C_1\sim$ or $C_2\sim$. Assume the a-priori probability of two sources being independent is α (parameters can be learned from real data by Baul-Welch learning). Then, we have initial probabilities as

$$P(I) = \alpha,$$

$$P(C_1) = P(C_2) = \frac{1 - \alpha}{2}.$$

We next define three parameters that we use to compute probabilities of transitions between states.

- $f(0 < f \leq 1)$: the probability that a copier copies at a particular time point.
- $t_c(0 \leq t_c \leq 1)$: the probability that between a pair of sources, a copier remains as a copier of the other source. Intuitively, this is more likely to happen than transformation to independence, so typically $t_c > .5$.

The probabilities of transitions are computed as follows. For convenience, we denote by $T_{h,h'}$ the transition from state h to h' and by $a_{h,h'}$ its probability.

- Transition $T_{1,1}$ happens when S_1 and S_2 remain as independent, so has probability t_c. Transitions $T_{1,2}$ and $T_{1,2'}$ have the same probability, $t_c t_c$.
- When S_1 is a copier of S_2, it transforms to be independent with probability $1 - t_c$. Once this happens, S_1 and S_2 become independent and remain so with probability t_c; otherwise, S_2 becomes a copier of S_1. Thus, $a_{C_1,C_2} = (1 - t_c) - t_c$ and $a_{C_1,C_2} = (1 - t_c)(1 - t_c)$ similar for $C_2\sim$.
- Once S_1 remains as a copier of S_2, it copies at a particular moment with probability f. At state $C_1\sim$, S_1 remains as a copier with probability t_c, so $a_{C_1, C_1\sim} = f \cdot t_c$ and $a_{C_1, C_1\sim} = (1 - f) \cdot t_c$ (similar for $C_2\sim$).

3.2.3 Observation probability distribution

Now we consider the probability of S_1 and S_2 making particular sets of updates in a state. There are a huge number of possible updates for each source at each moment; enumerating them and assigning a probability for each is infeasible. Instead, we describe equations for computing the probability of a particular observation.

We focus our attention on three types of updates at each particular point: those made by S_1 and recently (we define “recently” shortly) by S_2, denoted by \bar{U}_{S_1,S_2}; those made by S_2 before, but not by S_1, denoted by \bar{U}_{S_2}; and those made by S_1 but not recently by S_2, denoted by \bar{U}_{S_1}.

Typically, the more updates in \bar{U}_{S_1}, the more likely S_1 is copying from S_2; the more updates in \bar{U}_{S_2}, the less likely that S_1 is copying from S_2; the more updates in \bar{U}_{S_1} or \bar{U}_{S_2}, the less likely that S_1 is copying.

Note that we do not consider updates performed neither by S_1 and S_2, both because enumerating them is often infeasible, and because the set of updates that “should” be performed depends on previous updates and so varies for sources. We denote by Ω_1 the distribution of $\bar{U}_{S_1}, \bar{U}_{S_2}, \bar{U}_{S_1} \sim, \bar{U}_{S_2} \sim$ at a particular moment and define Ω_2 for S_2 similarly (note that $\bar{U}_{S_1} \sim$ and $\bar{U}_{S_2} \sim$ can be different, similar for other pairs of sets). We summarize observations at each point using Ω_1 and Ω_2.

Intuitively, the fact that S_1 always follows updates of S_2 can ring an alarm in copying detection. However, this fact in itself does not necessarily imply S_1 being a copier, as S_1 might just be a slow updater (has low freshness). Source S_1 is more likely to be a copier of S_2 if in addition one of the following holds: (1) S_1 and S_2 have only low to medium coverage but their updates highly overlap in a close time frame; (2) S_1 and S_2 make a lot of common mistakes (e.g., source S_2 and S_3 in Example 2.1); (3) the overlapped updates are performed by S_1 after the real values have already changed (e.g., source S_3 and S_5’s updates on Halevy’s affiliation since 2005 in Example 2.1). These three cases are more suspectable because they are low-probability events if S_1 and S_2 are independent. We next examine the probability of an update by a source conditioned on the source independently updating or copying.

We first consider the case where S_1 is independently updating, denoted by $S_1 \not\rightarrow S_2$, and compute the probability that S_1 makes...
an update U at time t. Assume U updates the value of O to v and the last transition on O by time t is (tr, v_0) (Figure 4). If $v = v_0$, the update is correct--S_1 does not make a mistake and captures the correct value within time $t - tr$, so the probability is

$$P(U, S_1, tr | S_1 \not\rightarrow S_2, U \text{ true}) = E(S_1)C(S_1)F(S_1, t - tr).$$ \hspace{1cm} (6)$$

If instead, $v \neq v_0$, S makes a mistake. Let m be the number of wrong values in the domain. Not assuming a-priori knowledge on which wrong values are more likely to be provided, we have

$$P(U, S_1, tr | S_1 \not\rightarrow S_2, U \text{ false}) = \frac{1 - E(S_1)}{m}.$$ \hspace{1cm} (7)$$

We denote the probability of S_1 performing U by $P(U)$. According to if U is correct or not, we apply Equation (6) or (7) to compute $P(U)$. Obviously,

$$P(U \in \bar{U}_{S_1, S_2} \cup \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) = P(U);$$ \hspace{1cm} (8)$$

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) = 1 - P(U).$$ \hspace{1cm} (9)$$

We next consider the case where S_1 is copying from S_2, denoted by $S_1 \rightarrow S_2$. Then, S_1 copies a subset of recent updates by S_2 and can also update independently. Let s be the selectivity of a copier (i.e., probability of copying an update). If we denote $P_c(U)$ the probability that a copier independently performs an update U, for S_2’s recent updates, we have

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \rightarrow S_2) = s + (1 - s)P_c(U);$$ \hspace{1cm} (10)$$

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) = (1 - s)(1 - P_c(U)).$$ \hspace{1cm} (11)$$

For an update not performed by S_2 recently, we have

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) = P_c(U).$$ \hspace{1cm} (12)$$

We compute $P_c(U)$ in the same way as $P(U)$; however, we should use different CEF-measure for S_1 here: that of updates by S_1 but not previously by S_2. Computing such measure introduces a big overhead, as we need to compute for every pair of sources. We can approximate by assuming S_1 and S_2 have the same number of capturable and mis-capturable slices and so computing by

$$C(S_1 | S_2) = C(S_1) - sC(S_2);$$ \hspace{1cm} (13)$$

$$E(S_1 | S_2) = E(S_1) + s(1 - E(S_2));$$ \hspace{1cm} (14)$$

$$F(S_1, \Delta | S_2) = F(S_1, \Delta).$$ \hspace{1cm} (15)$$

Our experiments show that such approximation significantly reduces execution time without affecting the results much.

To make our computation tractable, we assume independence of updates by one source and can thus compute $P(\Omega_1 | S_1 \rightarrow S_2) \cap P(\Omega_2 | S_1 \not\rightarrow S_2)$. Then, the probability of observations (Ω_1, Ω_2) for each state comes along naturally:

$$P(\Omega_1, \Omega_2 | I) = P(\Omega_1, \Omega_2 | C_{1-c}) = P(\Omega_1, \Omega_2 | C_{2-c})$$ \hspace{1cm} (16)$$

$$P(\Omega_1, \Omega_2 | C_{1-c}) = P(\Omega_1 | S_1 \rightarrow S_2) \cdot P(\Omega_2 | S_2 \not\rightarrow S_1);$$ \hspace{1cm} (17)$$

$$P(\Omega_1, \Omega_2 | C_{2-c}) = P(\Omega_1 | S_1 \not\rightarrow S_2) \cdot P(\Omega_2 | S_2 \not\rightarrow S_1).$$ \hspace{1cm} (18)$$

Note that since states C_{1-c}, C_{2-c} and I are not distinguishable from the behavior of the data sources, the probabilities of Ω_1 and Ω_2 conditioned on them are the same.

We now present several features of our model that conform to the intuition presented early in our discussion.

Theorem 3.1. Let s be the selectivity of copying and m be the number of wrong values in the domain. The observation probability distribution has the following properties:

1. if $C(S_1) < s$, adding a correct update to \bar{U}_{S_1, S_2} at time t increases probability of state C_{1-c} at t, and adding a correct update to \bar{U}_{S_1, S_2} decreases that probability;

2. if $m > \frac{1}{s}$, adding a wrong update to \bar{U}_{S_1, S_2} at time t increases probability of state C_{1-c} at t, and adding a wrong update to \bar{U}_{S_1, S_2} decreases that probability;

3. if $E(S_1) > \frac{1}{2}$, adding a correct update to \bar{U}_{S_1, S_2} at time t decreases probability of state C_{1-c} at t;

4. adding a wrong update to \bar{U}_{S_1, S_2} at time t decreases probability of state C_{1-c} at t.

Proof. Property 1: If U is correct, since $C(S_1) < s$,

$$P(U) = C(S_1)E(S_1)F(S_1, \Delta) < s < (1 - s)P_c(U).$$

So $P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) < P(U \in \bar{U}_{S_1, S_2} | S_1 \rightarrow S_2)$, and the probability of state C_{1-c} increases if we add U to \bar{U}_{S_1, S_2}.

Also, since $C(S_1) < s$,

$$C(S_1)E(S_1)F(S_1, \Delta) < s < (1 + s)P_c(U).$$

So

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) = 1 - P(U)$$

$$> (1 - s)(1 - P_c(U)) = P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2).$$

Thus, the probability of state C_{1-c} decreases if we add U to \bar{U}_{S_1, S_2}.

Property 2: If U is incorrect, since $m > \frac{1}{s}$, $\frac{1}{m} < s$. So

$$\frac{1 - E(S_1)}{m} < \frac{1}{m} < s < (1 - s)P_c(U).$$

So

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) < P(U \in \bar{U}_{S_1, S_2} | S_1 \rightarrow S_2),$$

and the probability of state C_{1-c} increases if we add U to \bar{U}_{S_1, S_2}.

According to the above equation, we also have

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) = 1 - \frac{1 - E(S_1)}{m}$$

$$> (1 - s)(1 - P_c(U)) = P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2).$$

Thus, the probability of state C_{1-c} decreases if we add U to \bar{U}_{S_1, S_2}.

Property 3: When U is correct, for the probability of state C_{1-c} to increase when we add U to \bar{U}_{S_1, S_2}, we should have

$$C(S_1)E(S_1)F(S_1, \Delta) > C(S_1)E_c(S_1)F_c(S_1, \Delta)$$

$$> (C(S_1) - sC(S_2))(E(S_1) + s(1 - E(S_2)))F(S_1, \Delta).$$

The above equation holds when $E(S_1) > 1 - E(S_1)$, and so when $E(S_1) > \frac{1}{2}$.

Property 4: Because $E(S_1) \leq E_c(S_1)$, so

$$P(U \in \bar{U}_{S_1, S_2} | S_1 \not\rightarrow S_2) = \frac{1 - E(S_1)}{m}$$

$$\geq \frac{1 - E_c(S_1)}{m} = P(U \in \bar{U}_{S_1, S_2} | S_1 \rightarrow S_2).$$

Thus, the probability of state C_{1-c} decreases if we add U to \bar{U}_{S_1, S_2}. \hspace{1cm} \square
Table 3: Observation Ω for S_t with respect to S_2 in Example 2.1. We skip the years when all sets are empty.

<table>
<thead>
<tr>
<th>Year</th>
<th>U_{S_2, S_4}</th>
<th>U_{S_3, S_4}</th>
<th>U_{S_4, S_4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>{(S, UCB), (B, MSR), (H, Wisc)}</td>
<td>0</td>
<td>{(D, UW)}</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>{(S, MS), (D, U), (H, Google)}</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4: Probabilities of hidden states for S_2 vs. S_3.

<table>
<thead>
<tr>
<th>State</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy (C_{1, c})</td>
<td>.12</td>
<td>.43</td>
<td>.20</td>
<td>.39</td>
<td>.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle (C_{1, c})</td>
<td>.00</td>
<td>.51</td>
<td>.89</td>
<td>.51</td>
<td>.00</td>
<td>.35</td>
<td>.52</td>
</tr>
</tbody>
</table>

Recent updates: We next define what we mean by a recent update by a source. To avoid penalizing updates that are not copied immediately, we consider a window of size W. Assume S_t makes W + 1 consecutive copies at time t_{k_0}, . . . , t_{k_c}, 0 \leq k_0 < \cdots < k_w \leq n. The recent updates by S_2 include all of its updates at time t_{k_0}, t_{k_w} not overwritten by S_2’s later updates on the same objects, and not performed by S_1 yet. Here, we mark a time point as a possible “copying” point if updates by S_1 at that time overlap with recent updates by S_2.

Example 3.2. Consider sources S_1 and S_2 in the motivating example. Table 3 shows Ω for S_2 with respect to S_3. Year 2003 and 2007 are considered as copying points. As an example, S_2 has four updates in 2003: three overlap with S_3’s recent updates and are in U_{S_3, S_2}, and one, (Dewitt, UW), does not overlap and is in U_{S_3, S_2} (S_3’s update (Dewitt, UW) in 2003 is later overwritten in 2002).

Table 5 shows the probability of states C_{1, c} and C_{1, c} we infer for S_2 vs. S_3 (we set t_c = t_1 = .9, f = .5). Thus, our HMM model is able to identify that S_2 is a copier of S_3, copying in the years of 2003 and 2007. □

3.2.4 Algorithm

We apply Forward-Backward inference to compute the probability of each state at each time point. The probability of S_t being a copier at time t is the sum of the probability of state C_{1, c} and C_{1, c} (similar for S_2). We can apply Baul-Welch learning to learn the parameters a, s and the transition probabilities. Note that to keep the symmetry of the transition graph, we should infer t_1, t_c and t_f from the learned transition probabilities, and then use these parameters to re-compute the probabilities. As an example, f^i{c_1, c_1} can be computed by \frac{a_{c_1, c_1}}{a_{c_1, c_1}}, where the a’s are learned transition probabilities. We can then compute f and take the average. In particular, if we define \text{div}(x) = \frac{x}{1 + x},

\begin{align}
&f = \text{Avg}(\text{div}(\frac{a_{c_1, c_1}}{a_{c_1, c_1}}), \text{div}(\frac{a_{c_1, c_1}}{a_{c_1, c_1}})) = \frac{1}{1 + \frac{1}{1 + f}}, (19) \\
&\text{div}(\frac{a_{c_2, c_1}}{a_{c_2, c_1}}), \text{div}(\frac{a_{c_2, c_1}}{a_{c_2, c_1}})) = \frac{1}{1 + \frac{1}{1 + f}}, (20) \\
&t_c = \text{Avg}(\text{div}(\frac{a_{c_1, c_1}}{a_{c_1, c_1}}), \text{div}(\frac{a_{c_1, c_1}}{a_{c_1, c_1}})) = \frac{1}{1 + \frac{1}{1 + f}}, (21) \\
&t_f = \text{Avg}(\text{div}(\frac{a_{c_1, c_1}}{a_{c_1, c_1}}), \text{div}(\frac{a_{c_1, c_1}}{a_{c_1, c_1}})) = \frac{1}{1 + \frac{1}{1 + f}}, (22)
\end{align}

Example 3.3. Consider the motivating example. We assume knowledge of real life spans and set t_c = t_1 = .9, f = .5. Table 5 shows the computed probabilities of certain hidden states. Our model detects transformation of copying between S_3 and S_1 and that between S_3 and S_2 in the timespan HMM model. Our model discovers that S_2 is a copier of S_3, the independent updates in 2005. □

3.3 Considering time span

Once a source remains as a copier, it copies sooner or later. Typically, the longer it has not copied yet, the more likely that it copies next. It is also possible that a copier copies periodically: it makes independent updates for a period of time and then copies the recent updates by the original source.

To capture these intuitions, we need to reason about the time period that a copier has been independently updating; however, first-order Markov, where the probability of falling in a hidden state only relies on the state at the previous time, cannot capture this naturally. As we only care about the time period of state C_{1, c} and C_{2, c}, we stick to first-order Markov, which is easy for learning and inference, and revise our HMM model by dividing state C_{1, c} (similar for C_{2, c}) into a set of states C_{1, c}, C_{1, c}, . . . , C_{1, c}, where q is the number of observations within which a copier typically will conduct at least one copying (we discuss how to set q soon). Among C_{1, c}, C_{1, c}, C_{1, c}, C_{1, c}, C_{1, c}, C_{1, c}, C_{1, c} can transit only to state C_{1, c}: for each i \in [1, q], C_{1, c} can transit either to C_{1, c} or to C_{1, c}. Essentially, for a state C_{1, c}, i acts as a timer to count for how long S_i has not copied yet. Note that this model is more meaningful when the lengths of time between consecutive observations are similar.

Table 5: Probabilities of hidden states for Example 2.1.

<table>
<thead>
<tr>
<th>Year</th>
<th>State</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_3 \rightarrow S_1</td>
<td>Copy</td>
<td>.15</td>
<td>.12</td>
<td>.35</td>
<td>.27</td>
<td>.41</td>
<td>.1</td>
<td>.39</td>
<td>.34</td>
<td>.0</td>
</tr>
<tr>
<td>Idle</td>
<td>0</td>
<td>.02</td>
<td>.35</td>
<td>.41</td>
<td>0</td>
<td>.58</td>
<td>.29</td>
<td>.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3 \rightarrow S_2</td>
<td>Copy</td>
<td>1</td>
<td>.12</td>
<td>.37</td>
<td>.25</td>
<td>.28</td>
<td>0</td>
<td>.22</td>
<td>.20</td>
<td>.0</td>
</tr>
<tr>
<td>Idle</td>
<td>0</td>
<td>.12</td>
<td>.26</td>
<td>.2</td>
<td>.37</td>
<td>.18</td>
<td>.15</td>
<td>.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3 \rightarrow S_3</td>
<td>Copy</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>.43</td>
<td>.2</td>
<td>.45</td>
<td>1</td>
<td>.39</td>
<td>.12</td>
</tr>
<tr>
<td>Idle</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>.51</td>
<td>.89</td>
<td>.51</td>
<td>0</td>
<td>.35</td>
<td>.52</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Hidden states and transitions in the timespan HMM model.

addition, our model discovers that S_2 is a copier of S_3, the independent updates in 2005. □

\begin{align}
&f(i) = \frac{i}{i + 1}, f(i) \in (0, 1), (24) \\
&\text{So } f(0) = f \text{ and } f(q) \rightarrow 1. \text{ We can set } q \text{ as the minimum } i \text{ such that } f(i) > i - 1, \text{ where } \theta \text{ is a number close to 0.}
\end{align}

To model periodical copying where the copier copies once every k observations, we can set q = k, f(i) = \theta for every i \in [0, k) and f(i) = 1 - \theta for i = k.
Finally, we can learn \(f(i) \) by Baul-Welch learning. As different sources can have different copying patterns, this learning is local and is performed for each pair of sources, different from the global learning of other parameters.

4. DISCOVERING LIFE SPAN OF OBJECTS

We now present a Bayesian model that decides life span of an object. We start by considering a set of independent sources (Section 4.1), then extend our model by considering copiers (Section 4.2), and finally present the complete algorithm (Section 4.3).

4.1 Deciding life span

Consider an object \(O \in \mathcal{O} \). To discover its life span, we need to decide both time and value of each transition. We proceed iteratively: we first decide the value of \(O \) at time \(t_0 \), then find the most likely time point and value for \(O \)'s next transition, and repeat this process until we decide there is no more transition. Note that the transition points we decide have to be some observation points; in presence of precise time stamp of updates, we can extend our algorithm for more fine-grained results.

Deciding the initial value We denote by \(\Psi \) our observation of which value each source \(S \in S \) initially provides for \(O \). Let \(\mathcal{V}(O) \) be the domain of \(O \). Then, our goal is to find \(v \in \mathcal{V}(O) \) that maximizes \(P(v|\Psi) \). According to the Bayes rule, we just need to find the \(v \) that maximizes \(P(\Psi|v) \).

First, suppose \(v \neq \bot \). Consider a source \(S \in S \). There are three cases for the initial value it provides for \(O \): • \(S \) provides the correct value, with probability \(E(S)C(S) \) (we ignore freshness as the first observation contains updates accumulated over time);
• \(S \) does not provide a value for \(O \), with probability \(E(S)(1 - C(S)) \);
• \(S \) provides a wrong value, with probability \(\frac{1 - E(S)}{m} \).

We denote by \(\bar{S}(v) \) the set of sources providing \(v \) on \(O \) initially and by \(\bar{S}(\bot) \) the set of sources not providing any value on \(O \) initially. Assuming independence of sources, we have

\[
P(\Psi|v) = \prod_{S \in \bar{S}(v)} E(S)C(S) \cdot \prod_{S \notin \bar{S}(v)} E(S)(1 - C(S)) \cdot \prod_{S \notin \bar{S}(\bot)} 1 - E(S)
\]

With similar analysis, when \(v = \bot \), we have

\[
P(\Psi|\bot) = \prod_{S \in \bar{S}(\bot)} E(S) \cdot \prod_{S \notin \bar{S}(\bot)} 1 - E(S)
\]

We can thus decide the initial value of \(O \) accordingly.

Deciding the next transition Deciding the next transition is harder than deciding the initial value, as we need to consider an additional dimension—the time. Essentially, we solve the following problem. Given the last transition \(T'(O) = (t', v') \) we have discovered on \(O \), decide the next transition \(T(O) = (t, v), v \in \mathcal{V}(O), v \neq v' \) (in presence of precise time stamp of updates, we can extend our algorithm for more fine-grained results).

4.2 Deciding life span

Consider an object \(O \in \mathcal{O} \). To decide its life span, we need to decide both time and value of each transition. We proceed iteratively: we first decide the value of \(O \) at time \(t_0 \), then find the most likely time point and value for \(O \)'s next transition, and repeat this process until we decide there is no more transition. Note that the transition points we decide have to be some observation points; in presence of precise time stamp of updates, we can extend our algorithm for more fine-grained results.

Deciding the initial value We denote by \(\Psi \) our observation of which value each source \(S \in S \) initially provides for \(O \). Let \(\mathcal{V}(O) \) be the domain of \(O \). Then, our goal is to find \(v \in \mathcal{V}(O) \) that maximizes \(P(v|\Psi) \). According to the Bayes rule, we just need to find the \(v \) that maximizes \(P(\Psi|v) \).

First, suppose \(v \neq \bot \). Consider a source \(S \in S \). There are three cases for the initial value it provides for \(O \): • \(S \) provides the correct value, with probability \(E(S)C(S) \) (we ignore freshness as the first observation contains updates accumulated over time);
• \(S \) does not provide a value for \(O \), with probability \(E(S)(1 - C(S)) \);
• \(S \) provides a wrong value, with probability \(\frac{1 - E(S)}{m} \).

We denote by \(\bar{S}(v) \) the set of sources providing \(v \) on \(O \) initially and by \(\bar{S}(\bot) \) the set of sources not providing any value on \(O \) initially. Assuming independence of sources, we have

\[
P(\Psi|v) = \prod_{S \in \bar{S}(v)} E(S)C(S) \cdot \prod_{S \notin \bar{S}(v)} E(S)(1 - C(S)) \cdot \prod_{S \notin \bar{S}(\bot)} 1 - E(S)
\]

With similar analysis, when \(v = \bot \), we have

\[
P(\Psi|\bot) = \prod_{S \in \bar{S}(\bot)} E(S) \cdot \prod_{S \notin \bar{S}(\bot)} 1 - E(S)
\]

We can thus decide the initial value of \(O \) accordingly.

Deciding the next transition Deciding the next transition is harder than deciding the initial value, as we need to consider an additional dimension—the time. Essentially, we solve the following problem. Given the last transition \(T'(O) = (t', v') \) we have discovered on \(O \), decide the next transition \(T(O) = (t, v), v \in \mathcal{V}(O), v \neq v' \) (in presence of precise time stamp of updates, we can extend our algorithm for more fine-grained results).

4.3 Deciding life span

Consider an object \(O \in \mathcal{O} \). To decide its life span, we need to decide both time and value of each transition. We proceed iteratively: we first decide the value of \(O \) at time \(t_0 \), then find the most likely time point and value for \(O \)'s next transition, and repeat this process until we decide there is no more transition. Note that the transition points we decide have to be some observation points; in presence of precise time stamp of updates, we can extend our algorithm for more fine-grained results.

Deciding the initial value We denote by \(\Psi \) our observation of which value each source \(S \in S \) initially provides for \(O \). Let \(\mathcal{V}(O) \) be the domain of \(O \). Then, our goal is to find \(v \in \mathcal{V}(O) \) that maximizes \(P(v|\Psi) \). According to the Bayes rule, we just need to find the \(v \) that maximizes \(P(\Psi|v) \).

First, suppose \(v \neq \bot \). Consider a source \(S \in S \). There are three cases for the initial value it provides for \(O \): • \(S \) provides the correct value, with probability \(E(S)C(S) \) (we ignore freshness as the first observation contains updates accumulated over time);
• \(S \) does not provide a value for \(O \), with probability \(E(S)(1 - C(S)) \);
• \(S \) provides a wrong value, with probability \(\frac{1 - E(S)}{m} \).

We denote by \(\bar{S}(v) \) the set of sources providing \(v \) on \(O \) initially and by \(\bar{S}(\bot) \) the set of sources not providing any value on \(O \) initially. Assuming independence of sources, we have

\[
P(\Psi|v) = \prod_{S \in \bar{S}(v)} E(S)C(S) \cdot \prod_{S \notin \bar{S}(v)} E(S)(1 - C(S)) \cdot \prod_{S \notin \bar{S}(\bot)} 1 - E(S)
\]

With similar analysis, when \(v = \bot \), we have

\[
P(\Psi|\bot) = \prod_{S \in \bar{S}(\bot)} E(S) \cdot \prod_{S \notin \bar{S}(\bot)} 1 - E(S)
\]

We can thus decide the initial value of \(O \) accordingly.

Deciding the next transition Deciding the next transition is harder than deciding the initial value, as we need to consider an additional dimension—the time. Essentially, we solve the following problem. Given the last transition \(T'(O) = (t', v') \) we have discovered on \(O \), decide the next transition \(T(O) = (t, v), v \in \mathcal{V}(O), v \neq v' \) (in presence of precise time stamp of updates, we can extend our algorithm for more fine-grained results).

Finally, we can learn \(f(i) \) by Baul-Welch learning. As different sources can have different copying patterns, this learning is local and is performed for each pair of sources, different from the global learning of other parameters.
Finally, note that $U(S)$ is defined as the update after the update corresponding to $T'(O)$, denoted by $U'(S)$. Intuitively, $U'(S)$ should be an update that changes the value of O to v' in $[tr', tr)$. However, there can be three cases: (1) there is one and only one such update (Figure 6), so we consider it as $U'(S)$; (2) there is no such update (Figure 7(a)), so we consider $U'(S)$ not existing, $U(S)$ as the first update after tr', and $t_u = tr'$; (3) there are multiple such updates (Figure 7(b)). The third case is especially tricky because some of the updates may fix previous errors (so correspond to $T'(O)$) and some may respond to later transitions. We conduct a simple voting on the value of each moment since tr', and find the first point when the value of O changes from v' to another value. Accordingly, we consider updates to v' before this point as corresponding to $T'(O)$ and choose the last one as $U'(S)$.

4.2 Considering copiers

We next consider the case where some sources can copy from others. We first need to decide the probability that an update U is independent. At each observation point t, for each pair of sources S_1 and S_2, we can compute the probability that S_1 is actively copying from S_2, denoted by $P(S_1 \rightarrow S_2, t)$. We consider S_1 being a copier of S_2 at t if the probability of state l at t is less than δ and the probability of S_1 being a copier ($P(C_{1l})$) is larger than that for S_2. Given an update U at time t, we consider the probability of U being copied from S_2, denoted by $P(S_1 \leftarrow S_2, t)$, as $P(S_1 \rightarrow S_2, t)$ if (1) S_1 is a copier of S_2 at t, (2) S_2 provides the same value for O at t, and (3) S_2 makes an update no later than U, and as 0 otherwise. We assume copying between sources is independent; thus, the probability of S_1 independently making an update U is

$$P(U \text{ indep}) = \prod_{S_2 \in S, S_1 \neq S_2} (1 - P(S_1 \leftarrow S_2, t)).$$

When we compute $P(\Phi | T'(O))$, we revise Equation (30):

$$P(\Phi | T'(O)) = \prod_{S \in S} P(U(S) | T'(O)) P(U(S \text{ indep})$$

Finally, we note that our copying detection techniques cannot avoid a transitive inference of loop copying among more than two sources, and we can end up marking the same updates at the same time by sources in the loop all as copied (with a probability). However, such coincidence is typically rare and can be ignored.

4.3 Putting them all together

Finally, we consider how we decide life span of each object given updates by each source. In this process, we should take into consideration copying between sources and CEF-measure of sources. However, discovering source copying requires knowledge of life span of each object and CEF-measure of each source, and computing CEF-measure requires knowledge of life spans of objects.

Our algorithm thus proceeds in an iterative fashion. In each round, we first compute CEF-measure of each source (depending only on life spans), then compute probability of copying between sources, and finally (re)decide the life span of each object, until the discovered life spans do not change. Note that in the first round we do not know the life span yet; we initialize the CEF-measure of each source to the same default value except setting the coverage as the percentage of objects being covered by the source, and assume each update has 0.5 probability to be true when applying the HMM model for copying detection.

Figure 8 shows the complete algorithm. Convergence of the algorithm remains an open problem, but in our experiments we observe that when the total number of transitions is far more than the number of sources, the algorithm converges quickly. Time complexity of each round is shown as follows.

Proposition 4.2. Let m be the number of values in the domain of an object, and u be the number of updates by sources in S. We denote by $|X|$ the size of set X. Then, complexity of one round in Algorithm Lifespan is $O(|O| \cdot |S|^2 \cdot |T| + m \cdot |O| \cdot |S| \cdot |T|^2 + u \cdot |S|)$.

Proof. Computing CEF-measure of each source takes $O(|O| \cdot |S| \cdot |T|)$, and in total takes $O(|O| \cdot |S| \cdot |T|)$.

Deciding dependence for each pair of sources takes $O(|O| \cdot |S| \cdot |T|)$, and in total takes $O(|O| \cdot |S|^2 \cdot |T|)$.

Deciding independence probability for each update takes time $O(|S|)$, and in total takes time $O(u \cdot |S|)$.

Finally, deciding life span of each object takes time $O(m \cdot |O| \cdot |S| \cdot |T|^2)$, and in total takes time $O(m \cdot |O| \cdot |S|^2 \cdot |T|^2)$.

We thus have the complexity bound.

Example 4.3. Consider Example 2.1. Table 6 shows the life span discovered for Havel. The algorithm converges in four rounds. The CEF of S_1 converges at a high coverage and exactness, whereas that of S_2 converges at a low coverage and exactness.

5. CONSIDERING DELAYED PUBLISHING

Previous sections assume instant publishing. In this section we consider delayed publishing, where a source can publish an update later than the change is observed (from the real world or from other sources). Delayed publishing can happen when a weekly newspaper publishes news collected through the whole week, when a web portal publishes data crawled in a period of time in a batch mode, when we observe only a subset of sources each time, and so on. We assume dump publishing, where a source publishes all data it has collected since the last publishing. This is common in practice and our techniques can be easily extended to the case where a source
6. EXPERIMENTAL RESULTS

This section presents experimental results on life-span discovery and copying detection. We first present results on a real-world data set (Sec. 6.2), showing that the problems we address in this paper are real issues in the world, and our methods can improve quality of the integrated data. Since in most cases we have no means to check the actual copying relationship and the precise life span of objects in the real world, we also experimented on synthetic data. We first present results on a data set that mimic complexity in the real world, examining contribution of different components to our algorithms (Sec. 6.3.2). We then consider a harder case, where we care about only existence of sources so variety of update traces by different sources significantly reduces. We examine performance and robustness of our models on life-span discovery (Sec. 6.3.3) and copying detection (Sec. 6.3.4).

6.1 Experiment setup

We consider a set of data sources and objects as described in Sec. 2 and refer to them as a universe. We refer to the special case where each object has only two possible values, existing and non-existing (⊥), as binary universe. Our goals are to decide life span of objects and copying between sources in a given universe.

For life-span discovery, our algorithm has three main components: copy—considering copying between sources, CEF—considering CEF-measure of sources, and delay—considering publish delay. We implemented several variants by combining different components.

- **NAIVE**: For each object, vote for its value at each observation point.
- **SIMPLE**: First apply NAIVE and then decide transition points iteratively: for each point where the voted value changes to a new value, find the earliest point since the last transition when a source provides a value and does not update until point.
- **COPY**: The same as SIMPLE except considering copying in voting (Eq. (33)).
- **CEF**: Consider CEF-measure (Eq. (25-32)).
- **CEFDELAY**: CEF+delay (Eq. (35)).
- **COPYCEF**: copy+CEF. (Algorithm LIFESPAN).
- **COPYCEFDelay**: copy+CEF+delay (Eq. (35-36)).

For copying detection, we compared static models (INIT, CURR, TRACE), various HMM models (HMM5, HMMN, HMM3), and HMM with consideration of publish delay:

- **INIT/CURR**: Consider only initial or latest values.
- **TRACE**: Compute Ω1 and Ω2 for each observation point and reason over the accumulated results (Eq. (16-18)).
- **HMM3**: An HMM model with three states I, C1c, and C2c, the same transition probabilities as Figure 3 except that \(a_{1,1} = t_i - f \), \(a_{1,1}C1c = a_{1,1}C2c = t_i - f \), \(a_{1,2}C1c = a_{1,2}C2c = t_i - f \).
- **HMMN**: The basic HMM model with 5 states (Fig. 3).
- **HMMN**: The timespan HMM model (Fig. 5) with \(f(i) = i + q, q = 5 \).
- **HMMDelay**: HMM5 with publish delay (Eq. (36)).

By default, we computed weighted CEF-measure and applied HMM5 in life-span discovery. Initially we set \(\alpha = f = .5, t_i = t_c = 0.99, s = .8, m = 100 \) when apply, but may apply Baul-Welch learning to learn the parameters in some experiments.
We measure lifespan-discovery results by edit distance, defined as the Levenshtein distance between decided life-span periods and real periods, where insertion or deletion of a period is penalized by the length of the period, and substitution of a period with the same value is penalized by the difference of the beginning points. Ideally, the edit distance should be 0. We describe how we measure copying-detection results in Sec. 6.3.4.

We implemented our models in Java and conducted experiments on a WindowsXP machine with AMD Athlon(tm) 64 2GHz CPU and 960MB memory.

6.2 Experiments on real-world data

We randomly selected 12 web sources (listed in Table 1 at the beginning of this paper; $F(0)$ is shown as freshness for each source) that provide information on restaurants in Manhattan. We crawled their data from 1/22/2009 to 3/12/2009, once every week, so 8 times in total. For each restaurant listing, we collected name, phone number, address, direction, neighborhood, and price range whenever possible. We identified restaurants by their names and considered only restaurants that are mentioned by at least two data sources. In total there are 5149 such restaurants; among them, 5113 were considered only restaurants that are removed by us. We identified restaurants by their names and considered only restaurants that are mentioned by at least two data sources. In total there are 5149 such restaurants; among them, 5113 were considered only restaurants that are removed by us.

We considered two cases as deletion of a restaurant from a source: the source explicitly marks the restaurant as "\(\text{CLOSED}\)" or the source implicitly removes the restaurant from its list. We considered the set of restaurants that a source provided once but deleted later. There are 463 such restaurants. For each of them, we called its phone number to verify if it is still open and used it as the golden standard. We found that 248 of them are indeed closed.

We ran various algorithms to decide life span (existence periods) of each restaurant, and reported precision, recall, and F-measure, denoted respectively as P, R, $F1$, of our results. Formally, among the 463 restaurants, we define \bar{G} as the set of restaurants that are \textit{closed} in the golden standard and \bar{R} as the set of restaurants that our algorithm decided as closed. Then, $P = \frac{|\bar{G} \cap \bar{R}|}{|\bar{R}|}$, $R = \frac{|\bar{G} \cap \bar{R}|}{|\bar{G}|}$, and $F1 = \frac{2PR}{P+R}$. In addition, we searched each of the restaurants on Google Maps and reported the three measures as well.

Table 7 shows results of various methods\(^4\). We observed as follows. (1) COPYCEF and CEF obtain high precision and recall. Between them, COPYCEF obtains higher precision and discovers more restaurants that have ever existed by considering copying. (2) NAIVE seems to have a high F-measure; however, as most restaurants are often mentioned by a few sources, it concludes that only 1100 out of 5149 restaurants have ever existed. (3) Considering all of the 463 restaurants as \textit{closed} (referred to as ALL) has low precision (.54), while considering only restaurants that are removed by at least two sources as \textit{closed} (referred to as ALL2) has low recall (.31). Finally, we observed that Google Maps lists many out-of-business restaurants, reflecting staleness of data on the web.

We observed that COPYCEF and CEF both converged at the 5th round and took 18.6 and 8.95 minutes respectively. Since life-span discovery is a one-time process, the execution time is acceptable.

Among the 66 pairs of sources, we detected copying relationship between 14 pairs (Figure 1). Among the sources, it is more likely that FoodBuzz and VillageVoice are copiers and MenuPages and TimeOut are being copied. Although we do not know the real copying relationship between sources, we have the following evidence to support some of our results. First, FoodBuzz and VillageVoice each formats addresses of different restaurants in very different ways, so may copy them from various sources; in addition, FoodBuzz inserted restaurants even after the restaurants were closed, so possibly copied the data. Second, MenuPages has been on the web for the longest time among the 12 sources and has the highest coverage (.66), so is possible to be copied by other sources.

6.3 Experiments on synthetic data

We next describe how we generated the synthetic data and reported experimental results.

6.3.1 Synthetic data

Objects: A universe contains 100 objects. In a multi-valued universe, the domain for each object contains 102 values (including \(\bot\)). We have 20 periodical observations at t_0, \ldots, t_{19}. A universe can be either single-period or multi-period: in the former an object exists at t_0 with probability $p_1 = .5$ and at t_{19} with probability $p_2 = .3$, but does not change value during existence; in the latter an object exists at t_0 with probability $p_1 = .5$, transits at each observation point with probability $p_2 = .1$, and once transits, disappears with probability $p_3 = .1$ or changes to another random value otherwise. We note that results with more objects, more observations, or larger domains are similar.

Sources: According to different types of data sources, we classify a universe into three categories.

- **Independence universe** contains 10 independent sources.
- **Copier universe** contains 10 independent sources and 9 copiers, all copying from the same independent source.
- **Random universe** contains 10 independent sources and a number of copiers. Each copier copies from a randomly selected source, either independent or being a copier as well, but there is no loop copying.

For each independent source S and object O, at each observation point S updates the value of O to a random false value with probability p_f, and updates to the true value with probability $p_t \cdot f(\Delta)$, where Δ is the difference between the observation and the transition of that true value. We define $f(\Delta) = f_0 \cdot 2^\Delta$ when $0 \leq \Delta \leq -\log f_0$, and $f(\Delta) = 1$ when $\Delta > -\log f_0, 0 < f_0 \leq 1$. Note that although p_t, p_f and f are related to the CEF-measure, the definitions are not exactly the same and we chose to do so to test robustness of our model. Table 8 shows how we set the parameters.

For the random universe, we randomize p_t, p_f, f_0 by Gaussian distribution with mean .75, .95, .1 respectively.

Table 7: Discovered ever-existing restaurants (\#Rest) and closing restaurants in Manhattan.

<table>
<thead>
<tr>
<th>Method</th>
<th>#Rest</th>
<th>Prec</th>
<th>Rec</th>
<th>F-meas</th>
<th>#Rmnds</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>-</td>
<td>.54</td>
<td>1</td>
<td>.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALL2</td>
<td>-</td>
<td>.82</td>
<td>.31</td>
<td>.45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NAIVE</td>
<td>1100</td>
<td>.62</td>
<td>.92</td>
<td>.74</td>
<td>1</td>
<td>151</td>
</tr>
<tr>
<td>CEF</td>
<td>5056</td>
<td>.73</td>
<td>.95</td>
<td>.78</td>
<td>5</td>
<td>537</td>
</tr>
<tr>
<td>COPYCEF</td>
<td>5080</td>
<td>.76</td>
<td>.85</td>
<td>.8</td>
<td>5</td>
<td>1118</td>
</tr>
<tr>
<td>GOOGLE</td>
<td>-</td>
<td>.77</td>
<td>.15</td>
<td>.24</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

at least two sources as \textit{closed} (referred to as ALL2) has low recall (.31). Finally, we observed that Google Maps lists many out-of-business restaurants, reflecting staleness of data on the web.

We observed that COPYCEF and CEF both converged at the 5th round and took 18.6 and 8.95 minutes respectively. Since life-span discovery is a one-time process, the execution time is acceptable.

Among the 66 pairs of sources, we detected copying relationship between 14 pairs (Figure 1). Among the sources, it is more likely that FoodBuzz and VillageVoice are copiers and MenuPages and TimeOut are being copied. Although we do not know the real copying relationship between sources, we have the following evidence to support some of our results. First, FoodBuzz and VillageVoice each formats addresses of different restaurants in very different ways, so may copy them from various sources; in addition, FoodBuzz inserted restaurants even after the restaurants were closed, so possibly copied the data. Second, MenuPages has been on the web for the longest time among the 12 sources and has the highest coverage (.66), so is possible to be copied by other sources.

Table 8: Source-generation parameters and their settings.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p_t</th>
<th>p_f</th>
<th>f_0</th>
<th>f_2</th>
<th>π_{su}</th>
<th>π_{cu}</th>
<th>π_{o0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>.75</td>
<td>.99</td>
<td>.1</td>
<td>.5</td>
<td>.8</td>
<td>.2</td>
<td>.075</td>
</tr>
<tr>
<td>Range</td>
<td>0-1</td>
<td>.95-1</td>
<td>1-1</td>
<td>1-1</td>
<td>2</td>
<td>0-15</td>
<td></td>
</tr>
</tbody>
</table>
We observed similar trends when \(p_f \) is higher, but higher edit distance for each method.

6.3.3 Life-span discovery for binary universe

Quality of sources: First, we compared various methods on the copier universe when we varied quality of the independent sources (Fig. 11). We make the following observations. (1) CEF obtains better results than NAIVE and SIMPLE in all different settings. (2) COPY obtains similar, but sometimes even worse results than SIMPLE, showing that considering copying in itself is not enough in binary universe. Once we consider both copying and CEF-measure, the results are significantly improved: when \(p_f = .01 \), \(f_0 = .1 \), on average COPYCEF reduces the edit distance by 27.8% over SIMPLE and by 18.3% over CEF. (3) CEFDelay and COPYCEF Delay obtain slightly worse results than CEF and COPYCEF respectively, showing that considering publish delay in case of instant publishing does lose information, but only slightly. (4) Typically, COPYCEF obtains better results with higher CEF-measure (lower \(p_f \), higher \(p_i \) or \(f_0 \)). The only exception is when the CEF-measures are all very high, so all sources are highly similar and COPYCEF can wrongly identify an independent source as a copier.

Quality of sources: We varied the quality of the source that is copied while applied the default parameters for other independent sources. Fig. 12 shows difference of the edit distance when all independent sources have the same quality and that when the source being copied has different quality. We observe that the difference for COPYCEF is very low, and much lower than that of CEF; for example, when \(p_f \) increases from .01 to .05 and \(p_i \) decreases from .75 to .1, the edit distance of the results increases only by .28, while the difference for CEF is 1.36. Thus, COPYCEF is insensitive to quality of the sources that are copied.

Multi-period life spans: We constructed multi-period life spans in two ways: (1) randomly generate multiple periods observing \(p_i = .5, p_c = .3 \); (2) randomly choose the first existence point in \([0, f - 1]\), and generate life span with periods of length \(l \). Fig. 13 shows the results of COPY, CEF and COPYCEF. We observe that COPYCEF obtains the best results in most cases. For all models, the edit distance significantly decreases when the average length of the periods increases; the edit distance remains stable once the length reaches 10, as beyond this point the average length of existing and non-existing periods remains as 10. Thus, COPYCEF performs better when life-span periods are longer.

Publish delay: We constructed sources with delayed publishing in two ways: (1) each source publishes at the beginning and then publishes at a particular observation point with probability .5, (2) each source publishes at the beginning, randomly chooses the second publish point in \([1, d]\), and then publishes after every \(d \) observations. Fig. 14 shows the results. COPYCEF Delay obtains the best results when there exists publish delay: edit distance of its results remains stable as \(d \) increases; on average it improves over COPYCEF by 26% in presence of delayed publishing; and in general, the higher the publish delay, the larger improvement. Thus, COPYCEF Delay handles publish delay well.

6.3.4 Copying detection for binary universe

We next compare different models for copying detection.

Overtime copier We start with the case when a copier does not transform to be independent. We measure discovered copying by
precision, recall and F-measure. Let \tilde{G} be the set of ordered pairs (S_1, S_2) where S_2 is a copier of S_1, and R be such pairs returned by our model. We compute the three measures as we described earlier. Note that in the copier universe, \tilde{G} contains only 10 pairs but R can potentially be much larger. To balance \tilde{G} and R, we divide the universe into sub-universes, each containing two copiers, their original source, and another independent source, and take the average over sub-universes.

We further examine accuracy of copying decision for the following categories: I. two independent sources, II. a copier vs. its original source, III. a source vs. its copier, IV. two co-copiers, V. an independent source vs. a copier of another source, and VI. a copier of a source vs. another independent source. Note that accuracy of Category II is the recall.

We start with analysis of HMM5. Fig. 15 shows its accuracy on various categories of source pairs. We observe that (1) HMM5 is good at identifying copiers: in Category II, when the coverage is above 2, we obtain an accuracy of above 95%; we can miss copiers when the coverage is low because the copiers actually conduct more independent updates than copied updates, so are hard to be distinguished from independent sources; (2) HMM5 achieves an accuracy of nearly 1 for identifying sources that are independent of each other (I, V, VI); (3) The only category for which we are not doing very well is between co-copiers (IV), as they share similar update patterns; however, the accuracy is still 88% on average.

We then compared various methods for copying detection: Fig. 16(a) shows their F-measure and Fig. 16(b) shows their effect on results of COPYCEF. We have several observations. First, considering only a snapshot of data obtains very low precision and recall (on average F1=.25 for CURR and F1=.16 for INIT). Second, TRACE obtains a low precision and significantly worsens results of COPYCEF, especially when p_i is high: this is because it accumulates a lot of overlapped updates over time and so is likely to conclude copying. Third, although we cannot compare HMM3 and HMM5 directly on F-measure of copying detection, we observe that the edit distance of discovered life span using HMM3 is 6.7% larger than HMM5, as HMM3 does not distinguish an independent source and an idle copier (not copying). Finally, HMMN obtains the highest F-measure in most cases by asserting that the longer a copier has not copied, the more likely it should copy next, though, it does not improve results of COPYCEF much.

Next, we compared HMM5 and HMMDELAY when there is publish delay (Fig. 17). HMMDELAY indeed improves over HMM5 by 8.5% on recall, 4.3% on precision, and 6.5% on F-measure on average; however, we did not observe obvious difference in lifespan discovery.

Finally, we examined whether our model is robust with respect to different copy patterns by varying the selectivity of copying (δ_u) from .1 to 1, and changing the copy rate to 1. We observe similar precision and show only recall. Fig. 18 shows that if we use the default selectivity (.8) in our HMM model, we can obtain a low recall when δ_u is low (below .5). If we learn selectivity, the recall increases from .63 to .84 on average; if we learn copy rate in addition, the recall increases further to .94 and is high for almost all different values of δ_u. The results show robustness of our HMM model to different initial settings of parameters.

Copying transformation We considered transformation and generated copiers that are initially copiers or independent sources, and then transform at a particular point. We compared the transformation points our model computes with the real ones: if the copier does not transform, we consider that the transformation point is 20 (the number of observations). Fig. 19 shows the average transformation points that HMM5 computes. On average the difference between real transformation points and those computed by HMM5 is small: 2 when the copiers are initially copying, and 44 when they are initially independent.

Summary Our experimental results on synthetic data have the following implications:

1. Considering CEF-measure and copying both contribute to improving quality of life-span discovery results.
2. Considering publish delay can significantly improve the results in presence of delay, and only slightly worsen the results in absence of delay.
3. The basic HMM model is accurate in detecting copying; the lifespan HMM model improves the results only slightly, but with higher cost.

4. Our model is robust to different characteristics of data and initial HMM parameter settings.

7. RELATED WORK

There are three bodies of work related to our research: truth discovery, copying detection and data freshness. Recent work on truth discovery considers a snapshot of data. Bleiholder and Naumann [2] surveyed existing strategies for resolving inconsistency in structured or semi-structured data. Yin et al. [13] considers accuracy of sources in truth discovery. We consider discovering the whole life span of an object from history of source updates and we use more fine-grained source-quality measures: coverage, exactness, and freshness.

For copying detection, Berti-Equille et al. [1] recently sketched several high-level intuitions, but did not give concrete algorithms. Dong et al. [5] proposed detecting copying from a snapshot of data by examining overlapping errors between sources; such a model, however, can fall short in presence of large overlap of out-of-date data. We consider update history of sources in copying detection and decide in which period a source is a copier and at which particular moments it copies. We are not aware of any other work for copying detection on relational data. In addition, we distinguish our work from data provenance [3], which assumes knowledge of provenance and focuses on management of such information.

Finally, existing work on data freshness [12, 8, 4, 9, 7, 10] defines freshness as how stale the data in a materialized view are compared with the original sources, and emphasize update propagation. We have different focus and consider consistency of data with respect to evolution of real-world objects over time. We note that the notions of completeness, consistency, and currency in [7] are analogous to our CEF-measure, but in different contexts.

8. CONCLUSIONS

This paper considers how we can explore update history of sources in improving quality of integrated data. We measure quality of source data by coverage, exactness, and freshness. Based on these measures, we developed an HMM model to decide whether a source is a copier of another source and at which moment it copies. Then, we developed a Bayesian model to decide life span of each object, taking into consideration CEF-measure of sources, copying between sources, and possible publish delay. Experimental results on real-world and synthetic data show high accuracy and efficiency of our models.

For future work, one direction is to apply our techniques in Web 2.0 applications to identify sources or users that are trustworthy. Another direction is to optimize query answering in a data integration system with knowledge of quality of sources and dependence between sources.

9. REFERENCES

