
Record Linkage with Uniqueness Constraints and
Erroneous Values

Songtao Guo
AT&T Interactive Research

sguo@attinteractive.com

Xin Luna Dong
AT&T Labs-Research

lunadong@research.att.com

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

Remi Zajac
AT&T Interactive Research

rzajac@attinteractive.com

ABSTRACT
Many data-management applications require integrating datafrom a variety
of sources, where different sources may refer to the same real-world entity
in different ways and some may even provide erroneous data. An important
task in this process is to recognize and merge the various references that
refer to the same entity. In practice, some attributes satisfya uniqueness
constraint—each real-world entity (or most entities) has a unique value for
the attribute (e.g., business contact phone, address, and email). Traditional
techniques tackle this case by first linking records that arelikely to refer to
the same real-world entity, and then fusing the linked records and resolv-
ing conflicts if any. Such methods can fall short for three reasons: first,
erroneous values from sources may prevent correct linking; second, the real
world may contain exceptions to the uniqueness constraints and always en-
forcing uniqueness can miss correct values; third, locally resolving conflicts
for linked records may overlook important global evidence.

This paper proposes a novel technique to solve this problem. The key
component of our solution is to reduce the problem into ak-partite graph
clustering problem and consider in clustering both similarity of attribute
values and the sources that associate a pair of values in the same record.
Thus, we perform global linkage and fusion simultaneously, and can iden-
tify incorrect values and differentiate them from alternative representations
of the correct value from the beginning. In addition, we extend our al-
gorithm to be tolerant to a few violations of the uniqueness constraints.
Experimental results show accuracy and scalability of our technique.

1. INTRODUCTION
The amount of information produced in the world increases by

30% every year [25] and this rate will only go up. In many domains,
such as business, organizations, publications, music, video, movie,
sports, travel, vehicle, housing, there exist a large number of data
sources and a lot of their data overlap. Different sources can pro-
vide information about the same real-world entities; though, they
may represent the same attribute value in different ways, and some
may even provide erroneous values. An important task in integrat-
ing data from various sources is to recognize the various references
that refer to the same real-world entity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 36th International Conference on Very Large Data Bases,
September 13-17, 2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

In practice, there are often attributes that satisfy auniqueness
constraint, where each real-world entity (or most entities) has a
unique value for the attribute; examples include website, contact
phone, address, and email address of businesses, cell-phone num-
ber, email address, and Facebook account of people, and president
and website of organizations, and so on. However, the data may
not satisfy the constraints, either because some sources can provide
erroneous values, or because there can be a small number of excep-
tions in the real world. Traditional techniques handle this case in
two steps: first, therecord linkagestep (surveyed in [14, 31]) links
records that are likely to refer to the same real-world entity, implic-
itly requiring consistency of the linked records or explicitly enforc-
ing constraints to some extent; then, thedata fusionstep (surveyed
in [12]) merges the linked records and decides the correct values
for each result entity in the presence of conflicts.

Such techniques have at least three problems, illustrated by Ta-
ble 1. First, erroneous values may prevent correct linking. In the
example, careless linkage may merge the “MS Corp.” record from
S10 with the “Macrosoft” records, as they share phone and address,
while failing to merge them with the “MS Corp.” records fromS7

andS8, needless to mention the “Microsoft” records; if we realize
that S10 confuses betweenMicrosoft andMacrosoftand provides
wrong values, we are more likely to obtain the correct linkage re-
sults. Second, such techniques can fall short when exceptions to
the uniqueness constraints exist. In the example, enforcing unique-
ness can miss the correct number “9400” forMicrosoft. Third, lo-
cally resolving conflicts for linked records may overlook important
global evidence. In the example, suppose we have correctly merged
all “MS Corp” records with otherMicrosoft records; then the fact
that “0500” is provided by more sources forMacrosoftprovides
further evidence that it is incorrect forMicrosoft.

This paper presents a novel technique to solve the record linkage
problem with uniqueness constraints and erroneous values. The
key idea in our solution is to merge the linkage step and the fusion
step, so we are able to identify incorrect values and differentiate
them from alternative representations of the correct value from the
beginning, and obtain better linkage results. Another crucial part
of our solution is to make global decisions based on which sources
associate a pair of values in the same record, so we can obtain better
fusion results. Finally, although our solution relies on uniqueness
constraints to detect erroneous values, we allow a small number of
violations to capture real-world exceptions.

In particular, this paper makes three contributions:

1. We reduce our problem into ak-partite graph clustering prob-
lem. Our clustering technique considers both similarity of
attribute values and the set of sources that associate a pair

Table 1: Records from 10 sources on 2 businesses.Phone and Ad-
dress satisfy uniqueness constraints. There exist different representa-
tions for the same value (listed in (b)) and erroneous values(in italics).

(a) Data sources

SOURCE NAME PHONE ADDRESS
MicrosofeCorp. xxx-1255 1 Microsoft Way

S1 MicrosofeCorp. xxx-9400 1 Microsoft Way
Macrosoft Inc. xxx-0500 2 Sylvan W.
Microsoft Corp. xxx-1255 1 Microsoft Way

S2 MicrosofeCorp. xxx-9400 1 Microsoft Way
Macrosoft Inc. xxx-0500 2 Sylvan Way
Microsoft Corp. xxx-1255 1 Microsoft Way

S3 Microsoft Corp. xxx-9400 1 Microsoft Way
Macrosoft Inc. xxx-0500 2 Sylvan Way
Microsoft Corp. xxx-1255 1 Microsoft Way

S4 Microsoft Corp. xxx-9400 1 Microsoft Way
Macrosoft Inc. xxx-0500 2 Sylvan Way
Microsoft Corp. xxx-1255 1 Microsoft Way

S5 Microsoft Corp. xxx-9400 1 Microsoft Way
Macrosoft Inc. xxx-0500 2 Sylvan Way
Microsoft Corp. xxx-2255 1 Microsoft WayS6 Macrosoft Inc. xxx-0500 2 Sylvan Way

MS Corp. xxx-1255 1 Microsoft WayS7 Macrosoft Inc. xxx-0500 2 Sylvan Way
MS Corp. xxx-1255 1 Microsoft WayS8 Macrosoft Inc. xxx-0500 2 Sylvan Way

S9 Macrosoft Inc. xxx-0500 2 Sylvan Way
S10 MS Corp. xxx-0500 2 Sylvan Way

(b) Real-world entities
NAME PHONE ADDRESS

Microsoft Corp., xxx-1255,
MicrosofeCorp., MS Corp. xxx-9400

1 Microsoft Way

2 Sylvan Way,Macrosoft Inc. xxx-0500
2 Sylvan W.

of values in the same record, thus performing global linkage
and fusion simultaneously.

2. We considersoft uniquenessfor capturing possible excep-
tions of the constraints. We extend our algorithm to distin-
guish alternative correct values from erroneous ones by anal-
ysis of supporting sources.

3. We have conducted extensive experiments on both real-world
data and synthetic data, showing the accuracy and scalability
of our technique.

Our algorithms can plug in state-of-the-art record-linkage and
data-fusion techniques. We can apply various linkage methods to
compute similarity of vectors of values for attributes that do not sat-
isfy any uniqueness constraint, and apply various fusion methods to
compute a weight for each source based on its accuracy [11].

The rest of the paper is organized as follows. Section 2 defines
the problem. Section 3 describes clustering under hard constraints
and Section 4 extends it to deal with soft constraints. Section 5
describes experimental results. Section 6 discusses related work
and Section 7 concludes. The Appendix describes details of the
algorithms, extensions, and experiments on synthetic data.

2. PROBLEM DEFINITION
This section formally defines the problem we solve and how we

convert it to ak-partite graph clustering and matching problem.

2.1 Problem definition
Entity Let E be a set of real-worldentities in the same domain.
Each entity is described by a set ofattributes, and each entity con-

tains zero, one, or several values for each attribute. Here, we con-
sider atomic values (string, number, date, etc.). We assume a value
can have variousrepresentations(e.g., New York City can be rep-
resented as “New York City” or “NYC”)1.

We focus our attention on a special kind of attribute,uniqueness
attributes, which satisfy theuniqueness constraint; that is, each en-
tity has at most one value for the attribute and different entities have
different values2. We formally define the constraint as follows.

DEFINITION 2.1 (HARD UNIQUENESS CONSTRAINT). LetE
be a set of entities of domainD andA be an attribute inD. We say
there is auniqueness constraintfor A w.r.t. E , denoted byD ↔ A,
if each entity inE has a unique value or no value ofA. �

Essentially, a uniqueness attribute is a nullable key. By transitiv-
ity, there is a one-to-one relationship between each pair of unique-
ness attributes. Among them, we assume existence of anidentifier
(key)attribute, for which each entity has at least one value and the
value can identify the entity (e.g., person name and business name).

In reality, although a uniqueness constraint may apply to most
entities, there can be a few violations. For example, although most
businesses have unique phone numbers, some can have multiple
phone numbers and some can share the same phone number with
others. We thus define a relaxed version of the constraint.

DEFINITION 2.2 (SOFT UNIQUENESS CONSTRAINT). Let E
be a set of entities of domainD and A be an attribute inD. A

soft uniqueness constraintfor A w.r.t. E is denoted byD
1−p1
−→
←−

1−p2

A,

wherep1 is the upper bound probability of an entity having multi-
ple values forA andp2 is the upper bound probability of a value
of A being shared by multiple entities. �

As an example,Business
70%

−→
←−

90%

phone means up to 30% busi-

nesses have multiple phone numbers and up to 10% phone numbers
are shared by multiple businesses. In practice,p1 andp2 can be set
by domain knowledge. The definition does not limit the number
of values each violating entity can contain, or vice versa, which
should be decided according to the data.

Data sourceLet S be a set of relationaldata sources. For each
entity inE , a source can (but does not necessarily) provide a set of
records, which may contain different values of an attribute, or dif-
ferent representations of the same value3. Some of the values may
not conform to the real world and arefalse; thus, individual sources
may violate uniqueness constraints. We assume the schema match-
ing problem has been solved using existing techniques (surveyed
in [27]) and so source data are in a uniform schema.

In this paper we solve the following problem:given a setS of
independent data sources and a set of (hard or soft) uniqueness
constraints, identify (1) the set of real-world entities described by
S, and (2) discover thetruevalues (if any) and different represen-
tations of each true value for uniqueness attributes.

2.2 K-partite graph encoding
Solving our problem requires identifying duplicates by linking

various representations of the same value and resolving conflicts
by finding the correct value(s). We can thus view this problem as
1We assume that one representation represents a single value,which is com-
mon in practice, and describe in Appendix C how to relax this assumption.
2Our techniques can be easily extended to the case where several attributes
jointly satisfy a uniqueness constraint.
3If a source provides multiple values or representations for an attribute in
one record, we can decompose the record into multiple ones.

N3N1 N2

1 Microso� Way

S1

N4

P1

A1

P2 P3 P4

A2

2 Sylvan Way

S1-2

S1-5,7,8

S2-5

S2-6

S6

S6

S7-8

S7-8S1-2

S1-5

S3-5

S10

S10

S2-10

S1-9

S2-9

A3

2 Sylvan W.

S1

S1

NAME

PHONE

ADDRESS

(a) 3-Partite graph encoding of the input

N3N1 N2

1 Microso� Way

N4

P1

A1

P2 P3 P4

A2

2 Sylvan Way

-

-

A3

2 Sylvan W.

(b) Encoding of the ideal solution

N3N1 N2

1 Microso� Way

N4

P1

A1

P2 P3 P4

A2

2 Sylvan Way

-

-

A3

2 Sylvan W.

(c) Clustering under hard constraints

Figure 1: Graph encoding for the motivating example. N-nodes, P-nodes, and A-nodes are for names, phones, addresses correspondingly. Nodes
with the same shading belong to the same entity. A dashed ovalrepresents a cluster of representations for the same value,and a dashed rectangle
represents a cluster of value representations for the same entity.

clusteringvarious representations into values, andmatching(as-
sociating) values that belong to the same entity. To facilitate this
process, we define ak-partite graph encodingof our problem. We
consider only (hard or soft) uniqueness attributes for now and con-
sider other attributes in Appendix C.

DEFINITION 2.3 (K-PARTITE GRAPH ENCODING). LetE be
a set of entities withk uniqueness attributesA1, . . . , Ak. Let S
be a set of data sources providing data onE . Thek-partite graph
encodingof S is an undirected graphG(S) = (V1, . . . , Vk, E),
such that

• each node inVi, i ∈ [1, k], represents a value representation
of attributeAi, provided by a source inS;

• each edge(vi, vj) ∈ E, vi ∈ Vi, vj ∈ Vj , i, j ∈ [1, k], i 6=
j, represents existence of a record with value representations
vi and vj , and is marked with̄S(vi, vj), the set of sources
that provide such records. �

As an example, Figure 1(a) shows the 3-partite graph encoding
of the data set in Table 1(a). The size of the graph is linear in the
size of the input data. We note that although thek-partite graph can
lose information on which edges come from the same record, the
lost information is not critical (see the full version [18]).

Based on thisk-partite graph encoding, we can encode a solution
of our problem as follows.

DEFINITION 2.4 (SOLUTION ENCODING). LetG(S) = (V1,

. . . , Vk, E) be ak-partite graph encoding for data sourcesS on
entitiesE . A solution encoding has two parts:

• for eachi ∈ [1, k], there is a clustering ofVi such that each
cluster represents a unique value ofAi;

• for each pair of clustersCi andCj , Ci ⊆ Vi, Cj ⊆ Vj , i, j ∈
[1, k], i 6= j, there is an edge betweenCi andCj if and only
if they belong to the same entity inE . �

Figure 1(b) shows the encoding of the ideal solution in Table 1(b).
In the special case where we consider only hard constraints, for
eachi, j ∈ [1, k], i 6= j, a cluster inVi can be connected with at
most one cluster inVj , and vice versa. We can accordingly further
cluster all nodes in thek-partite graph into entities (a cluster with-
out a key value does not represent a valid entity). Figure 1(c) shows
the clustering under hard constraints onphone andaddress. In
this case, our problem is reduced to a pure clustering problem,
where each cluster includes at most a single value, with different
representations, for each attribute, so the clustering process con-
ducts linkage and fusion at the same time.

In the rest of our paper, Section 3 describes a clustering algo-
rithm with hard constraints, Section 4 describes an algorithm for
soft constraints, and Appendix C describes a few extensions.

3. CLUSTERING W.R.T. HARD CONSTRAINTS
We start from hard constraints, in which case the problem can be

reduced to ak-partite graph clustering problem. This section first
presents our objective function for clustering, and then describes
our clustering algorithm.

3.1 Objective function
An ideal clustering should have a highcohesionwithin each clus-

ter and a lowcorrelationbetween different clusters. Several objec-
tive functions have been proposed for clustering taking into consid-
eration cohesion and correlation, such as Davies-Bouldin index [9],
Dunn index [13], and Silhouette index [28]. The choice of the index
is orthogonal to our techniques; here we adopt the Davies-Bouldin
index, which is more stable than the Dunn index and less expensive
to compute than the Sihouette index [24, 26].

Formally, given a clusteringC = {C1, . . . , Cn}, its Davies-
Bouldin index (DB-index) is defined as follows:

Φ(C) = Avgn
i=1

`

max
j∈[1,n],j 6=i

d(Ci, Ci) + d(Cj , Cj)

d(Ci, Cj)

´

, (1)

whered(Ci, Cj) denotes thedistancebetweenCi andCj . Note
that wheni = j, the distance is the complement of the cohesion of
Ci (Cj); otherwise, the distance is the complement of the correla-
tion betweenCi andCj . Our goal is to obtain a clustering with the
minimumDB-index, implying high cohesion and low correlation.

Now we consider how to compute cluster distance. Intuitively,
if two clusters have a high distance, their values of the same at-
tribute should be very different, and their values of different at-
tributes should be associated by few edges. We thus consider two
types of distance:similarity distance, denoted bydS , measuring
(complement of) similarity between value representations of the
same attribute; andassociation distance, denoted bydA, measur-
ing (complement of) association between value representations of
different attributes. The cluster distance takes their average:

d(Ci, Cj) =
dS(Ci, Cj) + dA(Ci, Cj)

2
. (2)

We next describe how we computedS anddA.

3.1.1 Similarity distance
For similarity distancedS , we first compute the distance for each

attribute, denoted bydl
S , l ∈ [1, k], and then take the average:

dS(Ci, Cj) = Avgk
l=1(dl

S(Ci, Cj)). (3)

Table 2: Similarity matrices for names and addresses. For phone
numbers, the similarity is 1 between the same number and 0 otherwise.

(a) Name

N1 N2 N3 N4

N1 1.0 0.95 0.65 0.7
N2 0.95 1.0 0.65 0.7
N3 0.65 0.65 1.0 0.4
N4 0.7 0.7 0.4 1.0

(b) Address

A1 A2 A3

A1 1.0 0 0
A2 0 1.0 0.9
A3 0 0.9 1.0

For eachl ∈ [1, k], we computedl
S by averaging the similarity

of each pair of value representations. Formally, letR̄i (resp. R̄j)
be the value representations ofAl in clusterCi (resp.Cj). Then,

dl
S(Ci, Cj) = 1 − Avgr∈R̄i,r′∈R̄j ,r 6=r′sim(r, r′), (4)

where sim(r, r′) is the similarity between two value representations
r andr′, and its value is between 0 and 1. As special cases, ifi = j

andR̄i contains a single representation,dl
S(Ci, Ci) = 0; if R̄i or

R̄j is empty, we do not considerdl
S(Ci, Ci) in Eq. (3).

A similarity function (sim) needs to be defined for each attribute.
Such function can be string similarity [8], numerical similarity, etc.;
the choice is orthogonal to our clustering algorithm.

EXAMPLE 3.1. Consider the clustering in Figure 1(c) for the
motivating example. Table 2 shows similarity between value repre-
sentations for each attribute.

For clusterC1, there are three pairs of names, sod1
S(C1, C1) =

1− 0.95+0.65+0.65
3

= 0.25 (name); there is a single phone and ad-
dress, sod2

S(C1, C1) = 0 (phone), d3
S(C1, C1) = 0 (address).

Taking the average,dS(C1, C1) = 0.25+0+0
3

= 0.083.
Between clustersC1 andC4, there are again three pairs of names,

sod1
S(C1, C4) = 1− 0.7+0.7+0.4

3
= 0.4; similarly, d2

S(C1, C4) =

1− 0
1

= 1, d3
S(C1, C4) = 1− 0+0

2
= 1. Thus,dS(C1, C4) = 0.8.

On the other hand, between clustersC1 and C2, asC2 contains
only one nodeP2, dS(C1, C2) = d2

S(C1, C2) = 1. �

3.1.2 Association distance
For association distancedA, we first compute the distance for

each pair of thek attributes, denoted bydl,l′

A , l, l′ ∈ [1, k], l 6= l′,
and then take the average.

dA(Ci, Cj) = Avgl,l′∈[1,k],l6=l′d
l,l′

A
(Ci, Cj). (5)

We next describe how we computed
l,l′

A for each pair ofl andl′.
Wheni = j, intuitively, the association is represented by the edges
betweenVl-nodes andVl′ -nodes inCi. We can take the fraction
of the sources that support any of such edges over all sources that
provideVl- or Vl′ -nodes inCi. If a source provides several records
with various representations of the same entity, we count it only
once. Formally, letS̄l(Ci) (resp. S̄l′(Ci)) be the sources that
provide aVl-node (resp.Vl′ -node) inCi. Let S̄l,l′(Ci) be the
sources that support an edge between aVl-node and aVl′ -node in
Ci. Let |S̄| be the size of set̄S. Then, we compute the distance as4

d
l,l′

A
(Ci, Ci) = 1 −

|S̄l,l′ (Ci)|

|S̄l(Ci) ∪ S̄l′ (Ci)|
. (6)

Wheni 6= j, we first compute the association betweenVl-nodes
in Ci andVl′ -nodes inCj , and the association betweenVl-nodes in
Cj andVl′ -nodes inCi. Intuitively, even if only one of the associ-
ations is strong, there can be a better clustering (e.g., if the former
is strong, moving some of theVl-nodes inCi into Cj may obtain a
better clustering); thus, we consider the stronger association. If we

4Instead of counting the number of sources, we can assign a weight to each
source according to its accuracy [11], and sum up the weightsof the sources.

denote byS̄l,l′(Ci, Cj) the sources that support an edge between a
Vl-node inCi and aVl′ -node inCj , we have

d
l,l′

A
(Ci, Cj) = 1 − max{

|S̄l,l′ (Ci, Cj)|

|S̄l(Ci) ∪ S̄l′ (Cj)|
,

|S̄l,l′ (Cj , Ci)|

|S̄l(Cj) ∪ S̄l′ (Ci)|
}.

(7)
EXAMPLE 3.2. Consider the clustering in Figure 1(c) for the

motivating example. For clusterC1, 9 sources (S1, . . . , S8, S10)
mention at least one node ofname or phone, and 7 sources (S1, . . . ,

S5, S7, S8) support associations betweenname andphone in C1;
thus,d1,2

A (C1, C1) = 1 − 7
9

= 0.22. Similarly, d1,3
A (C1, C1) =

1 − 8
9

= 0.11 and d
2,3
A (C1, C1) = 1 − 7

8
= 0.125. Taking the

average,dA(C1, C1) = 0.153.
Consider clustersC1 and C4. There is an edge fromN3 to

P4 with the supporters10 (so |S̄1,2(C1, C4)| = 1), and there
is no edge fromN4 to P1 (so |S̄1,2(C4, C1)| = 0). Therefore,
d
1,2
A (C1, C4) = 1 − 1

10
= 0.9. Similarly,d1,3

A (C1, C4) = 0.9 and
d
2,3
A (C1, C4) = 1. Taking the average,dA(C1, C4) = 0.93.
To compute the DB-index, we find for each cluster its “farthest”

cluster and apply Eq. (1):Φ = 0.32+0.14+0.32+0.19
4

= 0.24. �

3.1.3 Augmentations
We apply two augmentations. First, we discount sources that

appear to provide multiple values for an attribute (often due to an
inappropriate clustering). Second, we distinguishlogical similar-
ity between value representations from their appearance similarity
(i.e., string similarity). We give details in Appendix A.

3.2 Hill-climbing algorithm
Previous work [17, 29] has shown intractability of clustering in

most cases. We now describe an efficient hill-climbing algorithm,
CLUSTER (details in Appendix B), that approximates the optimal
solution. CLUSTER first generates an initial clustering, then itera-
tively examines each node and assigns it to the “best” cluster.

Step 1: Initialization.First cluster value representations of each at-
tribute according to their similarity. Then, between clusters of the
key attribute and of each non-key-attribute, apply the Hungarian
algorithm [23] to find the one-to-one matching with the strongest
associations (computed as the sum of the number of supporting
sources on each selected edge).

Step 2: Adjustment.For each nodeN , compute the DB-index of as-
signingN to each cluster and not changing clusters of other nodes.
AssignN to the cluster that minimizes the DB-index.

Step 3: Convergence checking.Repeat Step 2 if the clustering
changes.

Note that the initialization and the order in which we adjust the
nodes may change the results; however, since the algorithm iterates,
we did not observe much difference in our experiments.

EXAMPLE 3.3. We apply theCLUSTER algorithm on the data
set in the motivating example. Initially, we clusterN1 and N2,
andA2 andA3, given their high similarity, and obtain a clustering
shown in Table 3(a), with DB-index0.89.

The first iteration starts with examining nodeN1. MovingN1

to C1, C2, or C4 results in a DB-index of0.94, 1.16, 0.93, respec-
tively, so we keepN1 in C3. We then examine the rest of the nodes
and decide to moveN2 to C1 and not move other nodes. The re-
sulting clustering, shown in Table 3(b), has DB-index of0.71.

The second iteration movesN1 to C1 (Table 3(c)) and decreases
the DB-index to0.45. Then the algorithm converges. �

We next formalize several properties of the algorithm.

Table 3: Apply CLUSTER on data sets in the motivating example.
(a) Initial clustering.

C1 C2 C3 C4

NAME N3 N1 ,N2 N4

PHONE P1 P2 P3 P4

ADDRESS A1 A2,A3

(b) Clustering after the first iteration.

C1 C2 C3 C4

NAME N2,N3 N1 N4

PHONE P1 P2 P3 P4

ADDRESS A1 A2,A3

(c) Final clustering.

C1 C2 C3 C4

NAME N1,N2,N3 N4

PHONE P1 P2 P3 P4

ADDRESS A1 A2,A3

NC1

1 Microso� Way

NC4

PC1

AC1

PC2 PC3 PC4

AC4

2 Sylvan Way

S1-5,7,8

S1-8

S6
S1-5

S10

S10
S1-9

S1-9

2 Sylvan W.

7
1 5

8

1

1

9

9

Figure 2: The transformed graph of clustering in Figure 1(c).

THEOREM 3.4. CLUSTER has the following properties:

1. CLUSTER converges.
2. Letn be the number of nodes in the inputk-partite graph,m

be the number of sources, andl be the number of iterations.
The time complexity ofCLUSTER is O((2k + lk)mn4). �

In practice, CLUSTER typically converges in only a few itera-
tions. Also, although it takes exponential time ink, it is not that
expensive in practice ask is typically very small. However, the
algorithm takes quartic time inn and can be expensive whenn is
large, we thus pre-process the data as follows.

Pre-processing:We first partition the records such that only records
that share similar values and would possibly represent the same en-
tity are put in the same partition. Then, for each partition separately
we generate thek-partite graph and apply CLUSTER. Our exper-
iments (Section 5) show that with pre-processing, our algorithm
takes linear time in the number of records.

4. MATCHING W.R.T. SOFT CONSTRAINTS
We now describe how we extend our approach to deal with soft

constraints by reducing our problem to an optimization problem,
and give the solution.

4.1 Soft constraints and objective function
Recall that a soft constraint can be represented asD

1−p1
−→
←−

1−p2

A,

meaning that with probability up top1 an entity has multiple values
for attributeA and with probability up top2 a value ofA is shared
by multiple entities. Formally, let|Aκ| be the number of values of
the key attributeAκ (each entity has one and only one key value),
and|Âκ| be the number ofAκ’s values that are matched to multiple
values ofA. We define|A| and|Â| similarly. Then,

0 6
|Âκ|

|Aκ|
6 p1, 0 6

|Â|

|A|
6 p2. (8)

Now our goal is to cluster representations to values for each at-
tribute, and for each soft uniqueness attribute, match (associate) its
values with values of the key attribute that belong to the same en-
tity. CLUSTERalready clusters representations to values, so we can
start from there, merging the clustered nodes, grouping the edges,
and computing theweightfor each edge as the number of support-
ing sources. The result is essentially a set of bi-partite graphs be-
tween key and non-key nodes. As an example, Figure 2 shows the
graph transformed from the clustering result in Figure 1(c). Now
the problem becomes finding the best matching betweenAκ and
each soft uniqueness attribute, under conditions (8). We next con-
sider what is the “best” matching between the key attributeAκ and
a particular attributeA.

Typically, we are confident of matching several values ofA with
a valuevκ of Aκ (or vice versa) only if the edges between these
values andvκ have similar numbers of supporting sources. To cap-
ture this intuition, we define thegap of support between different
selected edges for the same node. We denote byM̄ a matching
solution with all selected edges, and byw(e) the weight of edgee.

DEFINITION 4.1 (SUPPORT GAP). LetGc(S) be the input of
the matching problem and let̄M be a matching solution between
attributesAκ andA. Letv be a node forAκ or A in G. LetĒ(v) ⊆
M̄ be the selected edges that are connected withv. Thesupport gap
for v is defined asGap(v) = maxe∈Ē(v) w(e)−mine∈Ē(v) w(e). �

When we look for the best matching, we aim at maximizing the
sum of the weights of selected edges, while minimizing the gap for
each node. We thus define the score of a matchingM̄ as

Score(M̄) =
X

(u,v)∈M̄

w(u, v)

Gap(u) + Gap(v) + α
. (9)

Here,α is used to avoid the divide-by-zero error when the gaps are
0 and to smooth the penalty when the gaps are very small. We set
α by first computing the standard deviation of the edge weights for
each node ofA andAκ, then taking the average forA and forAκ

(separately), and finally summing the results up. This strategy con-
siders the majority difference of weights for each node and works
well in our experiments.

A nice property of the score function in Eq. (9) is that if there
are two disconnected subgraphsGc

1 andGc
2 of Gc, the matching

decision onGc
1 is independent of the matching decision onGc

2,
formalized in the following proposition.

PROPOSITION4.2 (INDEPENDENCE). LetGc
1 andGc

2 be two
disconnected subgraphs ofGc such thatGc

1∪Gc
2 = Gc. LetM̄1 be

a matching onGc
1 andM̄2 be a matching onGc

2. Then, Score(M̄1∪
M̄2) = Score(M̄1) + Score(M̄2). �

EXAMPLE 4.3. ConsiderGc(S) in Figure 2 and we focus on
the matching between names and phone numbers. Two matching
solutions are shown in Figure 1(b) and Figure 1(c), and they dif-
fer in whether to include the edge betweenNC1 andP3. For the
matching in Figure 1(c), no node is associated with multiple edges
and the gap for each node is 0, so the score is7

0+2.91
+ 9

0+2.91
=

5.49 (here,α = 2.91). For the matching in Figure 1(b), nodeNC1

is associated with two edges and the gap is 2. However, includ-
ing the additional edge is worthwhile as the score is increased to

7
2+2.91

+ 5
2+2.91

+ 9
0+2.91

= 5.54. �

To summarize, our matching problem is reduced to the following
optimization problemmatch between the key attribute and each

soft uniqueness attribute. We note that even ifp1 (p2) is high, the
optimal solution may contain only a few exceptions so the objective
function is maximized.

maximize
X

(u,v)∈M̄

w(u, v)

Gap(u) + Gap(v) + α

subject to0 6
|Âκ|

|Aκ|
6 p1, 0 6

|Â|

|A|
6 p2.

4.2 Two-phase greedy algorithm
Solving a non-linear optimization problem is generally hard [22];

again, we need an efficient algorithm to approximate the optimal
solution. Taking a graphGc(S) involving the key attributeAκ and
a soft uniqueness attributeA, our matching algorithm, MATCH (de-
tails in Appendix B) proceeds in two phases: the first phase greed-
ily selects nodes that may match to multiple nodes, and the second
phase greedily selects edges to maximize the objective function.
Note that Phase 1 is critical: going to Phase 2 directly may select
a high-weight edge that introduces a large gap and so prevent later
choosing a lower-weight edge that introduces a smaller gap and can
increase the score even more.

Phase 1. Node selection.Consider attributeAκ (similar forA).

• Rank all edges on weight in a descending order.
• Rank the nodes ofAκ by LS2(v) = w1+w2

w1−w2+α
in a descend-

ing order, wherew1 andw2 are the two highest weights for
nodev. Select the topp1|Aκ| nodes as candidates and denote
the result set bȳV . Set degree deg(v) = 1 for v 6∈ V̄ .

• For each nodev ∈ V̄ , start from a subset̄E(v) that contains
edges with the top-2 weights and compute alocal score:

LS(v) =

P

e∈Ē(v) w(e)

maxe∈Ē(v) w(e) − mine∈Ē(v) w(e) + α
. (10)

Progressively add more edges in descending order of the weights
until the score does not increase. Set deg(v) = |Ē(v)|.

The local score is defined assuming the same gap for nodes of
A. Ideally, we should rank nodes by their local scores; we save
the computation by comparing nodes byLS2 (only top-2 weighted
edges) and computingLS only for nodes in the top list.

Phase 2. Edge selection.We next consider edges in the descending
order of weights. We greedily select an edge if adding it increases
the score without exceeding the degree limit (deg(v)) for both of
its nodes, until there exists no such node.

The complexity of this algorithm isO(e log e + n log n + en),
wheree is the number of edges andn is the number of nodes in
Gc(S) for the two attributes in consideration.

EXAMPLE 4.4. We illustrate how we approximate the matching
solution for Gc(S) in Figure 2. We consider matching between
name andphone. In the soft constraint forphone, p1 = p2 = .5.

In Phase 1, we selectNC1 and PC4; they are actually the
only nodes associated with multiple edges. By computing the lo-
cal score, we set 2 as the degree for both nodes.

In Phase 2, we greedily choose new edges to add. We first choose
the edge betweenNC4 andPC4 and the score is 9

0+0+2.91
= 3.09

(α = 2.91). We then choose the edge betweenNC1 and PC1,
increasing the score to 9

0+0+2.91
+ 7

0+0+2.91
= 5.50. The third

chosen edge is betweenNC1 and PC3, increasing the score to
9

0+0+2.91
+ 7

2+0+2.91
+ 5

2+0+2.91
= 5.54. Adding other edges

violates the degree constraints, so we terminate. �

5. EXPERIMENTAL RESULTS
This section describes experimental results on real-world data

sources that provide business listings. Appendix D describes ad-
ditional experiments on synthetic data. Experimental results show
high accuracy and scalability of our techniques.

5.1 Experiment settings
Data: We experimented on a set of raw business listings that Yel-
lowPages.com obtained from other sources, where we know the
provider of each listing. We considered listings (name, phone,
address) in two zip codes: 07035 and 07715, and in the San Fran-
cisco area. For each zip code, we manually identified the real-world
businesses provided by the sources, and verified their phone num-
bers and addresses by calling the businesses and referring to other
resources at YellowPages.com; we used the results as the golden
standard. Table 4 shows statistics of the data; the data have a high
variety, contain errors, and roughly observe the constraints. The
San Francisco data set was used only for scalability test.

Implementations: We implemented our algorithm, referred to as
MATCH. MATCH first invokes CLUSTER and then applies match-
ing for soft constraints. We assumed hard constraint onname and
soft constraint onphone andaddress with violation rate0.3. We
pre-computed representation similarity by TF/IDF Jaro-Winkler [8]
distance for names and addresses, and by Levenshtein distance [8]
for phone numbers. For augmentation, we applied Eq. (12) for
multi-value penalty (see Appendix A), and estimatedp(S) by ob-
serving the data.

We implemented MATCH in Matlab and other components (database
connection and similarity computation) in C#. We used a Win-
dowsXP machine with 2.0GHz Intel CPU and 1.5GB of RAM.

Comparison: For comparison, we implemented three traditional
linkage and fusion techniques:

• L INK : For each pair of records, compute value similarity
for each attribute and take the average. Link two records
if the average similarity is at least .85 and consider all linked
records as representing one entity. Consider representations
that are in the same entity and have a similarity of at least
.95 as the same value (this set of thresholds obtained the best
results for LINK in most cases in our experiments).

• FUSE: For each key attributeAκ and non-key attributeA,
first compute a weightw for each pair of valuesvAκ andvA

as the number of sources that associatevAκ with vA, then
update the weight as5

w′(vAκ, vA) =
X

v′
A

w(vAκ, v′
A) · sim(vA, v′

A).

Associate each key value with the non-key value with the
highest weight (so many-to-one mappings), and consider all
associated values as representing one entity.

• LF: Apply L INK , then choose the correct value for each at-
tribute of each entity as the one provided by the largest num-
ber of sources.

Measure: We compared generated results with the golden standard
and measured quality of the results byprecision(P), recall (R),
andF-measure(F) on (1) matching of values of different attributes
and (2) clustering of values of the same attribute. For matching,
we consider each pair of value representations as matched if they
are in the same entity, and denote the set of matched pairs byḠM

for the golden standard and bȳRM for our results. We define
5FUSEadapts the method in [11], but does not consider accuracy of sources
and dependence between sources, which is not the focus of this paper.

Table 4: Statistics of data. Columns 6-8 show the number of distinct names, phones, addresses for each zip code, and Column 9 showsthe number
of erroneous phone numbers. The last four columns show percentage of businesses (resp., phones/addresses) that violate a particular constraint and
the numbers in the parenthesis are average number of correctphones/addresses (resp., businesses) in the violation cases.

Business Source Record Constraint violationZip
#Business #Srcs #Srcs/business #Recs #(dist Ns) #(dist Ps) #(dist As) #(Err Ps) N → P P → N N → A A → N

07035 662 15 1∼7 1629 1154 839 735 72 8%(2.6) .8%(2.7) 2%(2.3) 12.6%(5.1)
07715 149 6 1∼3 266 243 184 55 12 4%(2) 1%(3) 4%(2) 4%(8.5)

Table 5: Accuracy on real-world data sets. The last column shows
improvement of MATCH over L INK , and the last two rows average F-
measures on matching and clustering.

Zip Category Msr FUSE L INK LF MATCH Imp
P .94 .89 .94 .97 8.9%N-P
R .80 .88 .83 .91 3.4%

0
match

F .87 .88 .88 .94 6.0%
7 P .97 .97 .98 .97 0.1%
0

N-A
R .52 .92 .54 .97 4.8%

3
match

F .68 .95 .70 .97 2.4%
5 P .98 .92 .93 .98 6.8%Name

R .90 .91 .89 .98 8.2%cluster
F .94 .92 .91 .98 7.5%
P .99 .99 .99 .99 0.0%N-P
R .93 .94 .94 .93 -0.5%

0
match

F .96 .97 .97 .96 -0.3%
7 P .93 .95 .93 .98 3.2%
7

N-A
R .55 .81 .57 .95 18.0%

1
match

F .69 .87 .70 .97 10.7%
5 P 1.0 .91 .91 1.0 10.4%Name

R .96 .75 .75 .96 28.7%cluster
F .98 .82 .82 .98 19.8%

Match F .80 .92 .81 .96 4.7%Avg
Cluster F .96 .87 .86 .98 13.6%

P = |ḠM∩R̄M |

|R̄M |
, R = |ḠM∩R̄M |

|ḠM |
, F = 2PR

P+R
. For clustering on

an attributeA, we consider each pair of representations ofA as
clustered if they represent the same value, and denote the set of
clustered pairs bȳGA for the golden standard and bȳRA for our
results. We can compute precision, recall, and F-measure similarly.

5.2 Results
Accuracy: Table 5 compares accuracy of various methods. We ob-
serve that MATCH obtains the highest F-measure in most cases. On
average, it obtains a F-measure of 0.96 on matching and 0.98 on
clustering; on the 07715 data set, it improves over LINK by 11%
onname-address matching and by 20% onname clustering. Be-
tween LINK and FUSE, FUSE typically obtains a higher precision
but a lower recall in matching, as it enforces uniqueness but does
not explicitly link various representations of the same value; how-
ever, FUSE obtains higher precision and recall in name clustering
by enforcing that each business has a single phone number. LF, on
the other hand, performs only slightly better than FUSE in match-
ing and similar to LINK in clustering, as it enforces uniqueness but
cannot handle exceptions, and does not identify false values from
the beginning so can mis-cluster.

Contribution of components: We next studied contribution of dif-
ferent components of our algorithm on performance. We started
with the initial clustering in CLUSTER, then progressively added
cluster refinement, multi-value penalty, and appearance-similarity
based association update (Appendix A). We ran these variants of
CLUSTERwith and without extension for soft constraints. Figure 3
shows average F-measure onname-phone matching and we ob-
served similar patterns forname-address matching andname
clustering. We observe that (1) extension for soft constraints is nec-
essary for real data (improving the F-measure by 6.8%); (2) simply
applying clustering without the augmentations improves the results

over initial clustering only slightly; (3) when we consider soft con-
straints, applying multi-value penalty makes significant improve-
ment (by 2.3%) whereas considering appearance-similarity further
improves the results (by 1%); however, such augmentations do not
help and may even do harm when we ignore soft constraints.

We also experimented with changing the initialization method
and the order in which we examine clustering of the nodes in each
round, and observed similar results.

Contribution of attributes: Figure 4 compares accuracy of MATCH

and its three variants on 07715 on clustering of business names:
NPONLY considers associations only betweenname andphone,
NAONLY considers associations only betweenname andaddress,
NP+NA considers these two associations, and NPA (i.e., MATCH)
considers all three associations. This data set has many missing ad-
dresses; thus, NAONLY has low precision and recall, and NP+NA
improves over NPONLY only slightly. We also observe a big im-
provement by considering associations betweenphone and ad-
dress: NPA increases the F-measure over NP+NA by 5%.

Efficiency and scalability: To show scalability and efficiency of
our techniques, we experimented on a sample of 236,306 listings
for the San Francisco area. In pre-processing, we put listings into
the same partition if they 1) have similar names and addresses, 2)
have similar names and the same phone number, or 3) have sim-
ilar address and the same phone number (threshold=.9). Figure 5
shows the execution time of MATCH for each partition. We ob-
serve that for 99% partitions the graph size is less than 11 (nodes).
The largest graph has 121 nodes and the maximum execution time
for a partition is only 327 seconds. Note that although there is a
quartic relationship between execution time and the graph size, ex-
ecution time also depends on distribution of nodes in the graph; as
an example, execution on the largest graph takes only 6 seconds, as
the graph contains only 2phone nodes and 3address nodes. We
observe similar distribution of the graph size when we use different
thresholds and different similarity measures.

To test scalability, we randomly divided the whole sample into
10 subsets of the same size. We started with one subset and gradu-
ally added more. Figure 6 shows the execution time plotted against
the number of records. We observe that with pre-processing, the
overall execution time and that for the top-10 partitions grow lin-
early in the size of the data; thus, our algorithm scales.

6. RELATED WORK
Our work is mainly related to two bodies of work: record link-

age and data fusion. Record linkage has been extensively studied
in the past (surveyed in [14, 31]). Most of the techniques implic-
itly assume consistency of records that should be matched and can
fall short in presence of erroneous values. Recently, there has been
work on linkage with constraints [1, 2, 3, 4, 10, 16, 30, 32]. The
considered constraints can be classified into several types [7]: con-
straints on individual tuples (e.g., only some tuples can participate
in linkage), deduplication parameters (e.g., number of real-world
entities), pairwise positive and negative examples (i.e., requiring
merging or non-merging for certain pairs), forbidden rules (i.e.,

w/o. Soft Cons. w. Soft Cons.
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F−
m

ea
su

re

Algo4: Algo3 + App−Sim
Algo3: Algo2 + Penalty
Algo2: Algo1 + Refinement
Algo1: Initialization only

Figure 3: Contribution of compo-
nents on 07035 data set.

Precision Recall F−Measure
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NPA
NP + NA
NP only
NA only

Figure 4: Contribution of associa-
tions on 07715 data set.

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Graph size (#nodes)

E
xe

cu
tio

n
 t

im
e

 (
se

co
n

d
s)

Figure 5: Partitions of the San
Francisco data set.

0 0.5 1 1.5 2 2.5

x 10
5

0

5

10

15

20

25

30

Records

E
xe

cu
tio

n
 t

im
e

 (
m

in
s)

Total components
Top 10 largest components

Figure 6: Execution time for the
San Francisco data set.

guarantee of distinctness), and group-wise constraints (i.e., con-
dition for aggregation of a group of results). Existing techniques
either enforce such constraints strictly [4, 10], or adapt the similar-
ity function to accommodate them [5]. The uniqueness constraint is
a kind of forbidden rules; however, instead of blindly enforcing the
constraints, we consider possible erroneous values and exceptions.

Data fusion is a new field and studies how to merge linked records
and resolve conflicts (surveyed in [12]). Recently, advanced tech-
niques have been proposed to consider accuracy of and dependence
between sources in conflict resolution [11].

Our technique is not a simple combination of linkage and fu-
sion, but integrates them seamlessly ink-partite graph clustering.
We point out that collective deduplication (surveyed in [21]) ap-
plies clustering but clusters records rather than values; [6] clusters
values for constraint repair, but does not consider value similarity
and associations at meanwhile as we do.

Finally, our work is distinct from data cleaning based on depen-
dency constraints [15], as we need to take various representations
into consideration. Our definition of soft constraints is different
from relaxed dependency constraints [19, 20] as it is defined on the
underlying domain, but not on the provided data.

7. CONCLUSIONS
This paper studies the problem of record linkage in the presence

of uniqueness constraints and erroneous values. The key idea of
our solution is to integrate linkage and fusion, and apply them in a
global fashion. We proposed ak-partite graph clustering algorithm
for hard constraints, and extended it to allow for soft constraints.
Experiments show high accuracy and scalability of our algorithm.

For future work, we would like to extend our techniques to broader
cases with many-to-one relationships between attributes or more
general constraints. We would also like to study online record link-
age and conflict resolution, which emphasizes efficiency.

8. REFERENCES
[1] J. Aslam, K. Pelekhov, and D. Rus. A practical clustering algorithm

for static and dynamic information organization. InSODA, 1999.
[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Mach.

Learn., 56(1-3):89–113, 2004.
[3] I. Bhattacharya and L. Getoor. Collective entity resolution in

relational data.ACM Trans. Knowl. Discov. Data, 1(1):5, 2007.
[4] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and

metric learning in semi-supervised clustering. InICML, 2004.
[5] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using

learnable string similarity measures. InSIGKDD, pages 39–48, 2003.
[6] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model

and effective heuristic for repairing constraints by value
modification. InSigmod, 2005.

[7] S. Chaudhuri, A. Das Sarma, V. Ganti, and R. Kaushik. Leveraging
aggregate constraints for deduplication. InSIGMOD, 2007.

[8] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of
string distance metrics for name-matching tasks. InIIWEB, 2003.

[9] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI-1(2):224–227, 1979.

[10] X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in
complex information spaces. InSIGMOD, pages 85–96, 2005.

[11] X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating
conflicting data: the role of source dependence.PVLDB, 2009.

[12] X. L. Dong and F. Naumann. Data fusion–resolving data conflicts for
integration.PVLDB, 2009.

[13] J. Dunn. Well separated clusters and optimal fuzzy partitions.
Journal of Cybernetics, 4:95–104, 1974.

[14] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey.TKDE, 19(1):1–16, 2007.

[15] W. Fan. Dependencies revisited for improving data quality. In PODS,
pages 159–170, 2008.

[16] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching
rules.PVLDB, 2(1):757–768, 2009.

[17] T. F. Gonzalez. On the computational complexity of clustering and
related problems.Lecture Notes in Control and Information Sciences,
38:174–182, 1982.

[18] S. Guo, X. L. Dong, D. Srivastava, and R. Zajac. Record linkage with
uniqueness constraints and erroneous values. http://www.research.att.
com/∼lunadong/publication/linkage_techReport.pdf.

[19] I. F. Ilyas, V. Markl, P. J. Haas, P. G. Brown, and A. Aboulnaga.
Cords: Automatic generation of correlation statistics in db2. In
VLDB, 2004.

[20] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian.
Metric functional dependencies. InICDE, 2009.

[21] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. InSIGMOD, 2006.

[22] M. W. Krentel. The complexity of optimization problems.Lecture
Notes in Computer Science, 223, 1986.

[23] H. W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

[24] C. Legany, S. Juhasz, and A. Babos. Cluster validity measurement
techniques. InWSEAS, pages 388–393, 2006.

[25] P. Lyman, H. R. Varian, K. Swearingen, P. Charles, N. Good, L. L.
Jordan, and J. Pal. How much information? 2003.
http://www2.sims.berkeley.edu/research/projects/how-much-info-
2003/execsum.htm.

[26] S. Petrovic. A comparison between the silhouette index and the
davies-bouldin index in labelling ids clusters. InNORDSEC, 2006.

[27] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching.VLDBJ, 10(4):334–350, 2001.

[28] P. Rousseeuw. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis.Journal of Comp. and Applied Math.,
20(1):53–65, 1987.

[29] J. Sima and S. E. Schaeffer. On the NPCompleteness of some graph
cluster measures.Lecture Notes in Computer Science, 3831:530–537,
2006.

[30] A. K. H. Tung, R. T. Ng, L. V. S. Lakshmanan, and J. Han.
Constraint-based clustering in large databases. InICDT, 2001.

[31] W. Winkler. Overview of record linkage and current research
directions. Technical report, Statistical Research Division, U. S.
Bureau of the Census, 2006.

[32] D. Zardetto, M. Scannapieco, and T. Catarci. Effectiveautomated
object matching. InICDE, pages 757–768, 2010.

APPENDIX

A. AUGMENTATIONS FOR CLUSTERING
We describe two augmentations that further explore evidence

from source data and improve performance of clustering.

Multi-value penalty: Under hard constraints, for each entity a
source should provide at most a single value for a uniqueness at-
tribute; however, with an incorrect clustering, the source may look
like providing multiple values. We capture this negative evidence
by discounting sources that provide multiple values for an attribute
when we compute intra-cluster association distance. We first as-
sume that no source violates any hard constraint and relax this as-
sumption later.

Let S̄l,¬l′(Ci) ⊆ S̄l,l′(Ci) be the sources that also support an
edge between anAl-node inCi and anAl′ -node outsideCi (similar
for S̄¬l,l′(Ci)). Then, we ignore support from sources in these two
subsets in association distance:

d
l,l′

A
(Ci, Ci) = 1 −

|S̄l,l′ (Ci)| − |S̄l,¬l′ (Ci) ∪ S̄¬l,l′ (Ci)|

|S̄l(Ci) ∪ S̄l′ (Ci)|
. (11)

Now we relax this assumption and denote byp(S) the proba-
bility that sourceS violates a hard constraint on an entity. Then,
when we observe a particular violation byS, with only probability
1− p(S) that the violation is caused by a wrong clustering. Taking
it into account, we revised Eq.(11) to

d
l,l′

A
(Ci, Ci) = 1−

|S̄l,l′ (Ci)| −
P

S∈S̄l,¬l′ (Ci)∪S̄¬l,l′ (Ci)
(1 − p(S))

|S̄l(Ci) ∪ S̄l′ (Ci)|
.

(12)

In practice, we can assignp(S) according to domain knowledge.
Alternatively, we can run our algorithm iteratively, computingp(S)
according to the clustering result in each round and then using the
new values in the next round, until convergence.

EXAMPLE A.1. Continue with the motivating example and con-
sider the clustering described in Table 6. If we do not apply the
multi-value penalty, this clustering is considered as optimal. In
fact, the association distance ofC′

4 is 0+0+0
3

= 0, and the DB-
index is.236, lower than that of the ideal clustering shown in Fig-
ure 1(c) (0.241).

If we apply Eq. (12) and assumep(Si) = .2, i ∈ [1, 10], S̄1(C′
4) =

S̄2(C′
4) = S̄1,2(C′

4) = {s1, . . . , s10}, S̄1,¬2(C′
4) = {s1, . . . , s8},

andS̄¬1,2(C′
4) = ∅, sod

1,2
A (C′

4, C
′
4) = 1− 10−8×.8

10
= 0.64. Sim-

ilarly, we haved1,3
A (C′

4, C
′
4) = 0.64, d

2,3
A (C′

4, C
′
4) = 0. The new

intra-cluster association distance ofC′
4 becomesdA(C′

4, C
′
4) =

0.43 and the DB-index is increased to0.59, higher than that of the
ideal solution,0.45 (also with multi-value penalty). �

Appearance-similarity based association update:Another aug-
mentation for clustering is to update association based onappear-
ance similarity. For many attributes, two value representations that
look similar can represent completely different values. For exam-
ple, ***-1255 and***-2255 differ in only one digit but represent
two different phone numbers; similarly,1 Sylvan Wayand2 Sylvan
Waydiffer in only one char but represent two different geographical
locations on the same street. We thus distinguishappearance simi-
larity from logical similarity: the former compares the appearance
of two representations (e.g., string similarity, numerical similarity),
and the latter indicates the likelihood that the two representations
represent the same value. The logical similarity can be defined ac-
cording to some rules. For example, the logical similarity of two
phone numbers is 0 (assume normalization to some standard for-
mat); as another example, the logical similarity of two addresses is

Table 6: An alternative clustering for the motivating example.
C′

1 C′
2 C′

3 C′
4

N -nodes N1,N2,N3,N4

P -nodes P1 P2 P3 P4

A-nodes A1 A2,A3

0 if they have different numbers, and the same as the string similar-
ity otherwise.

We should use logical similarity in similarity distance to avoid
clustering two attributes that look alike but are logically different.
However, appearance similarity can help identify mis-spellings and
link records with such errors. As an example, consider two records
(Microsofe Corp., xxx-1255)and (Microsoft Corp., xxx-2255). If
we realize the two phone numbers look similar and one of them
might be a mis-spelling, we are more likely to link the records.

Our solution is to update thek-partite graph according to appear-
ance similarity. In particular, for each edge(vi, vj), we associate
each of its support sources with a number indicating the likelihood
of support, denoted byP (S, (vi, vj)) ∈ [0, 1]. If S provides a
record withvi andvj , denoted by(vi, vj) ∈ S, P (S, (vi, vj)) = 1;
otherwise,

P (S, (vi, vj)) = max{ max
v′

j
∈Vj ,(vi,v′

j
)∈S,simL(vj ,v′

j
)=0

simA(vj , v
′
j),

max
v′

i
∈Vi,(v′

i
,vj)∈S,simL(vi,v′

i
)=0

simA(vi, v
′
i)}, (13)

where we denote by simA the appearance similarity and by simL

the logical similarity.
Now when we compute the intra-cluster association distance, in-

stead of counting the number of sources that support an edge, we
sum up their support likelihood.

EXAMPLE A.2. Consider the three 2-partite graphs in Figure 7,
each with two nodesN1 andN2 for name, two nodesP1 andP2

for phone, and two (solid-line) edges with the same set of support
sources. The logical similarity betweenN1 and N2 (the same as
the appearance similarity) is represented by a solid arc, and the ap-
pearance similarity betweenP1 andP2 is represented by a dotted
arc (the logical similarity is0). We observe that in (a), both names
and phones are highly similar; in (b) and (c), only names or phones
are highly similar. We apply association update on the graphs and
represent the new edges by dotted lines.

Obviously, not considering appearance similarity between phones
lead to the same clustering for (a) and (b). Instead, if we update the
associations by adding the dotted edges in (a), we clusterN1 and
N2 with P1. Clustering for (c) shows that even ifP1 and P2 are
highly similar, we shall not clusterN1 andN2 if they have low sim-
ilarity (the clustering in (c) has DB-index 0.88 and clusteringN2

with N1 increases the DB-index to 2.57). Finally, if we use appear-
ance similarity instead of logical similarity for similarity distance,
we will wrongly clusterP1 andP2 in (a) and (c), though they rep-
resent different phone numbers (values). �

B. ALGORITHM DETAILS
See Algorithm CLUSTER for clustering under hard constraints

and Algorithm MATCH for extension to deal with soft constraints.

C. EXTENSIONS
We next describe extensions for some special cases.

Non-uniqueness attribute:In presence of non-uniqueness attributes,
we combine them with the identifier to form asuper-identifier. For

N1 N2

P1 P2

0.9

0.9

s(10)x1s(1-9)x1

s(10)x0.9

s(1-9)x0.9

(a)

N1 N2

s(1-9)x1

P1 P2

s(10)x1

0.9

0

(b)

N1 N2

P1 P2

s(10)x1

0.1

0.9

s(1-9)x1

s(10)x0.9

s(1-9)x0.9

(c)
Figure 7: Three 2-partite graphs. Nodes of the same color belong to
the same cluster in the clustering results.

Algorithm 1 CLUSTER

Input: k-partite graphG(S) = (V1, . . . , Vk, E).
Output: C(G), the clustering ofG.
1: C(0)(G) = INITIALIZE (G); //Generate initial clustering
2: t = −1;
3: repeat
4: t = t + 1;
5: C(t+1)(G) = C(t)(G);
6: for i = 1, k do
7: for all v ∈ Vi do
8: for all clusterCj ∈ C(t+1)(G) do
9: deriveCtemp by movingv to Cj ;

10: Score(Cj) =DAVIESBOULDIN(Ctemp);
11: end for
12: adjustC(t+1)(G) by movingv to Cj with the lowest score;
13: end for
14: end for
15: until (C(t)(G) == C(t+1)(G))

16: return C(t)(G);

example, we can combinename andcategory together as a super-
identifier, and ignore different values ofcategory by considering
(name1, cat1) and (name1, cat2) as different representations of
the identifier of a business. We can apply record-linkage techniques
for computing similarity of super-identifier values, including us-
ing weighted similarity combination, decision tree, etc.; again, the
choice is orthogonal to our techniques. Multi-attribute identifier
can be handled similarly.

Multi-value representation: In some contexts a representation
can represent multiple values (e.g., abbreviated person name). We
treat such an attribute as soft uniqueness attribute and such a repre-
sentation may be matched to multiple entities.

D. EXPERIMENTS ON SYNTHETIC DATA
To understand how CLUSTER and MATCH perform on data of

different characteristics, we experimented on synthetic data. We
next describe data generation and experimental results for the case
where we have only hard constraints and for the case where there
also exist soft constraints.

D.1 Clustering w.r.t. hard constraints

D.1.1 Data generation
We assumed there are only hard constraints and consideredm =

4 entities, each with three attributes:N , the key attribute;P , for
which logical similarity between different values is 0; andA, for

Table 7: Data-generation parameters and their settings.
Parameter var pSame pExist noise

Default .5 .8 .1 .05
Range .1-1 .5-1 0-1 0-.1

Algorithm 2 MATCH

Input: G(S), thek-partite graph encoding ofS.
Output: E , entities provided byS.
1: C(G(S)) =CLUSTER(G(S));
2: Gc(S) =TRANSFORM(C(G(S)));
3: for all soft uniqueness attributeA do
4: ĒA = {edges betweenA andAκ};
5: compute weight of each edge in̄EA;
6: rank the edges inĒA in a descending order according to edge

weight;
//Phase I

7: computeLS2(v) for each nodev of A andAκ

8: select nodes ofA with the top|A|(pA+ǫ) values ofLS2(v); similar
for Aκ;

9: compute deg(v) for each selected node;
//Phase II

10: M̄A = ∅;
11: for all edgee ∈ ĒA do
12: if addinge to M̄A does not violate degree constraints and in-

creases score of̄MA then
13: adde to M̄A;
14: end if
15: end for
16: end for

//Generate entities
17: E = ∅;
18: for each valuev of Aκ in Gc(S) do
19: add an entity toE with v and all values matched tov (or clustered

w. v for values of hard uniqueness attribute);
20: end for
21: return E ;

which logical and appearance similarity are the same (as we de-
scribe later, in some experiments we added or removed attributes).
For each attribute, we generated (correct) values as follows: we
first randomly choose a number in[0, l] for the first entity, wherel
is the size of the domain; then iteratively generate the next value as
v′ = (v + l·var

m
) mod l, wherev is the previous value, andvar

controls distance between two neighbor values. We setl = 10M

and variedvar in experiments. Table 7 shows ranges and default
values of parameters we used in data generation.

We generated 20 data sources. For each entity, each source has
probability .8 to provide a record. For each attribute of each entity,
we perturbed the provided value as follows. Letc be the correct
value. With probabilitypSame a source providesc; otherwise, it
provides a wrong value: with probabilitypExist it provides the
correct value of another entity, and otherwise it provides a random
value in[c−l·noise, c+l·noise]∩[0, l]. We always setpExist =
0 for the key attributeN .

Our data generation naturally implies the golden standard. For
each parameter setting, we ran the experiment 10 times and re-
ported average precision, recall, and F-measure. We computed the

similarity between two valuesv andv′ by 1 − |v−v′|
l

. Note that
according to our data generation, the similarity between values is
quite high: whenvar = .5 (default), the similarity between two
neighbor correct values is already .875. Our algorithm thus sets
similarity that is below .95 to 0. We applied Eq. (11) for multi-
value penalty.

D.1.2 Results
Overall performance: Figure 8 shows results when we vary
pSame for all attributes. We have three observations. First, CLUS-
TER performs well and consistently better than the other methods:
when pSame = .8 (default), it has F-measures of above .9 for
matching and above .92 for clustering; whenpSame = .5 and
so the records for each entity vary highly, CLUSTER still obtains a

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

P
re

ci
si

on

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

P
re

ci
si

on

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

P
re

ci
si

on

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

P
re

ci
si

on

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

P
re

ci
si

on

CLUSTER
LINK

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

R
ec

al
l

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

R
ec

al
l

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame
R

ec
al

l

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

R
ec

al
l

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

R
ec

al
l

CLUSTER
LINK

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

F−
m

ea
su

re

CLUSTER
LINK
FUSE

(a) N-P matching

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

F−
m

ea
su

re

CLUSTER
LINK
FUSE

(b) N-A matching

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

F−
m

ea
su

re

CLUSTER
LINK
FUSE

(c) A-P matching

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

F−
m

ea
su

re

CLUSTER
LINK
FUSE

(d) N clustering

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame

F−
m

ea
su

re

CLUSTER
LINK

(e) A clustering

Figure 8: Accuracy with schema (N, P, A). CLUSTER obtains the best results in most cases.FUSE does not clusterA-values, so we do not plot its
accuracy onA-clustering.

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Var

F−
m

ea
su

re

CLUSTER
LINK
FUSE

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise

F−
m

ea
su

re

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame
A

F−
m

ea
su

re

CLUSTER
LINK
FUSE

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pExist
A

F−
m

ea
su

re

CLUSTER
LINK
FUSE

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pSame
N

F−
m

ea
su

re

CLUSTER
LINK
FUSE

Figure 9: Effect of parameters on matching (N-A).CLUSTER obtains the best results in most settings.

F-measure of .60 on average, 37% higher than LINK and 133%
higher than FUSE. Second, CLUSTER performs especially well
with respect to theP attribute, whose different values are consid-
ered logically different: whenpSame = .5, the F-measure ofN -P
matching is .81, whereas that ofN -A matching is .66. Third, LINK

typically obtains the lowest precision as it does not identify false
values, and FUSE typically obtains the lowest recall, as it does not
consider similarity ofN -values.

Effect of parameters: To examine effect of data-generation pa-
rameters on the performance, we experimented on data sets with
only two attributes(N, A). Figure 9 shows F-measure of matching
when we vary different parameters and we observed very similar
pattern on clustering.

Again, CLUSTER obtains the best results in most cases, whereas
FUSE, which does not explicitly cluster representations, obtains the
worst results. In particular, we consider the parameters in three
groups. First,var andnoise control similarity of generated values
(correct or perturbed), so has a big effect on accuracy of CLUS-

TER and LINK : the highervar and the lowernoise, the better
results. Note that LINK is more sensitive tonoise, as it does not
identify false values and so is more likely to cluster an erroneous
record with records for other entities whennoise is high. Sec-
ond,pSameA andpExistA control variety and correctness ofA-
values. We observe that CLUSTER is quite stable w.r.t. them as
it considers both errors and variety of representations; LINK per-
forms worse whenpExistA is high (so more errors); FUSE per-
forms worse whenpExistA is low (so higher variety of represen-
tations), and is sensitive topSameA (indeed, FUSE is only affected
by these two parameters). We note that CLUSTER does not obtain
a F-measure of 1 whenpSameA = 1, because it may mis-cluster
names that look very alike. Third,pSameN controls variety ofN -
values (recall thatpExistN = 0); the higherpSameN , the higher
F-measure of CLUSTER and LINK .

Contribution of different components: We conducted similar ex-
periments as on real-world data for further understanding how dif-
ferent components contribute to our performance. We experimented

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Var

F−
m

ea
su

re

Algo1: Initalization only
Algo2: Algo1 + Refinement
Algo3: Algo2 + Penalty
Algo4: Algo3 + App−Sim

Figure 10: Contribution of com-
ponents on matching (N-P).

2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

#Attributes

F−
m

ea
su

re

2 3 4 5 6
0

50

100

150

200

250

300

350

400

450

500

Ex
ec

ut
io

n
tim

e(
se

co
nd

s)

Matching N−A1
Clustering N
Clustering A1
Execution time

Figure 11: Contribution of at-
tributes.

on (N, P), as the logical similarity and appearance similarity dif-
fer for P . Figure 10 shows F-measure of matching when we vary
var and we observed similar pattern for clustering. We observe
that (1) simply applying clustering without the augmentations im-
proves the results over initial clustering only slightly, if any; (2)
applying multi-value penalty makes significant improvement when
var is small and increases robustness with respect tovar; and (3)
considering appearance-similarity can further improve the results
(by 8% on average).

Effect of attributes: We also examined how the number of unique-
ness attributes can affect our performance. We started with data of
schema(N, A) and then added more uniqueness attributes whose
logical and appearance similarity are the same. Figure 11 shows the
F-measure of matching and clustering. We observe clear improve-
ment when the number of uniqueness attributes increases until it
reaches 4; after that, adding more uniqueness attributes has only
slight benefit. Finally, our algorithm finishes in 8.35 minutes when
there are 6 uniqueness attributes; this is adequate given that linkage
and fusion are often conducted offline.

D.2 Considering soft constraints

D.2.1 Data generation
We consideredm = 4 entities, each with two attributes:N (the

key) andA. We considered violations of uniqueness constraints on
each side and control them using two sets of parameters: violation
rate (pN→A andpA→N) and number of associated values per viola-
tor (#As/N -violator and#Ns/A-violator). We ranged the former
from 0 to 1 and the latter from 2 to 10; we set their default values
to .25 and 2 respectively. We generated the standard (true) values
and source data as described in Section D.1.1 and used the default
values in Table 7 for other parameters.

Our algorithm computes the similarity between perturbed val-
ues of the same standard value as before, but sets it to 0 between
perturbations of different standard values (as we can have up to
13 standard values for each attribute, two neighbor values can be
very close). We applied Eq. (12) for multi-value penalty and set
p(S) = .9 for each source (using .75 obtained similar results).

D.2.2 Results
Figure 12 shows the performance of MATCH when we varied

different parameters. We have the following observations.

• To a certain extent, MATCH handles soft constraints quite
well. ForN → A violations (similar forA → N violations),
the F-measures of both matching and clustering are above .8
whenpN→A is up to .5 and#As/N -violator is 2, and above
.7 whenpA→N is .25 and#As/N -violator is up to 5.

• MATCH is fairly tolerant to the number of violations and the
number of values each violator is associated with. ForN →

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

p
N−>A

F
−m

ea
su

re

N−A Matching
N Clustering
A Clustering

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

p
A−>N

F
−m

ea
su

re

N−A Matching
N Clustering
A Clustering

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

#As/violator

F
−m

ea
su

re

N−A Matching
N Clustering
A Clustering

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

#Ns/violator

F
−m

ea
su

re

N−A Matching
N Clustering
A Clustering

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

pSame

F
−m

ea
su

re

N−A Matching
N Clustering
A Clustering

(a) N → A violation

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

pSame

F
−m

ea
su

re

N−A Matching
N Clustering
A Clustering

(b) A → N violation

Figure 12: Performance of MATCH in presence of soft constraints.
Our algorithm handles violations quite well.

A violations (similar forA → N), whenpN→A increases to 1
and#As/N -violator is 2, we still obtain a F-measure of above
.6 in matching and in clustering. When#As/N -violator is in-
creased to 10, the F-measure of clustering is above .8 and that
of matching is around .6. Note that inaccurate clustering of
A-values is mainly because of incorrectly clustering different
A-values of the same entity; also note that the drop in match-
ing performance is mainly because some perturbed values of
anN -violator are not merged with the standard value, so not
matched with the multipleA-values and cause a big penalty
on recall. Finally, although a lowerpSame can lead to a
lower F-measure, the difference is very small.

• Because we first considerN -nodes and thenA-nodes in clus-
tering, we obtained better results withA → N violations
than withN → A violations; but if we change the order, the
pattern of the results also switch.

D.3 Summary
We summarize observations from experiments as follows.

1. Our techniques significantly improve over traditional tech-
niques on a variety of data sets and are less sensitive on the
variety of representations and erroneous values.

2. Applying multi-value penalty is critical, and appearance-similarity
based association update further improves our algorithm.

3. The accuracy of our techniques increases with the number of
uniqueness attributes.

4. Our algorithm handles soft constrains well and is fairly stable.
5. Our algorithm scales well.

	Introduction
	Problem Definition
	Problem definition
	K-partite graph encoding

	Clustering w.r.t. Hard Constraints
	Objective function
	Similarity distance
	Association distance
	Augmentations

	Hill-climbing algorithm

	Matching w.r.t. Soft Constraints
	Soft constraints and objective function
	Two-phase greedy algorithm

	Experimental Results
	Experiment settings
	Results

	Related Work
	Conclusions
	References
	Augmentations for clustering
	Algorithm details
	Extensions
	Experiments on Synthetic Data
	Clustering w.r.t. hard constraints
	Data generation
	Results

	Considering soft constraints
	Data generation
	Results

	Summary

