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ABSTRACT

Many data-management applications require integratingfdataa variety
of sources, where different sources may refer to the sameneséd- entity

in different ways and some may even provide erroneous datampaortant
task in this process is to recognize and merge the variouserafes that
refer to the same entity. In practice, some attributes satisfgiqueness
constraint—each real-world entity (or most entities) hasigue value for

the attribute €.g, business contact phone, address, and email). Traditional

techniques tackle this case by first linking records thalikedy to refer to
the same real-world entity, and then fusing the linked resa@nad resolv-
ing conflicts if any. Such methods can fall short for three oaas first,
erroneous values from sources may prevent correct linkieepsd, the real
world may contain exceptions to the uniqueness constranmtsivays en-
forcing uniqueness can miss correct values; third, locaplving conflicts
for linked records may overlook important global evidence.

This paper proposes a novel technique to solve this problene Ky
component of our solution is to reduce the problem inte-partite graph
clustering problem and consider in clustering both simyadf attribute
values and the sources that associate a pair of values irathe gecord.
Thus, we perform global linkage and fusion simultaneousig ean iden-
tify incorrect values and differentiate them from alteimatrepresentations
of the correct value from the beginning. In addition, we exteur al-
gorithm to be tolerant to a few violations of the uniquenessstraints.
Experimental results show accuracy and scalability of ochnéque.
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In practice, there are often attributes that satisfyréqueness
constraint, where each real-world entity (or most entities) has a
unique value for the attribute; examples include website, contact
phone, address, and email address of businesses, cell-phore num
ber, email address, and Facebook account of people, and preside
and website of organizations, and so on. However, the data may
not satisfy the constraints, either because some sources can provide
erroneous values, or because there can be a small number of excep
tions in the real world. Traditional techniques handle this case in
two steps: first, theecord linkagestep (surveyed in [14, 31]) links
records that are likely to refer to the same real-world entity, implic-
itly requiring consistency of the linked records or explicitly enforc-
ing constraints to some extent; then, thea fusionstep (surveyed
in [12]) merges the linked records and decides the correct values
for each result entity in the presence of conflicts.

Such techniques have at least three problems, illustrated by Ta-
ble[1. First, erroneous values may prevent correct linking. In the
example, careless linkage may merge the “MS Corp.” record from
S10 with the “Macrosoft” records, as they share phone and address,
while failing to merge them with the “MS Corp.” records frofiy
andSg, needless to mention the “Microsoft” records; if we realize
that S1o confuses betweehlicrosoftand Macrosoftand provides
wrong values, we are more likely to obtain the correct linkage re-
sults. Second, such techniques can fall short when exceptions to
the uniqueness constraints exist. In the example, enforcing unique-
ness can miss the correct number “9400” Kbicrosoft Third, lo-
cally resolving conflicts for linked records may overlook important

The amount of information produced in the world increases by global evidence. Inthe example, suppose we have correctly merged

30% every year [25] and this rate will only go up. In many domains, all “MS Corp” records with otheMicrosoftrecords; then the fact
such as business, organizations, publications, music, video, movie,that “0500” is provided by more sources fdtacrosoftprovides
sports, travel, vehicle, housing, there exist a large number of datafurther evidence that it is incorrect féicrosoft

sources and a lot of their data overlap. Different sources can pro- This paper presents a novel technique to solve the record linkage
vide information about the same real-world entities; though, they problem with uniqueness constraints and erroneous values. The
may represent the same attribute value in different ways, and somekey idea in our solution is to merge the linkage step and the fusion
may even provide erroneous values. An important task in integrat- step, so we are able to identify incorrect values and differentiate
ing data from various sources is to recognize the various referencesthem from alternative representations of the correct value from the

that refer to the same real-world entity.
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beginning, and obtain better linkage results. Another crucial part
of our solution is to make global decisions based on which sources
associate a pair of values in the same record, so we can obtain better
fusion results. Finally, although our solution relies on uniqueness
constraints to detect erroneous values, we allow a small number of
violations to capture real-world exceptions.

In particular, this paper makes three contributions:

1. We reduce our problem intdkapartite graph clustering prob-
lem. Our clustering technique considers both similarity of
attribute values and the set of sources that associate a pair



Table 1: Records from 10 sources on 2 businesse®hone and Ad-
dress satisfy uniqueness constraints. There exist different regsenta-
tions for the same value (listed in (b)) and erroneous value@n italics).

(a) Data sources

SOURCE NAME PHONE ADDRESS
Microsofe Corp. | xxx-1255 | 1 Microsoft Way
S1 Microsofe Corp. | xxx-9400 | 1 Microsoft Way
Macrosoft Inc. | xxx-0500 2 Sylvan W.

Microsoft Corp. | xxx-1255 | 1 Microsoft Way

So Microsofe Corp. | xxx-9400 | 1 Microsoft Way
Macrosoft Inc. | xxx-0500 | 2 Sylvan Way

Microsoft Corp. | xxx-1255 | 1 Microsoft Way

S3 Microsoft Corp. | xxx-9400 | 1 Microsoft Way
Macrosoft Inc. | xxx-0500 | 2 Sylvan Way

Microsoft Corp. | xxx-1255 | 1 Microsoft Way

Sa Microsoft Corp. | xxx-9400 | 1 Microsoft Way
Macrosoft Inc. | xxx-0500 | 2 Sylvan Way

Microsoft Corp. | xxx-1255 | 1 Microsoft Way

Ss Microsoft Corp. | xxx-9400 | 1 Microsoft Way
Macrosoft Inc. | xxx-0500 | 2 Sylvan Way

Se Microsoft Corp. | xxx-2255| 1 Microsoft Way
Macrosoft Inc. | xxx-0500 | 2 Sylvan Way

Sy MS Corp. xxx-1255 | 1 Microsoft Way
Macrosoft Inc. | xxx-0500 | 2 Sylvan Way

Sg MS Corp. xxx-1255 | 1 Microsoft Way
Macrosoft Inc. | xxx-0500 | 2 Sylvan Way

So Macrosoft Inc. | xxx-0500 | 2 Sylvan Way
S10 MS Corp. xxx-0500 | 2 Sylvan Way

(b) Real-world entities
NAME PHONE ADDRESS
Microsoft Corp., Xxx-1255, }
Microsofe Corp., MS Corp.| xxx-9400 1 Microsoft Way
i 2 Sylvan Way,
Macrosoft Inc. xxx-0500 2 Sylvan W.

of values in the same record, thus performing global linkage

and fusion simultaneously.

2. We considesoft uniquenesfor capturing possible excep-
tions of the constraints. We extend our algorithm to distin-
guish alternative correct values from erroneous ones by anal-

ysis of supporting sources.

3. We have conducted extensive experiments on both real-worl
data and synthetic data, showing the accuracy and scalability

of our technique.

tains zero, one, or several values for each attribute. Here, we con-
sider atomic values (string, number, date, etc.). We assume a value
can have variougepresentationge.g, New York City can be rep-
resented as “New York City” or “NYC.

We focus our attention on a special kind of attributeiqueness
attributes which satisfy thainiqueness constrairthat is, each en-
tity has at most one value for the attribute and different entities have
different valued. We formally define the constraint as follows.

DEFINITION 2.1 (HARD UNIQUENESS CONSTRAINJ. Let€
be a set of entities of domaib and A be an attribute inD. We say
there is auniqueness constraifdr A w.r.t. £, denoted byD < A,
if each entity in€ has a unique value or no value df O

Essentially, a uniqueness attribute is a nullable key. By transitiv-
ity, there is a one-to-one relationship between each pair of unique-
ness attributes. Among them, we assume existence iofesutifier
(key)attribute, for which each entity has at least one value and the
value can identify the entitye(g, person name and business name).

In reality, although a uniqueness constraint may apply to most
entities, there can be a few violations. For example, although most
businesses have unique phone numbers, some can have multiple
phone numbers and some can share the same phone number with
others. We thus define a relaxed version of the constraint.

DEFINITION 2.2 (SOFT UNIQUENESS CONSTRAINJ. Let &£
be a set of entities of domaiP and A be an attribute inD. A

1
soft uniqueness constraifdr A w.r.t. £ is denoted byD = A,

-
wherep; is the upper bound probability of an entity havir?é multi-
ple values forA and p- is the upper bound probability of a value
of A being shared by multiple entities. O
70%

As an exampleBusiness = phone means up to 30% busi-
nesses have multiple phonegr?lfmbers and up to 10% phone numbers
are shared by multiple businesses. In practigeandp- can be set
by domain knowledge. The definition does not limit the number
of values each violating entity can contain, or vice versa, which
should be decided according to the data.

Data sourcelLet S be a set of relationadata sources For each

d entity in £, a source can (but does not necessarily) provide a set of

records, which may contain different values of an attribute, or dif-
ferent representations of the same vdlu8ome of the values may
not conform to the real world and afalse thus, individual sources

Our algorithms can plug in state-of-the-art record-linkage and may violate uniqueness constraints. We assume the schema match-
data-fusion techniques. We can apply various linkage methods toing problem has been solved using existing techniques (surveyed
compute similarity of vectors of values for attributes that do not sat- in [27]) and so source data are in a uniform schema.

isfy any uniqueness constraint, and apply various fusion methods to
compute a weight for each source based on its accuracy [11].

In this paper we solve the following problergiven a setS of
independent data sources and a set of (hard or soft) uniqueness

The rest of the paper is organized as follows. Section 2 defines congtraints, identify (1) the set of real-world entities described by
the problem. Sectidn 3 describes clustering under hard constraintsg  4ng (2) discover theue values (if any) and different represen-
and Section 4 extends it to deal with soft constraints. Settion 5 ta,tions of each true value for uniqueness attributes.
describes experimental results. Secfion 6 discusses related work
and Sectiof 7 concludes. The Appendix describes details of the2.2 K-partite graph encoding

algorithms, extensions, and experiments on synthetic data.

2. PROBLEM DEFINITION

This section formally defines the problem we solve and how we
convert it to ak-partite graph clustering and matching problem.

2.1 Problem definition

Entity Let £ be a set of real-worleentitiesin the same domain.
Each entity is described by a setattributes and each entity con-

Solving our problem requires identifying duplicates by linking
various representations of the same value and resolving conflicts
by finding the correct value(s). We can thus view this problem as

1We assume that one representation represents a singlewaicé,is com-
mon in practice, and describe in Appendix C how to relax thisiasption.
2our techniques can be easily extended to the case wherekattabutes
jointly satisfy a uniqueness constraint.

3If a source provides multiple values or representations ifoatribute in
one record, we can decompose the record into multiple ones.
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(a) 3-Partite graph encoding of the input  (b) Encoding of the ideal solution (c) Clustering under hard constraints

Figure 1: Graph encoding for the motivating example. N-nodes, P-nodesind A-nodes are for names, phones, addresses corresponglin Nodes
with the same shading belong to the same entity. A dashed ovedpresents a cluster of representations for the same valuend a dashed rectangle
represents a cluster of value representations for the samentty.

clusteringvarious representations into values, andtching(as- In the rest of our paper, Sectibn 3 describes a clustering algo-
sociating) values that belong to the same entity. To facilitate this rithm with hard constraints, Sectiéon 4 describes an algorithm for
process, we definefapartite graph encodingf our problem. We soft constraints, and AppendiX C describes a few extensions.
consider only (hard or soft) uniqueness attributes for now and con-

sider other attributes in Appendix C. 3. CLUSTERINGW.R.T.HARD CONSTRAINTS

We start from hard constraints, in which case the problem can be
reduced to &-partite graph clustering problem. This section first
presents our objective function for clustering, and then describes
our clustering algorithm.

DEFINITION 2.3 (K-PARTITE GRAPH ENCODING. Let& be
a set of entities wittk uniqueness attributed;, ..., Ax. LetS
be a set of data sources providing data &n Thek-partite graph
encodingof S is an undirected graplZ(S) = (Vi,..., Vi, E),

such that 3.1 Objective function
e each node iV}, i € [1, k], represents a value representation An ideal clustering should have a highhesiorwithin each clus-
of attribute A;, provided by a source i8§; ter and a lowcorrelationbetween different clusters. Several objec-
e each edgdv;,v;) € E,v; € Vs,v; € Vj,i,j € [1,k],i # tive functions have been proposed for clustering taking into consid-

j, represents existence of a record with value representations eration cohesion and correlation, such as Davies-Bouldin index [9],
v; andv;, and is marked witl5(v;, v;), the set of sources Dunnindex([13], and Silhouette index [28]. The choice of the index
that provide such records. O is orthogonal to our techniques; here we adopt the Davies-Bouldin
index, which is more stable than the Dunn index and less expensive
As an example, Figute] 1(a) shows the 3-partite graph encoding to compute than the Sihouette index [24, 26].
of the data set in Table 1(a). The size of the graph is linear in the  Formally, given a clustering = {C,,...,C,}, its Davies-
size of the input data. We note that althoughheartite graph can Bouldin index (DB-index) is defined as follows:
lose information on which edges come from the same record, the ®(C) = Avg™ d(C;, Cy) + d(Cj,Cj)) )
lost information is not critical (see the full version [18]). = AVim el d(C;,C5) ’
Based on thig-partite graph encoding, we can encode a solution whered(C;, C;) denotes thalistancebetweenC; andC;. Note

of our problem as follows. that wheni = 7, the distance is the complement of the cohesion of
C; (Cj); otherwise, the distance is the complement of the correla-
DEFINITION 2.4 (SOLUTION ENCODING). LetG(S) = (i, tion betweerC; andC;. Our goal is to obtain a clustering with the
-+, Vi, E) be ak-partite graph encoding for data sourceéson minimumDB-index, implying high cohesion and low correlation.
entities¢. A solution encoding has two parts: Now we consider how to compute cluster distance. Intuitively,

if two clusters have a high distance, their values of the same at-
tribute should be very different, and their values of different at-
tributes should be associated by few edges. We thus consider two
types of distancesimilarity distance denoted byis, measuring
(complement of) similarity between value representations of the
same attribute; andssociation distangedenoted byl 4, measur-

Figure 1(b) shows the encoding of the ideal solution in Table 1(b). ir!g (complement of) association_between value rfepresentations of
In the special case where we consider only hard constraints, for different attributes. The cluster distance takes their average:
eachi,j € [1,k],i # j, a cluster inV; can be connected with at d(Cy,Cy) = ds(Ci, Gj) + dA(Ci’Cj)_ )
most one cluster iV, and vice versa. We can accordingly further . 2
cluster all nodes in thé-partite graph into entities (a cluster with- We next describe how we compute andd.4.
out a key value does not represent a valid entity). Figure 1(c) shows silar ;
the clustering under hard constraints jpimone andaddress. In 3.1.1 Similarity distance
this case, our problem is reduced to a pure clustering problem,
where each cluster includes at most a single value, with different
representations, for each attribute, so the clustering process con- ds(Ci, Cj) = Avgl_; (ds(Ci, Cy)). ®)
ducts linkage and fusion at the same time.

e for eachi € [1, k], there is a clustering of; such that each
cluster represents a unique value 4f;

e foreach pair of cluster§’; andC;, C; C V;,C; C Vj,4,j5 €
[1,k],i # j, there is an edge betwe€ry andC; if and only
if they belong to the same entityh a

For similarity distancels, we first compute the distance for each
attribute, denoted by, I € [1, k], and then take the average:



Table 2: Similarity matrices for names and addresses. For phone
numbers, the similarity is 1 between the same number and 0 oirwise.

(a) Name (b) Address
N1 No N3 Ny A Ay Az
N1 1.0 [ 0.95| 0.65| 0.7 A | 10] O 0
Ny [ 095] 1.0 [ 0.65] 0.7 As 0 1.0 0.9
N3 [065[ 065 1.0 | 04| As [ 0 |09 1.0
Ny [ 07 [ 07 [ 0410

For eachl € [1, k], we computely by averaging the similarity
of each pair of value representations. Formally,/et(resp. R;)
be the value representations4f in clusterC; (resp.C;). Then,

d5(Ci,Cj) =1~ AV, ¢ R, e Ry rer SIMT, '), (4)

where sinfr, ') is the similarity between two value representations
r andr’, and its value is between 0 and 1. As special casés;ifi
and R; contains a single representatiaiy(C;, C;) = 0; if R; or
R; is empty, we do not considet; (C;, C;) in Eq. (3).

A similarity function (sim) needs to be defined for each attribute.
Such function can be string similarity [8], numerical similarity, etc.;
the choice is orthogonal to our clustering algorithm.

ExXAMPLE 3.1. Consider the clustering in Figure 1(c) for the
motivating example. Table 2 shows similarity between value repre-
sentations for each attribute.

For clusterC, there are three pairs of names, 5(C1, C1) =
1— 0:9540.5540:65 — (.25 (name); there is a single phone and ad-
dress, sai%(C1,C1) = 0 (phone), d%(Cy, C1) = 0 (address).
Taking the averagels(C1, C1) = 2252040 = (.083.

Between cluster§; andCl4, there are again three pairs of names,
sodls(Cl,C4) = l—w = 0.4; similarly, d%(Cl,CZ;) =
1-9=1,d%(C1,C4) = 1— 2% = 1. Thus,ds(C1,Cy) = 0.8.
On the other hand, between clustérs and C2, as C> contains
only one nodeP,, ds(Ci, Cz) = d%(Ch,C2) = 1. O

3.1.2 Association distance

For association distanaés, we first compute the distance for
each pair of the: attributes, denoted by 1,1’ € [1,k],1 # ',
and then take the average.

da(Ci, Cy) = AGy e i did (Ci, C5).- (5)

We next describe how we computé’ for each pair of and!’.
Wheni = j, intuitively, the association is represented by the edges
betweenV;-nodes and/,-nodes inC;. We can take the fraction

denote byS“' (C;, C;) the sources that support an edge between a
Vi-node inC; and aVj,-node inC;, we have

ISLY (3, C) ISLY (¢, Ci)l
|SHC) U SV (C))|” 1SHC;) U SY(Cy)|

a5 (Ci, Cy) = 1 — max{ 3.

7

ExAMPLE 3.2. Consider the clustering in Figure 1(c) fo(r %he
motivating example. For clustet;, 9 sources §1,...,Ss, S10)
mention at least one nodedme or phone, and 7 sources{i, . . .,
Ss, S7, Ss) support associations betweeame andphone in Ci;
thus,d;*(C1,C1) = 1 — £ = 0.22. Similarly, d;*(C1,C1) =
1—-8 =0.11andd%*(C1,C1) = 1 — L = 0.125. Taking the
averageda(C1,Cy) = 0.153.

Consider clusters”; and C4. There is an edge fronVs to
Py with the supportersio (so |S*2(C1,C4)| = 1), and there
is no edge fromV, to P; (so |S™?(C4,C1)| = 0). Therefore,
d;?(Ch,Cy) =1 — & =0.9. Similarly,d’;*(C1,C4) = 0.9 and
d%*(Ch, Cy) = 1. Taking the averagei (C1, Cs) = 0.93.

To compute the DB-index, we find for each cluster its “farthest”
cluster and apply Eql (1) = %:3240-1440.3240.19 — .24, [

3.1.3 Augmentations

We apply two augmentations. First, we discount sources that
appear to provide multiple values for an attribute (often due to an
inappropriate clustering). Second, we distinguisgical similar-
ity between value representations from their appearance similarity
(i.e., string similarity). We give details in Appendix/A.

3.2 Hill-climbing algorithm

Previous work [17, 29] has shown intractability of clustering in
most cases. We now describe an efficient hill-climbing algorithm,
CLUSTER (details in Appendik B), that approximates the optimal
solution. Q.USTERfirst generates an initial clustering, then itera-
tively examines each node and assigns it to the “best” cluster.

Step 1: Initialization.First cluster value representations of each at-
tribute according to their similarity. Then, between clusters of the
key attribute and of each non-key-attribute, apply the Hungarian
algorithm [23] to find the one-to-one matching with the strongest
associations (computed as the sum of the number of supporting
sources on each selected edge).

Step 2: AdjustmenEor each nodéV, compute the DB-index of as-
signing NV to each cluster and not changing clusters of other nodes.
AssignN to the cluster that minimizes the DB-index.

Step 3: Convergence checkingrepeat Step 2 if the clustering

of the sources that support any of such edges over all sources thatchanges.

provideV;- or V;,-nodes inC;. If a source provides several records

with various representations of the same entity, we count it only

once. Formally, letS'(C;) (resp. S (C;)) be the sources that

provide aVi-node (resp. Vi,-node) inC;. Let S4¥(C;) be the

sources that support an edge betwedn-aode and d/.-node in

C;. Let|S| be the size of sef. Then, we compute the distancé as

gLl (.

1S4(Ci) U SY(Cy)l
Wheni # j, we first compute the association betwéémodes

in C; andV;,-nodes inC;, and the association betweprnodes in

C; andVj,-nodes inCj;. Intuitively, even if only one of the associ-

ations is strong, there can be a better clustering,(if the former

is strong, moving some of thig-nodes inC;; into C; may obtain a

better clustering); thus, we consider the stronger association. If we

i (Ci o) =1 -

4Instead of counting the number of sources, we can assign dtteigach
source according to its accuracy [11], and sum up the weftke sources.

Note that the initialization and the order in which we adjust the
nodes may change the results; however, since the algorithm iterates,
we did not observe much difference in our experiments.

ExampLE 3.3. We apply theCLUSTER algorithm on the data
set in the motivating example. Initially, we clust®k and N,
and A, and Az, given their high similarity, and obtain a clustering
shown in Table 3(a), with DB-indexs9.

The first iteration starts with examining nodé,. Moving Ny
to Cy, Cs, or Cy4 results in a DB-index 06.94, 1.16, 0.93, respec-
tively, so we keepV; in C'3. We then examine the rest of the nodes
and decide to mové', to C; and not move other nodes. The re-
sulting clustering, shown in Table 3(b), has DB-index 4fl.

The second iteration moveé$, to C; (Table 3(c)) and decreases
the DB-index td.45. Then the algorithm converges. O

We next formalize several properties of the algorithm.



Table 3: Apply CLUSTER on data sets in the motivating example.
() Initial clustering.

C1 Cs C3 Cy
NAME N3 Nip ,No Ny
PHONE P P> Ps3 Py
ADDRESS | Ay Az, A3

(b) Clustering after the first iteration.

Cy Oy (3 Cy
NAME N2, N5 N1 N
PHONE P | P | Py | Py
ADDRESS Aq Ao,A3
(c) Final clustering.
Ci Cy Cs Cy
NAME | Ni,N2,N3 Ny
PHONE P P | P Py
ADDRESS Ay Ag, Az

1Microsoft Way

2Sylvan Way
2Sylvan W.

Figure 2: The transformed graph of clustering in Figure[1(c).

THEOREM 3.4. QLUSTERhas the following properties:

1. CLUSTERcCONverges.

2. Letn be the number of nodes in the ingupartite graph,m
be the number of sources, ahtie the number of iterations.
The time complexity @ELUSTERis O((2* + Ik)mn?). O

In practice, QUSTER typically converges in only a few itera-
tions. Also, although it takes exponential time4init is not that
expensive in practice as is typically very small. However, the
algorithm takes quartic time in and can be expensive whenis
large, we thus pre-process the data as follows.

Pre-processing:We first partition the records such that only records

that share similar values and would possibly represent the same en-,
tity are put in the same patrtition. Then, for each partition separately

we generate thé-partite graph and apply WSTER. Our exper-

iments (Section [5) show that with pre-processing, our algorithm

takes linear time in the number of records.

4. MATCHINGW.R.T.SOFT CONSTRAINTS

We now describe how we extend our approach to deal with soft

constraints by reducing our problem to an optimization problem,
and give the solution.

4.1 Soft constraints and objective function
1
Recall that a soft constraint can be representeoi)as‘é1 A,

A
meaning that with probability up te, an entity has multiplep\ialues
for attribute A and with probability up te- a value ofA is shared
by multiple entities. Formally, leftd,.| be the number of values of
the key attributed,, (each entity has one and only one key value),
and|A,| be the number ofl,.’s values that are matched to multiple
values ofA. We defing A| and|A| similarly. Then,

[Ax| |A]

< =
S Al 1l ©

Now our goal is to cluster representations to values for each at-
tribute, and for each soft uniqueness attribute, match (associate) its
values with values of the key attribute that belong to the same en-
tity. CLUSTERalready clusters representations to values, so we can
start from there, merging the clustered nodes, grouping the edges,
and computing theveightfor each edge as the number of support-
ing sources. The result is essentially a set of bi-partite graphs be-
tween key and non-key nodes. As an example, Figure 2 shows the
graph transformed from the clustering result in Figure J1(c). Now
the problem becomes finding the best matching betwégrand
each soft uniqueness attribute, under conditions (8). We next con-
sider what is the “best” matching between the key attribtiteand
a particular attributed.

Typically, we are confident of matching several valuesiafith
a valuev,, of A, (or vice versa) only if the edges between these
values and,, have similar numbers of supporting sources. To cap-
ture this intuition, we define thgap of support between different
selected edges for the same node. We denoté@/bg matching
solution with all selected edges, and¥®ye) the weight of edge.

<p1, 0<— <p2

DEFINITION 4.1  (SUPPORT GAR. LetG¢(S) be the input of
the matching problem and léi/ be a matching solution between
attributesA,, and A. Letv be anode ford,, or Ain G. LetE(v) C
M be the selected edges that are connected witfhesupport gap
for v is defined asap(v) = max,c 5, w(e) — min, ¢ g,y wie). U

When we look for the best matching, we aim at maximizing the
sum of the weights of selected edges, while minimizing the gap for
each node. We thus define the score of a matchihgs

- w(u,v)

ScorgM) = (uUZ)éM Gap(u) + Gap(v) + a
Here,« is used to avoid the divide-by-zero error when the gaps are
0 and to smooth the penalty when the gaps are very small. We set
« by first computing the standard deviation of the edge weights for
each node ofA and A,., then taking the average fot and for A,
(separately), and finally summing the results up. This strategy con-
siders the majority difference of weights for each node and works
well in our experiments.

A nice property of the score function in EQ.|(9) is that if there
are two disconnected subgrapfi§ and G5 of G¢, the matching
decision onGY is independent of the matching decision @fi,
formalized in the following proposition.

9)

PROPOSITION4.2 (INDEPENDENCH. LetG{ andGS be two
disconnected subgraphs@Gf such thatGY UGS = G“. LetM,; be
a matchlng orG§ and M- be a matching 06$. Then, Scor@V/, U

M>) = Scord M) + Scord M>). O

EXAMPLE 4.3. ConsiderG¢(S) in Figure[2 and we focus on
the matching between names and phone numbers. Two matching
solutions are shown in Figurel 1(b) and Figure 1(c), and they dif-
fer in whether to include the edge betwe¥it’; and Ps. For the
matching in Figure 1(c), no node is associated with multiple edges
and the gap for each node is 0, so the scor T+ o7ae1 =
5.49 (here,a = 2.91). For the matching in FlgurEl(b) nod¥C;
is associated with two edges and the gap is 2. However, includ-
ing the additional edge is worthwhile as the score is increased to
= 5.54. O

7 5 9
2+42.91 + 24-2.91 + 0+2.91

To summarize, our matching problem is reduced to the following
optimization problemmat ch between the key attribute and each



soft uniqueness attribute. We note that evem i{p2) is high, the
optimal solution may contain only a few exceptions so the objective
function is maximized.

maximize >

w(u,v)

_ Gap(u) + Gap(v) + «

(u,v)eM
subject to0 < [Ax| <p1,0 < 14] < pa.
[Ax] |A]

4.2 Two-phase greedy algorithm

Solving a non-linear optimization problem is generally hard [22];
again, we need an efficient algorithm to approximate the optimal
solution. Taking a graph¥©(S) involving the key attributed,. and
a soft uniqueness attributk, our matching algorithm, MTcH (de-

5. EXPERIMENTAL RESULTS

This section describes experimental results on real-world data
sources that provide business listings. Appendix D describes ad-
ditional experiments on synthetic data. Experimental results show
high accuracy and scalability of our techniques.

5.1 Experiment settings

Data: We experimented on a set of raw business listings that Yel-
lowPages.com obtained from other sources, where we know the
provider of each listing. We considered listinggafne, phone,
address) in two zip codes: 07035 and 07715, and in the San Fran-
cisco area. For each zip code, we manually identified the real-world
businesses provided by the sources, and verified their phone num-
bers and addresses by calling the businesses and referring to other
resources at YellowPages.com; we used the results as the golden

tails in Appendix B) proceeds in two phases: the first phase greed- standard. Tablel4 shows statistics of the data; the data have a high
ily selects nodes that may match to multiple nodes, and the secondyariety, contain errors, and roughly observe the constraints. The

phase greedily selects edges to maximize the objective function.
Note that Phase 1 is critical: going to Phase 2 directly may select

a high-weight edge that introduces a large gap and so prevent later,
choosing a lower-weight edge that introduces a smaller gap and can

increase the score even more.
Phase 1. Node selectiorConsider attributed,. (similar for A).

e Rank all edges on weight in a descending order.
e Rank the nodes ofl,; by LS5 (v) = —“1T%2_ jn a descend-
. w1 —waFa .
ing order, wherav; andw- are the two highest weights for
nodev. Selectthe top; |A,| nodes as candidates and denote
the result set by’. Set degree dég) = 1forv ¢ V.
e For each node € V, start from a subsef (v) that contains
edges with the top-2 weights and computeal score

_ ZEEE‘(U) w(e)

maXe () W(e) — minge g,y wle) + a

LS(v) (10)

Progressively add more edges in descending order of the weig
until the score does not increase. Set(@deg= |E(v)|.

The local score is defined assuming the same gap for nodes of
A. Ideally, we should rank nodes by their local scores; we save
the computation by comparing nodes bg- (only top-2 weighted
edges) and computingS only for nodes in the top list.

Phase 2. Edge selectioiWe next consider edges in the descending
order of weights. We greedily select an edge if adding it increases
the score without exceeding the degree limit (@dey for both of

its nodes, until there exists no such node.

The complexity of this algorithm i©(eloge 4+ nlogn + en),
wheree is the number of edges andis the number of nodes in
G°(S) for the two attributes in consideration.

ExamMPLE 4.4. We illustrate how we approximate the matching
solution for G¢(S) in Figure[2. We consider matching between
name andphone. In the soft constraint fophone, p1 = p2 = .5.

In Phase 1, we seledv(C; and PCy; they are actually the
only nodes associated with multiple edges. By computing the lo-
cal score, we set 2 as the degree for both nodes.

San Francisco data set was used only for scalability test.

Implementations: We implemented our algorithm, referred to as
MATCH. MATCH first invokes CQUSTER and then applies match-
ing for soft constraints. We assumed hard constraintame and
soft constraint ophone andaddress with violation rate0.3. We
pre-computed representation similarity by TF/IDF Jaro-Winkler [8]
distance for names and addresses, and by Levenshtein distance [8]
for phone numbers. For augmentation, we applied Eqg. (12) for
multi-value penalty (see Appendix A), and estimatéd’) by ob-
serving the data.

We implemented MTCH in Matlab and other components (database
connection and similarity computation) in C#. We used a Win-
dowsXP machine with 2.0GHz Intel CPU and 1.5GB of RAM.

Comparison: For comparison, we implemented three traditional
linkage and fusion techniques:

e LINK: For each pair of records, compute value similarity
for each attribute and take the average. Link two records
if the average similarity is at least .85 and consider all linked
records as representing one entity. Consider representations
that are in the same entity and have a similarity of at least
.95 as the same value (this set of thresholds obtained the best
results for LNK in most cases in our experiments).

Fuse For each key attributel,, and non-key attributed,

first compute a weighiv for each pair of values 4, andva

as the number of sources that assoctate with v4, then
update the weight ds

w (Vap,va) = Zw(vAm v'y) - sim(va,vly).
vl

Associate each key value with the non-key value with the
highest weight (so many-to-one mappings), and consider all
associated values as representing one entity.
LF: Apply LINK, then choose the correct value for each at-
tribute of each entity as the one provided by the largest num-
ber of sources.

hts

Measure: We compared generated results with the golden standard
and measured quality of the results psecision(P), recall (R),

In Phase 2, we greedily choose new edges to add. We first chooséndF-measurgF’) on (1) matching of values of different attributes

the edge betweeN C, and PC, and the score ig 557 = 3.09
(a = 2.91). We then choose the edge betweééa’; and PC,
increasing the score tg— 57 + grgis97 = 0-50. The third
chosen edge is betweeWiC'; and PCs, increasing the score to

and (2) clustering of values of the same attribute. For matching,

we consider each pair of value representations as matched if they

are in the same entity, and denote the set of matched pait& by

for the golden standard and ki, for our results. We define

9 7 5 _ i
0+4+04-2.91 + 2+0+2.91 + 240+42.91 5.54. Addlng Other ed%es

violates the degree constraints, so we terminate.

5FUSEadaptS the method in [11], but does not consider accuracyuotes

and dependence between sources, which is not the focusgfaper.



Table 4: Statistics of data. Columns 6-8 show the number of distinct ames, phones, addresses for each zip code, and Column 9 shaesnumber
of erroneous phone numbers. The last four columns show perogage of businesses (resp., phones/addresses) that vielatparticular constraint and
the numbers in the parenthesis are average number of correqgihones/addresses (resp., businesses) in the violationess

Zip Business Source Record Constraint violation
#Business| #Srcs| #Srcs/business #Recs| #(dist Ns) [ #(dist Ps)| #(distAs) | #(ErmrPs)| N =P [ P—-N [ N - A ASN
07035 662 15 1~7 1629 1154 839 735 72 8%(2.6) | .8%(2.7)| 2%(2.3) | 12.6%(5.1)
07715 149 6 1~3 266 243 184 55 12 4%(2) 1%(3) 4%(2) 4%(8.5)

Table 5: Accuracy on real-world data sets. The last column shows over initial clustering only slightly; (3) when we consider soft con-

improvement of MATCH over LINK, and the last two rows average F- straints, applying multi-value penalty makes significant improve-
measures on matching and clustering. ment (by 2.3%) whereas considering appearance-similarity further
Zip | Category| Msr | FUSE | LINK | LF | MATCH [ Imp improves the results (by 1%); however, such augmentations do not
N-P P 94 | .89 | .94 .97 8.9% help and may even do harm when we ignore soft constraints.
match | R | 80 | 88 1.83 ) .91 | 3.4% We also experimented with changing the initialization method
2 E :g; :g? :gg :g‘; 8:2(2 and the order in which_wg examine clustering of the nodes in each
0 rr’:la;ﬁ;h R | 52 | 92 | 58a| 97 2.8% round, and observed similar results.
3 F | 68 | 9 |.70] .97 | 24% Contribution of attributes: Figure 4 compares accuracy ofAvicH
5 Name g -gg 'gi 'Zg 'gg g'ggjz and its three variants on 07715 on clustering of business names:
cluster E 94 92 | 91 08 75% NPONLY considers associations only betwaeame andphone,
P 99 99 | .99 99 0.0% NAONLY considers associations only betweeme andaddress,
nz\;zh R 93 94 | 94 93 -0.5% NP+NA considers these two associations, and NiR& (MATCH)
0 F .96 97 | .97 .96 -0.3% considers all three associations. This data set has many missing ad-
7 N-A P} .93 | .9 [.93] .98 3.2% dresses; thus, NAQLY has low precision and recall, and NP+NA
1 match E Zg g% % g? ig%’ improves over NP@LY only slightly. We also observe a big im-
5 = 10 ST o1 10 10:4% provement by considering associations betwpbone and ad-
é\l‘j‘sf?:r R | 9 | 75 | 75| 96 | 287% dress: NPA increases the F-measure over NP+NA by 5%.
F | .98 | 82 |.82] 98 |198% Efficiency and scalability: To show scalability and efficiency of
Avg é’l'j‘;?gr E 'gg 'gg 'gé 'gg 143'76& our techniques, we experimented on a sample of 236,306 listings

for the San Francisco area. In pre-processing, we put listings into
p = Gu0Rul p _ 1Gu0BMl g 2PR por clustering on the same partition if they 1) have similar names and addresses, 2)
o 1 S - have similar names and the same phone number, or 3) have sim-
an attributeA, we consider each pair of representations4ofis . ’ .
clustered if they represent the same value, and denote the set of @' address and the same phone number (threshold=.9). Figure 5
clustered pairs by 4 for the golden standard and Wy, for our shows the execution “_“?e of MATCH fo_r ea_lch partition. We ob-
results. We can compute precision, recall, and F-measure similarly, Serve that for 99% partitions the graph size is less than 11 (nodes).
The largest graph has 121 nodes and the maximum execution time
52 Results for a partition is only 327 seconds. Note that although there is a
quartic relationship between execution time and the graph size, ex-
ecution time also depends on distribution of nodes in the graph; as
an example, execution on the largest graph takes only 6 seconds, as
the graph contains only @hone nodes and &ddress nodes. We
observe similar distribution of the graph size when we use different
thresholds and different similarity measures.
To test scalability, we randomly divided the whole sample into
0 subsets of the same size. We started with one subset and gradu-
ally added more. Figure 6 shows the execution time plotted against
the number of records. We observe that with pre-processing, the
overall execution time and that for the top-10 partitions grow lin-
early in the size of the data; thus, our algorithm scales.

Accuracy: Table 5 compares accuracy of various methods. We ob-
serve that M\TCH obtains the highest F-measure in most cases. On
average, it obtains a F-measure of 0.96 on matching and 0.98 on
clustering; on the 07715 data set, it improves ovexd. by 11%
onname-address matching and by 20% omame clustering. Be-
tween LNK and FUSE, FUSE typically obtains a higher precision
but a lower recall in matching, as it enforces uniqueness but does1
not explicitly link various representations of the same value; how-
ever, FUSE obtains higher precision and recall in name clustering
by enforcing that each business has a single phone number. LF, o
the other hand, performs only slightly better thandE in match-

ing and similar to LINK in clustering, as it enforces uniqueness but
cannot handle exceptions, and does not identify false values from

the beginning so can mis-cluster. 6. RELATED WORK

Contribution of components: We next studied contribution of dif- Our work is mainly related to two bodies of work: record link-
ferent components of our algorithm on performance. We started age and data fusion. Record linkage has been extensively studied
with the initial clustering in CUSTER, then progressively added in the past (surveyed in [14, 31]). Most of the techniques implic-
cluster refinement, multi-value penalty, and appearance-similarity itly assume consistency of records that should be matched and can
based association update (Appendix A). We ran these variants offall short in presence of erroneous values. Recently, there has bee
CLuUsSTERWith and without extension for soft constraints. Figure 3 work on linkage with constraints [1, 2/ 3, 4, 10,/16, 30} 32]. The
shows average F-measure mame-phone matching and we ob- considered constraints can be classified into several types [7]: con-
served similar patterns faname-address matching andname straints on individual tuplese(g, only some tuples can patrticipate
clustering. We observe that (1) extension for soft constraints is nec- in linkage), deduplication parameterms.d, number of real-world
essary for real data (improving the F-measure by 6.8%); (2) simply entities), pairwise positive and negative examples, (requiring
applying clustering without the augmentations improves the results merging or non-merging for certain pairs), forbidden rulées.,(
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APPENDIX
A. AUGMENTATIONS FOR CLUSTERING

We describe two augmentations that further explore evidence
from source data and improve performance of clustering.

Multi-value penalty: Under hard constraints, for each entity a
source should provide at most a single value for a uniqueness at-
tribute; however, with an incorrect clustering, the source may look
like providing multiple values. We capture this negative evidence
by discounting sources that provide multiple values for an attribute
when we compute intra-cluster association distance. We first as-

sume that no source violates any hard constraint and relax this as-

sumption later.

Let 5~ (C;) C 84 (C;) be the sources that also support an
edge between aA;-node inC'; and anA;,-node outsid€; (similar
for 7V (C;)). Then, we ignore support from sources in these two
subsets in association distance:

|58 (Ca)l = 1887 (Co) U ST (G
ISH(Cy) U SY(Ci)

Now we relax this assumption and denoteigys) the proba-
bility that sourceS violates a hard constraint on an entity. Then,
when we observe a particular violation By with only probability
1 —p(S) that the violation is caused by a wrong clustering. Taking
it into account, we revised EQ.(11) to

|Sl,l’(c@_)‘ - zSegl,ﬁI’(Ci)Ugﬁl,l’(Ci)(l - p(S))
|SH(Cy) U SY(Ci) '

)|

diV(Cs00) =1 - 1

dil (i ) =1-
(12)

In practice, we can assigr{.S) according to domain knowledge.
Alternatively, we can run our algorithm iteratively, computin@)

according to the clustering result in each round and then using the
new values in the next round, until convergence.

ExampLE A.1. Continue with the motivating example and con-
sider the clustering described in Table 6. If we do not apply the
multi-value penalty, this clustering is considered as optimal. In
fact, the association distance 6f; is “+3*° = 0, and the DB-
index is.236, lower than that of the ideal clustering shown in Fig-
ure_I(c) (0.241).

If we apply Eq./(12) and assumpéS;) = .2,i € [1,10], S*(C}) =
52(04/1) = SLQ(CQ) = {51, ey 810}, gl’ﬁz(ci) = {81, ey 88},
andS™2(C}) = 0, sod;* (C4, C)) = 1—20=28 = 0.64. Sim-
ilarly, we haved;*(C4, C4) = 0.64, d%°(C4, C4) = 0. The new
intra-cluster association distance 6f; becomesis (C}, C})
0.43 and the DB-index is increased €059, higher than that of the
ideal solution,0.45 (also with multi-value penalty). d

Appearance-similarity based association updateAnother aug-
mentation for clustering is to update association basedppear-
ance similarity For many attributes, two value representations that
look similar can represent completely different values. For exam-
ple, **-1255 and***-2255 differ in only one digit but represent
two different phone numbers; similarly,Sylvan Waynd?2 Sylvan
Waydiffer in only one char but represent two different geographical
locations on the same street. We thus distingajgpearance simi-
larity from logical similarity: the former compares the appearance
of two representation®(g, string similarity, numerical similarity),
and the latter indicates the likelihood that the two representations
represent the same value. The logical similarity can be defined ac-
cording to some rules. For example, the logical similarity of two

Table 6: An alternative clustering for the motivating example.

cl ¢, Cl o
N-nodes N1,N2,N3,Ny
P-nodes P P> Ps3 A
A-nodes| A; Az, A3

0 if they have different numbers, and the same as the string similar-
ity otherwise.

We should use logical similarity in similarity distance to avoid
clustering two attributes that look alike but are logically different.
However, appearance similarity can help identify mis-spellings and
link records with such errors. As an example, consider two records
(Microsok Corp., xxx-1255and (Microsoft Corp., xxx2255). If
we realize the two phone numbers look similar and one of them
might be a mis-spelling, we are more likely to link the records.

Our solution is to update thie-partite graph according to appear-
ance similarity. In particular, for each edge;, v;), we associate
each of its support sources with a number indicating the likelihood
of support, denoted by’ (S, (vi,v;)) € [0,1]. If S provides a
record withv; andv;, denoted byv;, v;) € S, P(S, (vi,v;)) = 1;
otherwise,

P(S, (vi,v5)) = max{ max simy (vj, v}),

’U;-GV] ,(vi,v;)es,slmL (vj.,'u;):()

sima (v, v;)}, (13)

max,
véGVi,(vg,v_j)ES,S|mL ('L}i,v;):O
where we denote by simthe appearance similarity and by sim
the logical similarity.
Now when we compute the intra-cluster association distance, in-
stead of counting the number of sources that support an edge, we
sum up their support likelihood.

EXAMPLE A.2. Consider the three 2-partite graphs in Figlre 7,
each with two node#&v; and N, for name, two node®; and P
for phone, and two (solid-line) edges with the same set of support
sources. The logical similarity betweéwy, and N2 (the same as
the appearance similarity) is represented by a solid arc, and the ap-
pearance similarity betweeR; and P is represented by a dotted
arc (the logical similarity is0). We observe that in (a), both names
and phones are highly similar; in (b) and (c), only names or phones
are highly similar. We apply association update on the graphs and
represent the new edges by dotted lines.

Obviously, not considering appearance similarity between phones
lead to the same clustering for (a) and (b). Instead, if we update the
associations by adding the dotted edges in (a), we clusteand
N> with P;. Clustering for (c) shows that evenif, and P, are
highly similar, we shall not cluste; and Vs if they have low sim-
ilarity (the clustering in (c) has DB-index 0.88 and clusteriig
with N7 increases the DB-index to 2.57). Finally, if we use appear-
ance similarity instead of logical similarity for similarity distance,
we will wrongly clusterP; and P in (a) and (c), though they rep-
resent different phone numbers (values). O

B. ALGORITHM DETAILS

See Algorithm QUsTER for clustering under hard constraints
and Algorithm MaTcH for extension to deal with soft constraints.

C. EXTENSIONS

We next describe extensions for some special cases.

phone numbers is 0 (assume normalization to some standard for-Non-uniqueness attribute: In presence of non-uniqueness attributes,

mat); as another example, the logical similarity of two addresses is

we combine them with the identifier to formsaper-identifier For



Algorithm 2 MATCH

Input:  G(S8), thek-partite graph encoding .

Output: &, entities provided bys.

1: C(G(S)) =CLUSTER(G(S));

2. G¢(S) =TRANSFORMC(G(S)));

3: for all soft uniqueness attributé do

4: E4 = {edges betweed andA,};

5:  compute weight of each edge ifi4 ;

6: rank the edges inF4 in a descending order according to edge

Figure 7: Three 2-partite graphs. Nodes of the same color belong to }'}'F?Lg;sté |

the same cluster in the clustering results. 7: computeLSs(v) for each node of A and A,

Algorithm 1 CLUSTER 8: fsoerki;:i_nodesoﬁwith the top| A|(p.a +¢) values ofL.S2 (v); similar
Input: k-partite graphG(S) = (Vi, ..., Vi, E). 9:  compute defp) for each selected node;

Output: C(G), the clustering of7. //Phase I

1: (@) = INITIALIZE (G); //Generate initial clustering 100 My =0; B

2. t=—1; 11: forall edgee € E4 do

3: repeat 12: if addinge to M4 does not violate degree constraints and in-
4 t=t+1; creases score dff 4, then

5 ¢ctD(@) =c(q); 13: adde to M 4;

6. fori=1,kdo 14. end if

7 forall v € V; do 15: end for

8 for all clusterC; € c(*+1)(G) do 16: end for

9: deriveCtemyp by movingu to Cy; /IGenerate entities

10: Score(C;) =DAVIESBOULDIN(Ctemp); 17: £ =10

11: end for 18: for each valuey of A,; in G¢(S) do

12: adjustc(**1) (G) by movingv to C; with the lowest score; 19: add an entity t&€ with v and all values matched to (or clustered
13: end for w. v for values of hard uniqueness attribute);

14: end for 20: end for

15: until (€M (G) == (@) 21: retun &;

16: return C(G);

which logical and appearance similarity are the same (as we de-
example, we can combimame andcategory together as a super-  scribe later, in some experiments we added or removed attributes).
identifier, and ignore different values otegory by considering For each attribute, we generated (correct) values as follows: we
(namel, catl) and fiamel, cat2) as different representations of  first randomly choose a number [, /] for the first entity, wheré
the identifier of a business. We can apply record-linkage techniquesis the size of the domain; then iteratively generate the next value as
for computing similarity of super-identifier values, including us- " = (v + l‘”#) mod [, wherev is the previous value, angur
ing weighted similarity combination, decision tree, etc.; again, the controls distance between two neighbor values. We setl0M
choice is orthogonal to our techniques. Multi-attribute identifier and variedvar in experiments. Table]7 shows ranges and default
can be handled similarly. values of parameters we used in data generation.
Multi-value representation: In some contexts a representation Ve generated 20 data sources. For each entity, each source has
can represent multiple values.g, abbreviated person name). We ~ Probability .8 to provide a record. For each attribute of each entity,

treat such an attribute as soft uniqueness attribute and such a repree perturbed the provided value as follows. Lete the correct
sentation may be matched to multiple entities. value. With probabilitypSame a source provides; otherwise, it

provides a wrong value: with probabilityEzist it provides the
correct value of another entity, and otherwise it provides a random
D. EXPERIMENTS ON SYNTHETIC DATA value in[c—1-noise, c+1-noise] N0, I]. We always sepExist =
To understand how GJSTER and MaTCH perform on data of 0 for the key attributeV.
different characteristics, we experimented on synthetic data. We  ouyr data generation naturally implies the golden standard. For
next describe data genel‘ation and experimental results for the Cas%ach parameter Setting’ we ran the experiment 10 times and re-
where we have Only hard constraints and for the case where therEported average precision’ reca”' and F-measure. We computed the

also exist soft constraints. similarity between two values andv’ by 1 — ‘“%”/' Note that

D.1 Clustering W.r.t. hard constraints according to our data generation, the similarity between values is
quite high: wherwar = .5 (default), the similarity between two
D.1.1 Data generation neighbor correct values is already .875. Our algorithm thus sets

similarity that is below .95 to 0. We applied Ef. (11) for multi-

We assumed there are only hard constraints and considered value penalty.

4 entities, each with three attributed?, the key attribute;P, for
which logical similarity between different values is 0; ard for D.1.2 Results

Overall performance: Figurel8 shows results when we vary
pSame for all attributes. We have three observations. Firsty&-

Table 7: Data-generation parameters and their settings. TER performs well and consistently better than the other methods:
Parameter| var | pSame | pEwist | noise whenpSame = .8 (default), it has F-measures of above .9 for
%efa“'t i51 581 611 (-)Oi matching and above .92 for clustering; wheflame = .5 and
ange | .- - . = so the records for each entity vary highly, @ TER still obtains a
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Figure 8: Accuracy with schema (V, P, A). CLUSTER obtains the best results in most caseszUSE does not clusterA-values, so we do not plot its
accuracy on A-clustering.
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Figure 9: Effect of parameters on matching (N-A).CLUSTER obtains the best results in most settings.

F-measure of .60 on average, 37% higher thankLand 133% TER and LINK: the highervar and the lowermnoise, the better

higher than BsSe. Second, CUSTER performs especially well results. Note that INK is more sensitive taoise, as it does not
with respect to theP attribute, whose different values are consid- identify false values and so is more likely to cluster an erroneous
ered logically different: whepSame = .5, the F-measure aV-P record with records for other entities wherise is high. Sec-
matching is .81, whereas that & A matching is .66. Third, LNk ond,pSame 4 andpEzist 4 control variety and correctness daf

typically obtains the lowest precision as it does not identify false values. We observe thatLOSTER is quite stable w.r.t. them as
values, and BsE typically obtains the lowest recall, as it does not it considers both errors and variety of representationsikLper-
consider similarity ofV-values. forms worse whem Exist 4 is high (so more errors); BSE per-
Effect of parameters: To examine effect of data-generation pa- forms worse _Whe@’E_@StA is low (‘70 higher var!ety of represen-
rameters on the performance, we experimented on data sets withLat'onS)' and is sensitive jefame 4 (indeed, BISEis only af'fecte_d
only two attributeg IV, A). Figure 9 shows F-measure of matching 0¥ (N€se two parameters). We note thalGTER does not obtain
when we vary different parameters and we observed very similar @ F-measure of 1 whepSame = 1, because it may mis-cluster
pattern on clustering. names that look very gllke. Th|r¢SameN controls variety 9fN-
Again, OLUSTER obtains the best results in most cases, whereas Values (recall thapEzist v = 0); the highempSamey, the higher
FUsE, which does not explicitly cluster representations, obtains the F-measure of CUSTERand LINK.
worst results. In particular, we consider the parameters in three Contribution of different components: We conducted similar ex-

groups. Firstpar andnoise control similarity of generated values  periments as on real-world data for further understanding how dif-
(correct or perturbed), so has a big effect on accuracy 0§sS ferent components contribute to our performance. We experimented
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on (N, P), as the logical similarity and appearance similarity dif-
fer for P. Figuré 10 shows F-measure of matching when we vary
var and we observed similar pattern for clustering. We observe
that (1) simply applying clustering without the augmentations im-
proves the results over initial clustering only slightly, if any; (2)
applying multi-value penalty makes significant improvement when
var is small and increases robustness with respectiig and (3)
considering appearance-similarity can further improve the results
(by 8% on average).

Effect of attributes: We also examined how the number of unique-
ness attributes can affect our performance. We started with data of
schema N, A) and then added more uniqueness attributes whose
logical and appearance similarity are the same. Figure 11 shows the
F-measure of matching and clustering. We observe clear improve-
ment when the number of uniqueness attributes increases until it
reaches 4; after that, adding more uniqueness attributes has only
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slight benefit. Finally, our algorithm finishes in 8.35 minutes when Figure 12: Performance of MATCH in presence of soft constraints.
there are 6 uniqueness attributes; this is adequate given that linkagedur algorithm handles violations quite well.

and fusion are often conducted offline.

D.2 Considering soft constraints

D.2.1 Data generation

We consideredn = 4 entities, each with two attributesvV (the
key) andA. We considered violations of uniqueness constraints on
each side and control them using two sets of parameters: violation
rate on— 4 andpa—. n) and number of associated values per viola-
tor (# As/N-violator and# Ns/A-violator). We ranged the former
from O to 1 and the latter from 2 to 10; we set their default values
to .25 and 2 respectively. We generated the standard (true) values
and source data as described in Sedtion D.1.1 and used the default
values in Table 7 for other parameters.

Our algorithm computes the similarity between perturbed val-
ues of the same standard value as before, but sets it to O between
perturbations of different standard values (as we can have up to
13 standard values for each attribute, two neighbor values can be

Aviolations (similar forA — N), whenpy_, 4 increasesto 1
and# As/N-violator is 2, we still obtain a F-measure of above

.6 in matching and in clustering. WhehaAs/N-violator is in-
creased to 10, the F-measure of clustering is above .8 and that
of matching is around .6. Note that inaccurate clustering of
A-values is mainly because of incorrectly clustering different
A-values of the same entity; also note that the drop in match-
ing performance is mainly because some perturbed values of
an N-violator are not merged with the standard value, so not
matched with the multipled-values and cause a big penalty
on recall. Finally, although a lowesSame can lead to a
lower F-measure, the difference is very small.

Because we first considéf-nodes and therd-nodes in clus-
tering, we obtained better results with — N violations
than with V' — A violations; but if we change the order, the
pattern of the results also switch.

very close). We applied Ed. (12) for multi-value penalty and set D.3 Summary
We summarize observations from experiments as follows.

p(S) = .9 for each source (using .75 obtained similar results).

D.2.2 Results

Figure[12 shows the performance ofAvcH when we varied
different parameters. We have the following observations.

e To a certain extent, MrcH handles soft constraints quite
well. For N — A violations (similar forA — N violations),
the F-measures of both matching and clustering are above .8
whenpy_ 4 is up to .5 and# As/N-violator is 2, and above
.7whenps_.n is .25 and# As/N-violator is up to 5.

e MATCH is fairly tolerant to the number of violations and the
number of values each violator is associated with. For

1.

N

w

)]

Our techniques significantly improve over traditional tech-
nigues on a variety of data sets and are less sensitive on the
variety of representations and erroneous values.

. Applying multi-value penalty is critical, and appearance-similarity

based association update further improves our algorithm.

. The accuracy of our techniques increases with the number of

uniqueness attributes.

. Our algorithm handles soft constrains well and is fairly stable.
. Our algorithm scales well.



	Introduction
	Problem Definition
	Problem definition
	K-partite graph encoding

	Clustering w.r.t. Hard Constraints
	Objective function
	Similarity distance
	Association distance
	Augmentations

	Hill-climbing algorithm

	Matching w.r.t. Soft Constraints
	Soft constraints and objective function
	Two-phase greedy algorithm

	Experimental Results
	Experiment settings
	Results

	Related Work
	Conclusions
	References
	Augmentations for clustering
	Algorithm details
	Extensions
	Experiments on Synthetic Data
	Clustering w.r.t. hard constraints
	Data generation
	Results

	Considering soft constraints
	Data generation
	Results

	Summary


