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ABSTRACT
We are often thrilled by the abundance of information surround-
ing us and wish to integrate data from as many sources as possible.
However, understanding, analyzing, and using these data are often
hard. Too much data can introduce a huge integration cost, such
as expenses for purchasing data and resources for integration and
cleaning. Furthermore, including low-quality data can even dete-
riorate the quality of integration results instead of bringing the de-
sired quality gain. Thus, “the more the better” does not always hold
for data integration and often “less is more”.

In this paper, we study how to select a subset of sources be-
fore integration such that we can balance the quality of integrated
data and integration cost. Inspired by the Marginalism principle
in economic theory, we wish to integrate a new source only if its
marginal gain, often a function of improved integration quality, is
higher than the marginal cost, associated with data-purchase ex-
pense and integration resources. As a first step towards this goal,
we focus on data fusion tasks, where the goal is to resolve con-
flicts from different sources. We propose a randomized solution for
selecting sources for fusion and show empirically its effectiveness
and scalability on both real-world data and synthetic data.

1. INTRODUCTION

1.1 Motivation
The Information Era has witnessed not only a huge volume of

data, but also a huge number of sources or data feeds from web-
sites, Twitter, blogs, online social networks, collaborative annota-
tions, social bookmarking, data markets, and so on. The abundance
of useful information surrounding us and the advantage of easy data
sharing have made it possible for data warehousing and integration
systems to improve the quality of the integrated data. For exam-
ple, with more sources, we can increase the coverage of the inte-
grated data; in the presence of inconsistency, we can improve cor-
rectness of the integrated data by leveraging the collective wisdom.
Such quality improvement allows for more advanced data analysis
and can bring a big gain. However, we also need to bear in mind
that data collection and integration come with a cost. First, many

data sources, such as GeoLytics for demographic data1, WDT for
weather data2, GeoEye for satellite imagery3, American Business
Database for business listings4, charge for their data. Second, even
for sources that are free, integration requires spending resources
on mapping heterogeneous data items, resolving conflicts, cleaning
the data, and so on. Such costs can also be huge. Actually, the
cost of integrating some sources may not be worthwhile if the gain
is limited, especially in the presence of redundant data and low-
quality data. We next use a real-world example to illustrate this.

EXAMPLE 1.1. We consider a data set obtained from an online
bookstore aggregator, AbeBooks.com5. We wish to collect data on
CS books. There are 894 bookstores (each corresponding to a data
provider), together providing 1265 CS books. They identify a book
by its ISBN and provide the same attributes. We focus on coverage
(i.e., the number of provided books) and define it as the gain.

We processed the sources in decreasing order of their coverage
(note that this may not be the best ordering if we consider in addi-
tion overlaps between the sources) and reported the total number of
retrieved books after probing each new source. Fig.1 plots for the
first 100 sources. We observe that the largest source already pro-
vides 1096 books (86%), and the largest two sources together pro-
vide 1213 books (96%). We obtained information for 1250 books,
1260 books and all 1265 books after integrating data from 10, 35
and 537 sources respectively. In other words, after integrating the
first 537 sources, the rest of the sources do not bring any new gain.

Now assume we quantify the cost of integrating each source as
1. Then, integrating the 11th to 537th sources has an extra cost of
537−10 = 527 but an additional gain of only 1265−1250 = 15.
Thus, if we are willing to tolerate a slightly lower coverage, it is
even not worthwhile to integrate all of the first 537 sources. 2

This example shows that integrating new sources may bring some
gain, but with a higher extra cost. Even worse, some low-quality
sources may even hurt the quality of the integrated data and bring
a negative gain, as we illustrate next.

EXAMPLE 1.2. Continue with the same data set. We observed
that different sources can provide quite different titles and author
lists for the included books. Take author lists as an example. Even
after we normalized the author lists to a standard format and ig-
nored middle names, each book has 1 to 23 different provided au-
thor lists and the number is 4 on average. Mistakes include miss-
ing authors, additional authors, mis-ordering of the authors, mis-
spelling, incomplete names, etc. For evaluation purpose, we man-
1http://www.geolytics.com/.
2http://www.wdtinc.com/.
3http://www.geoeye.com/.
4http://www.customlists.net/databases/american.
5We thank authors of [21] for providing us the data.



1000 

1050 

1100 

1150 

1200 

1250 

1300 

0 25 50 75 100 

#(
R

et
u

rn
e

d
 b

o
o

ks
) 

#Sources 

Coverage of Results  
as We Add Sources 

Figure 1: Coverage of results.
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Figure 2: Returned correct results.
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Figure 3: Different integration models.

ually checked the book title page for 100 randomly selected books
to obtain the correct author lists as the gold standard.

Ideally, we would like to find the correct author list from con-
flicting values. We did this in two ways. First, VOTE applies the
voting strategy and chooses the author list provided by the largest
number of sources. Second, ACCU considers in addition the accu-
racy of the sources: it takes the accuracy of each source as input
(computed by the percentage of correctly provided values for the
books inside the gold standard), assigns a higher vote to a source
with a higher accuracy, and chooses the author list with the highest
sum of the votes (details in Section 3).

We considered the sources in decreasing order of their accu-
racy (this is just for illustration purpose and we discuss ordering of
sources in Section 1.3). Fig.2 plots the gain, defined as the number
of correctly returned author lists for these 100 books, as we added
each new source. We observed that we obtained all 100 books after
processing 548 sources (see the line for #(Returned books)). The
number of correct author lists increased at the beginning for both
methods; then, VOTE hits the highest number, 93, after integrating
583 sources, and ACCU hits the highest number after integrating
579 sources; after that the numbers decreased for both methods
and dropped to 78 and 80 respectively for VOTE and ACCU. In
other words, integrating the 584th to 894th sources has a negative
gain for VOTE and similar for ACCU. 2

This example shows that for data, “the more the better” does not
necessarily hold and sometimes “less is more”. As the research
community for data integration has been focusing on improving
various integration techniques, which is important without a doubt,
we argue that it is also worthwhile to ask the question whether inte-
grating all available data is the best thing to do. Indeed, Fig.2 shows
that although in general the more advanced method, ACCU, is bet-
ter than the naive method, VOTE, the result of ACCU on all sources
is not as good as that of VOTE on the first 583 sources. This ques-
tion is especially relevant in the big data environment: not only do
we have larger volume of data, but also we have larger number of
sources and more heterogeneity, so we wish to spend the comput-
ing resources in a wise way. This paper studies how we can select
sources wisely before real integration or aggregation such that we
can balance the gain and the cost. Source selection can be important
in many scenarios, ranging from Web data providers that aggregate
data from multiple sources, to enterprises that purchase data from
third parties, and to individual information users who shop for data
from data markets [1].

1.2 Source selection by Marginalism
Source selection in the planning phase falls in the category of re-

source optimization. There are two standard ways to formalize the
problem: finding the subset of sources that maximizes the result
quality under a given budget, or finding the subset that minimizes
the cost while satisfying a minimal requirement of quality. How-
ever, neither of them may be ideal in our context, as shown next.

EXAMPLE 1.3. Consider ACCU in Fig.2. Assume only for sim-
plicity that the applied order is the best for exploring the sources.
Suppose the budget allows integrating at most 300 sources; then
we may select all of the first 300 sources and obtain 17 correct
author lists. However, if we select only the first 200 sources, we
can cut the cost by 1/3, while obtaining only 3 fewer correct au-
thor lists (17.6% fewer); arguably, the latter selection is better. On
the other hand, suppose we require at least 65 correct author lists;
then we may select the first 520 sources, obtaining 65 correct lists.
However, if we instead select 526 sources, we introduce 1% more
cost but can obtain 81 correct lists (improving by 25%); arguably,
spending the few extra resources is worthwhile. 2

We propose a solution inspired by the Marginalism principle in
economic theory [11]. Assuming we can measure gain and cost us-
ing the same unit (many enterprises do predict revenue and expense
from integration in dollars according to some business models), we
wish to stop selecting a new source when the marginal gain is less
than the marginal cost. Here, the marginal gain is the difference
between the gain after and before integrating the new source and
similar for marginal cost. In our example, if the gain of finding one
correct author list is 1 while the cost of integrating one source is .1,
the 548th source is such one marginal point.

1.3 Challenges for data integration
Source selection falls outside the scope of traditional integration

tasks, such as mapping schemas, linking records that refer to the
same real-world entity, and resolving conflicts. On the one hand, it
is a prelude for data integration. On the other hand, how we select
the sources would be closely related to the integration techniques
we apply. Applying the Marginalism principle to source selection
for data integration faces many challenges.

First, in economic theory the Law of Diminishing Returns [11]
(i.e., keeping adding resources will gradually yield lower per-unit
returns) often holds and so we can keep adding resources until the
marginal cost exceeds the marginal gain for the next unit of re-
source. However, the Law of Diminishing Returns does not nec-
essarily hold in data integration, so there can be multiple marginal
points. In our example (Fig.2), after we integrate 71 sources by
ACCU, the gain curve flattens out and the marginal gain is much
less than the marginal cost; however, starting from the 381st source,
there is a sharp growth for the gain. Indeed, there are four marginal
points on the curve: the 35th, 71st, 489th, and 548th sources (marked
by vertical lines in Fig.2). We thus need to find all marginal points
before we stop investigation.

Second, the data sources are different, providing data with dif-
ferent coverage and quality, so integrating the sources in different
orders can lead to different quality curves (so gain curves). Each
curve has its own marginal points, so we need to be able to compare
all marginal points in some way and choose one as the best.



Third, applying Marginalism requires estimation of integration
cost and gain. The gain is often associated with quality of the in-
tegrated data and so can be hard to estimate, as we do not know
integration quality before we purchase data and apply real inte-
gration. There can be multiple quality measures (e.g., coverage,
accuracy, freshness, consistency, redundancy) and they can be af-
fected by many aspects of integration, including the specific models
applied for schema mapping, entity resolution, and conflict resolu-
tion, heterogeneity between the sources, and certainly also quality
of the sources. We need a way to estimate integration quality, ei-
ther by sampling, or by applying analysis on profiles of the sources.
However, estimation on sampled data would require coordination
between the sources, such as sampling on the same instances.

1.4 Our contributions in the fusion context
As a first step towards source selection, this paper focuses on the

data fusion aspect; that is, resolving conflicts from different sources
for offline data integration, as we illustrated in Ex.1.2. In particular,
we make the following contributions.

First, we formalize several optimization goals for source selec-
tion, including the one that follows the Marginalism principle. Since
each marginal point intuitively implies a locally maximum profit
(i.e., difference between gain and cost), we set the goal as to select
a subset of sources that brings the highest profit. Since accuracy is
the main measure for fusion quality, we define the gain as a func-
tion of fusion accuracy (Section 2).

Second, we identify several properties that can affect source se-
lection, where the most important is monotonicity–adding a source
should never decrease fusion accuracy. We revisit various fusion
models [4], showing that none is monotonic, and propose a new
model that satisfies monotonicity (Section 3).

Third, we show that for most fusion models, we are able to esti-
mate resulting accuracy based purely on the accuracy of the input
sources. We propose efficient estimation algorithms (Section 4).

Fourth, we show that in the context of data fusion source selec-
tion can be very tricky and a greedy algorithm can generate an ar-
bitrarily bad solution. We show NP-completeness of the problems
and propose a heuristic randomized approach that can efficiently
approximate the optimal selection (Section 5). For our example in
Section 1.2, our algorithm decided in a few minutes that the best so-
lution is to select 26 sources that are estimated to output 97 correct
author lists in the gold standard, so the profit is 97− .1∗26 = 94.4,
higher than the highest profit from marginal points for the particular
order in Fig.2 (87− 548 ∗ .1 = 32.2)

Finally, we conduct experiments showing that 1) when the cost is
zero, we are able to find the best subset of sources that maximizes
the accuracy of fusion; 2) otherwise, we can efficiently find nearly
the best set of sources for fusion (Section 7).

Our results apply when data inconsistency is the major issue,
such as for AbeBooks data; in presence of schema and instance
heterogeneity, we can also apply our methods by considering mis-
takes in schema mapping or entity resolution as wrongly provided
data. In general, there are a lot of open problems, such as consider-
ing quality measures other than accuracy, resolving heterogeneity
at the schema level and the instance level, and applying the tech-
niques in various environments for warehousing and data integra-
tion. We describe one particular extension regarding coverage of
the results in Section 6, and discuss the many open directions and
lay out a research agenda in Section 9.

2. PROBLEM DEFINITION
This section first formally defines the source-selection problem

and then instantiates it for the data fusion task.

2.1 Source selection
We consider integration from a set of data sources S. We assume

the data integration systems have provided functions that measure
the cost and gain of integration. The cost is related to the expense
of purchasing data from a particular source, the resources required
for integration, cleaning, manual checking, etc., or any other fore-
seeable expense for data integration. The gain is typically decided
by the quality of the integration results such as the coverage or the
accuracy of the integrated data. Many enterprises apply business
models to predict cost and gain in monetary units (e.g., US Dollars)
respectively as the expense of integration and the revenue from in-
tegrated data with a certain quality; for example, one may estimate
that obtaining data of 50% coverage can bring a gain (revenue) of
$1M while obtaining data of 90% coverage attract more users and
bring a gain of $100M . The cost and gain can be different when we
apply different integration models; we thus denote by CF (S̄) and
GF (S̄) the cost and gain of integrating sources in S̄ ⊆ S by model
F respectively. Here, F can be one or a set of integration models
including schema-mapping models, entity-resolution models, data-
fusion models, and so on. We assume that the cost is monotonic;
that is, if S̄ ⊂ S̄′, CF (S̄) ≤ CF (S̄′) for any F ; however, as we
have shown in our motivating example, the gain is not necessarily
monotonic as the resulting quality may not increase monotonically.

Ideally, we wish to maximize the gain while minimizing the cost;
however, achieving both goals at the same time is typically impos-
sible. A traditional approach is to set a constraint on one goal while
optimizing the other. Accordingly, we can define the following two
constrained optimization problems.

DEFINITION 2.1. Let S be a set of sources, F be an integration
model, and τc be a budget on cost.

• The MAXGLIMITC problem finds a subset S̄ ⊆ S that max-
imizes GF (S̄) under constraint CF (S̄) ≤ τc.
• The MINCLIMITG problem finds a subset S̄ ⊆ S that mini-

mizes CF (S̄) under constraint GF (S̄) ≥ τg . 2

As our analysis in Ex.1.3 shows, neither of these two constrained
optimization goals is ideal. Inspired by the Marginalism principle,
we wish to stop integrating a new source when the marginal gain is
less than the marginal cost; accordingly, we look for a set of sources
whose profit (i.e., gain−cost) is the largest, assuming the same unit
is used for cost and gain. If investing infinitely is unrealistic, we
can also apply a budget constraint, but unlike in MAXGLIMITC,
the budget constraint is not required for balancing gain and cost.
We thus define another source-selection goal as follows.

DEFINITION 2.2 (PROBLEM MARGINALISM). Let S be a set
of sources, F be an integration model, and τc be a budget on cost.
The MARGINALISM problem finds a subset S̄ ⊆ S that maximizes
GF (S̄)− CF (S̄) under constraint CF (S̄) ≤ τc. 2

EXAMPLE 2.3. Consider a set S of 15 sources, among which
one, denoted by S0, has a high quality and the others have the same
lower quality. Consider two integration models F1 and F2, under
which each source has a unit cost. Fig.3 shows the gain of applying
each model first on S0 and then in addition on other sources.

If we set τc = 15, MAXGLIMITC would select all sources on
both models, with profit 99.98 − 15 = 84.98. If we set τg = 90,
MINCLIMITG would select S0 on both models, with profit 90−1 =
89. Instead, MARGINALISM selects S0 and 4 other sources on
model F1 and obtains a profit of 98.5 − 5 = 93.5; it selects S0

and 3 others on model F2 and obtains a profit of 97.8− 4 = 93.8.
Obviously, MARGINALISM can obtain higher profit than the other
two approaches. 2



Solving any of these problems requires efficiently estimating the
cost and gain. For cost, we assume that CF (S̄) =

P
S∈S̄ C(S)

for any F ; it is monotonic and typically holds in practice. The gain
depends on the quality measure. In this paper we instantiate it as a
function of the accuracy in data fusion, which we review next.

2.2 Data fusion and accuracy estimation
Data fusion: We consider a set of data items D, each of which
describes a particular aspect of a real-world entity in a domain, such
as the name of a book or a director of a movie. A data item can be
considered as an attribute of a record, or a cell in a relational table.
We assume that each item is associated with a single true value that
reflects the real world. Also, we consider a set of data sources S̄,
each providing data for a subset of items in D. We consider only
“good” sources, which are more likely to provide a true value than
a particular false value. We assume we have mapped schemas and
linked records for the same real-world entity by applying existing
techniques. However, different sources may still provide different
values for the same data item. Data fusion aims at resolving such
conflicts and finding the true value for each data item.

There are many fusion models. A basic one, called VOTE, takes
the value provided by the largest number of sources. Advanced
methods consider source trustworthiness and give higher weights
to votes from more trustworthy ones [3, 8, 15, 16, 21, 22, 23]. In
this paper we focus on fusion methods that select a single true value
for each provided data item. We denote a particular fusion method
by F and its result on a set of sources S̄ by F (S̄) 6.

We measure fusion accuracy by the percentage of correctly re-
turned values over all returned values and denote it by A(F (S̄)).
An important property that can affect source selection is mono-
tonicity, requiring that adding a source at least will not deteriorate
the quality of the fusion result. We formally define it next.

DEFINITION 2.4 (MONOTONICITY). A fusion modelF is mono-
tonic if for any S̄ ⊂ S̄′ ⊆ S, we have A(F (S̄)) ≤ A(F (S̄′)). 2

EXAMPLE 2.5. Consider data items stating gender of people.
Consider three independent sources S1, S2, S3 with accuracy .9,
.6, and .6, respectively. Obviously, when we integrate only S1, the
accuracy of the result is that of S1’s accuracy, .9.

Now consider applying VOTE on all of the three sources to de-
cide the gender of each person. We obtain the correct gender in two
cases: 1) all sources provide the correct gender (the probability is
.9∗.6∗.6 = .324); 2) two of the sources provide the correct gender
(the probability is .9 ∗ .6 ∗ .4 + .9 ∗ .4 ∗ .6 + .1 ∗ .6 ∗ .6 = .468).
Thus, the accuracy of the result is .324 + .468 = .792 < .9, lower
than that of integrating only S1. So VOTE is not monotonic. 2

Gain function: We define the gain of integrating S̄ based on the
accuracy of fusing sources in S̄; in the rest of the paper we abuse
notation and denote by G(A) the gain of obtaining fusion accuracy
A, and by G(A(F (S̄))) the gain of fusing S̄ by model F . We
require the gain to be monotonic with respect to fusion accuracy;
that is, if A < A′, G(A) ≤ G(A′). Note however that if we apply
a fusion model that is not monotonic, the gain does not increase
monotonically as we add more sources; both Ex.1.2 and Ex.2.5 are
examples of reducing gain. When C(S) = 0 for each S ∈ S, the
MARGINALISM problem reduces to finding the set of sources that
maximizes fusion accuracy, which is interesting in its own right.
Accuracy estimation: According to the gain function, source se-
lection requires estimating fusion accuracy without knowing (all)
6It is easy to prove that VOTE and most advanced fusion models are order
independent; that is, the fusion result is independent of the order in which
we consider the sources.

real data. In fact, we can estimate it purely from source accu-
racy and the distribution of false values (we explain in Section 4
the information we need for the distribution); both of them can be
sampled on a small subset of data according to manually decided
gold standard. The advantage of such estimation over measuring
fusion accuracy directly on sampled data is that the latter would re-
quire much more co-ordination between sources in sampling, as we
stated in Section 1.3. We formally define the problem as follows.

DEFINITION 2.6 (ACCURACY ESTIMATION). Let S̄ be a set
of sources, A(S) denote the accuracy of S ∈ S̄, pop be the distri-
bution of false values, and F be a fusion model. Accuracy estima-
tion estimates the accuracy of F (S̄), denoted by Â(F (S̄)). 2

This paper assumes independence of sources and that the data
items are not distinguishable in terms of error rate and false-value
distribution. We begin with considering only full-coverage sources
(Section 3-5) and then extend our work by considering coverage of
the sources (Section 6). Experimental results show effectiveness of
our techniques in general even when the assumptions do not hold
(Section 7), and we leave a more extensive study in the presence of
source dependency for future work.

3. PROPERTIES OF FUSION MODELS
This section starts with reviewing the models presented in recent

work, showing that none of them is monotonic in general. We then
propose a model that considers both the accuracy of the sources and
the distribution of the provided values, and show that it is mono-
tonic for independent sources.

3.1 Existing fusion models
VOTE chooses among conflicting values the one that is provided

by the most sources. As shown in Ex.2.5, it is not monotonic.

THEOREM 3.1. VOTE is not monotonic. 2

VOTE is not monotonic because it can be biased by values pro-
vided by less accurate sources. Recent work [3, 8, 15, 16, 21, 22]
considered source accuracy in fusion. We next review the model
presented in [3], named ACCU; other works follow the same spirit
and have similar properties.

ACCU applies Bayesian analysis. If we denote the value pro-
vided by S on data item D by ΨD(S) and the vector of values
from S̄ by ΨD(S̄), ACCU computes Pr(v true|ΨD(S̄)) for each
value in the domain and chooses the one with the highest probabil-
ity as true. According to the Bayes rule, it only needs to compare
the inverse probability Pr(ΨD(S̄)|v true) for each provided value.

ACCU assumes that (1) there are n false values for a data item in
its domain and (2) these false values are equally likely to be pro-
vided by a source. Now consider the probability that source S pro-
vides ΨD(S) on D. If ΨD(S) is the correct value, the probability
is A(S); otherwise, the probability becomes 1−A(S)

n
. If we denote

by S̄(v) the providers of v, under the independence assumption,

Pr(ΨD(S̄)|v true) = ΠS∈S̄(v)A(S) ·ΠS∈S̄\S̄(v)

1−A(S)

n
(1)

= ΠS∈S̄(v)

nA(S)

1−A(S)
·ΠS∈S̄

1−A(S)

n
. (2)

In this equation, ΠS∈S̄
1−A(S)

n
is the same for all values. Thus,

we compute the accuracy score of S as α(S) = ln nA(S)
1−A(S)

and
compare the confidence of each value, computed by

C(v) =
X

S∈S̄(v)

α(S). (3)



ACCU improves over VOTE in that it gives a less accurate source
a lower vote count. However, its monotonicity is tied to the two
assumptions it makes (all proofs are given in [5]).

THEOREM 3.2. ACCU is monotonic if and only if there are n
uniformly-distributed false values. 2

3.2 Considering value distribution in fusion
With the assumption that false values are uniformly distributed,

ACCU computes a low probability for providing a particular false
value and so can make mistakes in presence of very popular false
values. We now describe POPACCU, a refinement of the ACCU
model, with the following two desired features: 1) POPACCU does
not assume any a-priori knowledge of the number and distribution
of false values; 2) we can prove that POPACCU is monotonic.

The key idea of POPACCU is to compute the distribution of false
values on a data item D from the observed data. Note however,
this is hard when we do not know which value is the correct value;
we thus compute the popularity of a value with respect to each
other value being true. We denote by Pop(v|vt) the popularity of v
among all false values conditioned on vt being true. Then, the prob-
ability that source S provides the correct value (i.e., ΨD(S) = vt)
remains A(S), but the probability that S provides a particular in-
correct value becomes (1−A(S))Pop(ΨD(S)|vt). Thus, we have

Pr(ΨD(S̄)|v true)

= ΠS∈S̄(v)A(S)ΠS∈S̄\S̄(v)(1−A(S))Pop(ΨD(S)|v) (4)

= ΠS∈S̄(v)

A(S)

1−A(S)
ΠS∈S̄(1−A(S))ΠS∈S̄\S̄(v)Pop(ΨD(S)|v).(5)

Here, ΠS∈S̄(1 − A(S)) is independent of v. We next simplify
the computation of ΠS∈S̄\S̄(v)Pop(ΨD(S)|v).

ΠS∈S̄\S̄(v)Pop(ΨD(S)|v) = Πv0 6=v(
|S̄(v0)|
|S̄| − |S̄(v)|

)|S̄(v0)|

=
Πv0 |S̄(v0)||S̄(v0)|

|S̄(v)||S̄(v)|
·

1

(|S̄| − |S̄(v)|)(|S̄|−|S̄(v)|)
. (6)

Since Πv0 |S̄(v0)||S̄(v0)| is independent of v, we compute the pop-
ularity score of a given value v as

ρ(v) = |S̄(v)| ln |S̄(v)|+ (|S̄| − |S̄(v)|) ln (|S̄| − |S̄(v)|). (7)

We compute the accuracy score of source S asα∗(S) = ln A(S)
1−A(S)

and the confidence of v as C∗(v) =
P
S∈S̄(v) α

∗(S) − ρ(v). We
again choose the value with the maximum confidence. Note that a
value provided by low-accuracy sources can have much lower con-
fidence in POPACCU than in ACCU. We next show several proper-
ties of POPACCU.

PROPOSITION 3.3. When there are n false values that are uni-
formly distributed, ACCU and POPACCU output the same value. 2

THEOREM 3.4. The POPACCU model is monotonic.

PROOF. Let vt be the true value and v1, . . . , vl be false values.
Consider the ratio Rj = Pr(ΨD(S̄)|vt true)

Pr(ΨD(S̄)|vj true)
for each j ∈ [1, l]. We

next prove that Rj always increases for each j when we add a new
source S. Source S has probability A(S) to provide the correct
value, and probability (1−A(S)) ·Pop(vj |vt) to provide the false
value vj . According to Eq.(4), the new ratio is

R′j = Rj ·
A(S)A(S)

A(S)(1−A(S))Pop(vj |vt) ((1−A(S))Pop(vt|vj))A(S)

·
Πli=1 ((1−A(S))Pop(vi|vt))(1−A(S))Pop(vi|vt)

Πi 6=j,i∈[1,l] ((1−A(S))Pop(vi|vj))(1−A(S))Pop(vi|vt)

= Rj ·
X1X2

X3
;

X1 = (
A(S)

1−A(S)
)A(S)−(1−A(S))Pop(vj |vt);

X2 = (]− ]vj)1−(1−A(S))Pop(vj |vt)(]vj)
(1−A(S))Pop(vj |vt);

X3 = (]− ]vt)1−A(S)(]vt)
A(S).

Here, ] denotes the number of occurrences of all values, and ]vj
denotes the number of occurrences of vj , j ∈ [0, l], for D.

We can prove that X3 obtains the maximum value when ]vt
]

=

A(S); the maximum value is ] · (1 − A(S))1−A(S) · A(S)A(S).
Similarly, X2 obtains the minimum value when ]vt

]
= A(S) and

further when vj = ]
2

; the minimum value is ]
2

. Finally, X1X2
X3

≥
1

2(1−A(S))
1−(1−A(S))P op(vj |vt)·A(S)

(1−A(S))P op(vj |vt)
obtains the min-

imum value when A(S) = (1 − A(S))Pop(vj |vt) and the min-
imum value is 1. Because A(S) > (1 − A(S))Pop(vj |vt) for
“good” sources, R′j > Rj .

EXAMPLE 3.5. Consider the following distribution of false val-
ues for each data item: the i-th most popular false value has pop-
ularity (.2)i−1 − (.2)i (so the maximum popularity is .8). Con-
sider three sources: S1 has accuracy .9 and provides value v1,
S2 and S3 have accuracy .6 and both provide value v2. Obvi-
ously, VOTE would output v2. Assuming there are 100 false values,
ACCU computes accuracy scores for the sources as ln 100∗.9

1−.9 =

6.8, ln 100∗.6
1−.6 = 5, 5, respectively; thus, v1 has confidence 6.8 and

v2 has confidence 10, so it selects v2. POPACCU computes source
accuracy scores as ln .9

1−.9 = 2.2, ln .6
1−.6 = .4, .4, respectively;

the popularity scores of both values are 1 ln 1 + 2 ln 2 = 1.4.
Thus, v1 has confidence 2.2 − 1.4 = .8 and v2 has confidence
.8− 1.4 = −.6, so POPACCU selects v1.

Note that according to our knowledge of source accuracy and
distribution of false values, the probability that S1 provides the cor-
rect value while S2 and S3 provide the same false value (so v1 is
true) is .9 ∗ .42 ∗ (.82 + .162 + ...) = .1, and the probability that
S1 provides a false value while S2 and S3 provide the correct one
(so v2 is true) is .1 ∗ .62 = .036 < .1. Therefore, v1 is more likely
to be true and POPACCU makes a wiser decision.

Finally, we randomly generated synthetic data for 20 sources
with accuracy .9, .6, .6, . . . on 10000 data items. We started with
the first source and gradually added the others; for each data set,
we conducted fusion and computed the accuracy of the results (shown
in Fig.4). We observed that (1) the ranking of the result accuracy is
always POPACCU, ACCU and VOTE; and (2) POPACCU is mono-
tonic but ACCU and VOTE are not. 2

4. QUALITY ESTIMATION
A fundamental problem in source selection is gain estimation;

in the fusion context this relies on estimating accuracy of fusion
results. The accuracy of fusion (or a source) can be considered as
the probability of the fusion model choosing (or the source provid-
ing) a correct value; thus, we can apply probability analysis to es-
timate fusion accuracy purely from source accuracy. Specifically,
we can enumerate all possible worlds of the provided values and
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Figure 6: Gain/cost plots for Ex.5.1.

sum up the probabilities of those where the model outputs the true
value. Source accuracy and false-value distribution will be required
to compute the probability of each possible world. Formally, we
denote by W(S̄) the set of possible worlds for values provided by
S̄ on a data item and estimate the fusion accuracy of model F by

Â(F (S)) =
X

W∈W(S̄)

Pr(W |F outputs the true value in W ). (8)

Estimating fusion accuracy is hard because the accuracy improve-
ment from an additional source depends not only on the accuracy
of the fusion results over previous sources, but also on the accuracy
of each individual source, illustrated next.

EXAMPLE 4.1. Suppose S̄1 contains one source with accuracy
.9, S̄2 contains 41 sources with accuracy .6, and S̄0 contains 5
sources with accuracy .6. Assume there is a single false value.
Fusing S̄1 and fusing S̄2 by POPACCU reach the same accuracy
.9; however, adding S̄0 to S̄2 increases the accuracy to .915, while
adding it to S̄1 does not increase the accuracy at all since even the
total vote counts of S̄0 is much lower than that of S̄1. 2

The hardness of accuracy estimation remains an open problem
even for VOTE, whereas we can prove #P-hardness7 for a sim-
ilar estimation problem (see [5]). We next describe a dynamic-
programming algorithm that approximates fusion accuracy in PTIME
for VOTE and in pseudo-PTIME for other models. Our approxima-
tion relies only on source accuracy and the popularity of the most
popular false value.

4.1 Accuracy estimation for VOTE

Consider a set of m sources S̄ = {S1, . . . , Sm} that provide
data item D. Suppose vt is the correct value for D. VOTE outputs
the true value when vt is provided more often than any specific
false value8; thus, what really matters in accuracy estimation is the
difference between vote counts for vt and for each other value.

In case the most popular false value, denoted by v1, has much
higher popularity than any other false value, the chance that v1 is
provided less often than another false value is small unless v1 is
not provided at all. On the other hand, the likelihood that v1 is
not provided but another false value is provided more than once is
very small too. Thus, we focus on the difference between the vote
counts of vt and v1, denoted by d, and consider three cases: (1) no
false value is provided; (2) some false value but not v1 is provided;
and (3) v1 is provided. According to our analysis, VOTE outputs vt
in case (1), and also outputs vt with a high likelihood in case (2)
when vt is provided more than once, and in case (3) when d > 0.

We define Pr1(k, d) as the probability that values provided by
S1, . . . , Sk, k ∈ [1,m], fall in case (1) with difference d (simi-
lar for Pr2(k, d) and Pr3(k, d)). Initially, Pr1(0, 0) = 1 and
7#P-hardness is a complexity class for hard counting problems, believed
not solvable in polynomial time unless P = NP .
8We can easily extend our model for handling ties.
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Figure 7: Transformation between cases in accuracy estima-
tion for VOTE. Each rectangle represents the three cases for a
particular set of sources and a particular d.

all other probabilities are 0. There are three possibilities for the
value from Sk: if Sk provides vt, the difference d increases by 1;
if Sk provides v1, d decreases by 1; otherwise, d stays the same.
The transformation between different cases is shown in Fig.7. For
example, if the first k − 1 sources fall in case (2) with difference
d+ 1 and Sk provides v1, it transforms to case (3) with difference
d. Let p be the popularity of v1 (i.e., p = Pop(v1|vt)); we can then
compute the probability of each transformation and accordingly the
probability of each case.

Pr1(k, d) = A(Sk)Pr1(k − 1, d− 1); (9)
Pr2(k, d) = A(Sk)Pr2(k − 1, d− 1)

+(1− p)(1−A(Sk))(Pr1(k − 1, d) + Pr2(k − 1, d)); (10)
Pr3(k, d) = A(Sk)Pr3(k − 1, d− 1)

+(1− p)(1−A(Sk))Pr3(k − 1, d)

+p(1−A(Sk))

3X
i=1

Pri(k − 1, d+ 1); (11)

Â(Vote(S̄)) =
mX
d=1

(Pr1(m, d) + Pr3(m, d)) +
mX
d=2

Pr2(m, d).(12)

We can estimate the accuracy of VOTE according to Eq.(9-12).
The resulting algorithm (details in [5]) has a low cost, but the ap-
proximation bound can be loose in the extreme case when the false
values are uniformly distributed and each source has only a slightly
higher probability to provide the true value than any particular false
value (i.e., A(S) = p+ε

p+1
, where ε is an arbitrarily small number).

THEOREM 4.2. We can estimate the accuracy for VOTE in time
O(|S̄|2). Let Â be the precisely estimated accuracy and Â0 be the
estimated accuracy by dynamic programming. Then, 0 ≤ Â0 −
Â ≤ 1−p

1+p
. 2

Empirically the difference between the estimated accuracy and
the true one is typically small, as we show in the next example.

EXAMPLE 4.3. Consider three sources where A(S1) = .9,
A(S2) = A(S3) = .6. Assume p = .5. Table 1 shows computa-
tion for Pr1,2,3 in accuracy estimation. Take Pr3(3, 1) (the cell of
column S3 and row d = 1) as an example. It has contributions
from Pr3(2, 0) when S3 provides vt (with probability .6), from



Table 1: Results of 〈Pr1, P r2, P r3〉 in Ex.4.3. The probabilities
for the cases where vt is the output are in italic font.
d S1 S2 S3

-3 < 0, 0, .002 >
-2 < 0, 0, .01 > < 0, 0, .006 >
-1 < 0, 0, .05 > < 0, 0, .02 > < 0, 0, .054 >
0 < 1, 0, 0 > < 0, .05, 0 > < 0, .01, .21 > < 0, .002, .096 >
1 < .9, 0, 0 > < 0, .21, 0 > < 0, .048, .234>
2 < .54, 0, 0 > < 0,.234, 0 >
3 <.324, 0, 0 >

Pr3(2, 1) when S3 provides a false value other than v1 (with prob-
ability .4(1− .5) = .2), and from Pr1(2, 2), P r2(2, 2), P r3(2, 2)
when S3 provides v1 (with probability .4∗.5 = .2). Thus, Pr3(3, 1) =
.6 ∗ .21 + .2 ∗ 0 + .2 ∗ .54 = .234. The accuracy of the result is
.234 + .234 + .324 = .792.

Assume there are actually 10 false values with probabilities .5, .25,
.125, · · · . The real probability should be .7916. Instead of consid-
ering the 113 = 1331 possible worlds, our algorithm computes
only (3 + 5 + 7)× 3 = 45 probabilities for accuracy estimation.

Fig.5 shows the difference between the estimated accuracy and
the simulated accuracy on 10000 data items, when A(S1) = .9,
A(S2) = A(S3) = · · · = .6 and p varies from .1 to .9. In our sim-
ulation we set the popularity of the i-th false value as (1−p)i−1−
(1 − p)i, i ≥ 1 (so the maximum popularity is p). We observe
that the peak of the difference occurs when we have less than 10
sources. When we have more than 10 sources with reasonably high
accuracy, even when p is small, the difference is very small. 2

4.2 Accuracy estimation in general
Accuracy estimation is more complex for advanced fusion mod-

els, including ACCU and those proposed in [8, 15, 21], because
each source can contribute a different vote. In particular, given a
source Si with accuracy score α(Si), we shall use d ± α(Si) in-
stead of d± 1 in Eq.(9-11). As a consequence, the maximum of d
equals the sum of accuracy scores from all sources; therefore, the
algorithm becomes pseudo-PTIME. POPACCU can be even more
complex because it considers popularity distribution of false val-
ues, so we need to track in addition the number of providers for vt,
v1 (and estimate that for other false values). In [5] we give detailed
algorithms that lead to the following results.

THEOREM 4.4. Let s be the sum of accuracy scores of sources
in S̄. We can estimate the accuracy for ACCU in time O(s|S̄|) and
for POPACCU in time O(s|S̄|3). Let Â be the precisely estimated
accuracy and Â0 be the estimated accuracy by dynamic program-
ming. We have 0 ≤ Â0 − Â ≤ 1−p

1+p
. 2

5. SOURCE SELECTION
The MARGINALISM problem can be very challenging when the

gain is associated with fusion accuracy, illustrated as follows.

EXAMPLE 5.1. Consider 11 sources, where the first one S has
accuracy .8 and cost 10, while the rest of the sources each has
accuracy .7 and cost 1. Consider the gain function where G(A) =
100A when A < .9, G(A) = 150 + 200(A− .9) when .9 ≤ A <
.95, and G(A) = 250 + 500(A − .95) when A ≥ .95. Consider
POPACCU and assume the most popular false value has popularity
.5. Fig.6 plots gain versus cost for two orderings of the sources.

Consider a naive strategy that greedily selects the next source
that leads to the highest profit (gain−cost). According to the Law
of Diminishing Returns, we would stop when the marginal gain
from the next source is less than the marginal cost. However, in

our context the marginal gain does not necessarily decrease mono-
tonically; in Fig.6 for both orderings, the second source has a
lower marginal gain than some later ones (this can be true even
for a continuous gain model, as shown in Fig.4). If we follow
this strategy, in our example we would select only S with profit
80−10 = 70, but selecting all sources would obtain a much higher
profit 270− 20 = 250.

Even if we keep trying till we exhaust all sources and select the
subset with the highest profit, this greedy strategy can still fall short
because the best marginal points for different sequences of sources
can be different, and the one for the greedily generated sequence
may not be optimal globally. In our example, the greedy algorithm
would probe S first as 80 − 10 > 70 − 1; accordingly, the selec-
tion is at best to select all sources. However, excluding S from the
selection would obtain a higher profit 266.5− 10 = 256.5 > 250.
In fact, as we show shortly, this greedy scheme can result in an
arbitrarily bad solution. 2

This section considers two cost models: the constant cost model
assumes that all sources have the same cost and so the overall cost
is decided by the number of sources; the arbitrary cost model as-
sumes that each source has an arbitrary cost and so the overall cost
is the sum of the costs. When the sources are free and we focus
on data-processing time decided mainly by the number of input
sources, we can apply the former; when we need to purchase data
and different sources ask for different prices, we can apply the lat-
ter. Sec.5.1 shows that the various source-selection problems are
in PTIME under the constant cost model but intractable under the
arbitrary cost model. Sec.5.2 describes a randomized algorithm for
the MARGINALISM problem.

5.1 Complexity results
Constant cost model: Assume each source has cost c; thus, the
sources are indistinguishable in terms of cost. Our results are based
on the following lemma.

LEMMA 5.2. Let S be a set of full-coverage sources and S̄0 ⊆
S be the |S̄0| sources with the highest accuracies. Then, for any
subset S̄ ⊆ S with size |S̄0| and any fusion model F among VOTE,
ACCU and POPACCU, Â(F (S̄0)) ≥ Â(F (S̄)). 2

Consider the MARGINALISM problem with a budget τc. We can
select at most M = b τc

c
c sources. We proceed in three steps: 1)

sort the sources in decreasing order of their accuracy; 2) from the
first M sources, iteratively add each source and compute the profit.
and 3) choose the prefix subset (starting from the first source to a
particular source) with the highest profit. We solve the other two
problems in a similar way.

Applying a monotonic fusion model can simplify source selec-
tion. First, MAXGLIMITC can simply choose the first M sources.
Second, in the special case where all sources have cost 0 so es-
sentially the goal is to maximize fusion accuracy, we can simply
choose all sources (recall that we consider only “good” sources).

THEOREM 5.3. Under the constant cost model, the problems
MAXGLIMITC, MINCLIMITG, and MARGINALISM are in PTIME
for the VOTE, ACCU, and POPACCU fusion models if we use a
polynomial-time oracle for fusion-accuracy estimation. 2

Arbitrary cost model: Under the arbitrary cost model, the MAXG-
LIMITC problem is in PTIME if we do not have a budget (i.e., the
budget is higher than the sum of the costs of all sources), but is NP-
complete in general. We have symmetric results for MINCLIMITG.
The NP-hardness of the former can be proved by a reduction from



Algorithm 1: GRASP(S, F, r, k)
Input : S: sources for selection; F : fusion model;

r: number of repetitions; k: finding top-k candidates
Output : S̄opt: selected sources
S̄opt ← ∅; fopt ← 0; // fopt records the highest profit1
foreach i ∈ [1, r] do2

< S̄, g, c >← CONSTRUCTION(S, F, ∅, 0, 0, k);3
< S̄, g, c >← LOCALSEARCH(S, F, S̄, g, c, k);4
if g − c > fopt then5

S̄opt ← S̄; fopt ← g − c;6

return S̄opt;7

the NP-hard 0-1 Knapsack problem and that of the latter can be
proved by a reduction from the NP-hard Partition problem. The
MARGINALISM problem can be reduced from MINCLIMITG, so it
is already NP complete even if τc ≥ C(S).

THEOREM 5.4. Assume arbitrary cost model and access to a
polynomial-time oracle for fusion-accuracy estimation for VOTE,
ACCU and POPACCU.

• The MAXGLIMITC problem is in PTIME when τc ≥ C(S)
and NP-complete in general.
• The MINCLIMITG problem and the MARGINALISM prob-

lem are NP-complete. 2

5.2 Solving MARGINALISM
As illustrated in Example 5.1, a greedy strategy is insufficient

for solving the MARGINALISM problem. Indeed, the next theorem
shows that it can get arbitrarily bad results.

THEOREM 5.5. Let dopt be the optimal profit for a given MARGINAL-
ISM problem and d be that from the set of sources selected greedily
by maximizing the profit in each step. For any θ > 0, there exists
an input set of sources and a gain model such that d

dopt
< θ. 2

We next present an algorithm that applies the Greedy Random-
ized Adaptive Search Procedure (GRASP) meta-heuristic [7] to solve
the MARGINALISM problems; the same idea applies to the other
two problems too. GRASP solves the problems of the greedy ap-
proach in two ways. First, instead of making the greedy decision
every time, in each step it randomly chooses from the top-k can-
didates in terms of resulting profit, and chooses the best selection
from r repetitions. Second, in each repetition, after generating the
initial solution, it performs local search in a hill-climbing fashion.
Both components are critical in avoiding exploring the sources in a
fixed order and so make it possible to reach the optimal selection.

Algorithm 1 shows the framework of the GRASP approach. It
performs r iterations (Ln.2). In each iteration, the construction
phase builds a feasible solution S̄ (Ln.3), and then the local-search
phase investigates the neighborhood of S̄ in a hill-climbing fashion
until reaching the local optimal solution (Ln.4). It then returns the
best solution from all iterations (Ln.5-7).

The construction phase (Algorithm 2) starts with the given subset
of sources (empty initially) and iteratively adds a set of sources in
a greedy randomized fashion. In each iteration (Ln.2-18), Ln.5 first
checks for each remaining source whether beating the current best
solution is possible by reaching the maximum possible gain (i.e.,
G(1)), and skips the source if not. Ln.6 estimates the difference
between the marginal gain and marginal cost of adding the source.
Then, Ln.7-12 maintains the top-k candidates; Ln.13-16 randomly
selects one of them to add next. Finally, Ln.17-19 chooses the pre-
fix subset with the highest profit.

Algorithm 2: CONSTRUCTION(S, F, S̄, g, c, k)
Input : S: sources for selection; F : fusion model;

S̄: already selected sources; g: gain for S̄; c: cost for S̄;
k: finding top-k candidates

Output : < S̄opt, g, c >: the newly selected sources and their gain
and cost

S̄opt ← S̄; fopt ← g − c; // Initialize the best solution as the input1
foreach i ∈ [1, |S| − |S̄|] do2

// Find top-k candidates
BEST ← ∅; F̄ ← ∅; // Store the top-k candidates3
foreach S ∈ S \ S̄ do4

if G(1)− c− C(S) > fopt then5
f ← G(Â(F (S̄ ∪ {S})))− g − C(S);6
k′ ← rank of f in F̄ ;7
if k′ ≤ k then8

BEST ← BEST ∪ {S}; F̄ ← F̄ ∪ {f};9
if |F̄ | > k then10

Remove the smallest value from F̄ ;11
Update BEST accordingly;12

// Randomly select the next source from the top-k candidates
if F̄ = ∅ then13

break;14

Randomly choose f0 from F̄ ;15
Update S̄, g, c accordingly;16
if f0 > fopt then17

fopt ← f0; S̄opt ← S̄;18

return < S̄opt, fopt + C(S̄opt), C(S̄opt) >;19

The local-search phase (Algorithm 3) takes the initial solution
as input and iteratively explores its neighborhood for a better so-
lution. In each iteration (Ln.2-10), it examines each of the already
selected sources S (Ln.4), and compares the current solution with
(1) the solution of removing S (Ln.5-6), and (2) the solution of
replacing S with a subset of the remaining sources, selected by in-
voking CONSTRUCTION (Ln.7). It terminates when examining any
selected source cannot improve the solution (Ln.2, Ln.8-10). Since
the profit cannot grow infinitely, the local search will converge.

Note that when k = 1, all iterations of GRASP will generate
the same result and the algorithm regresses to a hill-climbing algo-
rithm. When k = |S|, the construction phase can generate any
ordering of the sources and a high r leads to an algorithm that
essentially enumerates all possible source orderings. We are not
aware of any approximation guarantee for GRASP in the literature.
Our experiments show that with a continuous gain model, setting
k = 5 and r = 20 can obtain the optimal solution most of the time
for more than 200 sources, but with a non-continuous gain model,
we need to set much higher k and r.

EXAMPLE 5.6. Consider 8 sources: the first, S, has accuracy
.8 and cost 5; and each of the rest has accuracy .7 and cost 1.
Consider POPACCU and gain function G(A) = 100A. Assume
k = 1, so the algorithm regresses to a hill-climbing algorithm.

The construction phase first selects S as its profit is higher than
the others (80 − 5 > 70 − 1). It then selects 5 other sources,
reaching a profit of 96.2 − 10 = 86.2. The local-search phase
examines S and finds that (1) removing S obtains a profit of 93.2−
5 = 88.2; and (2) replacing S with the 2 remaining sources obtains
a profit of 96.2 − 7 = 89.2. Thus, it selects the 7 less accurate
sources. It cannot further improve this solution and terminates. 2

6. EXTENSION FOR PARTIAL COVERAGE



Algorithm 3: LOCALSEARCH(S, F, S̄, g, c, k)
Input : S: sources for selection; F : fusion model;

S̄: already selected sources; g: gain for S̄; c: cost for S̄;
k: finding top-k candidates

Output : < S̄opt, g, c >: the newly selected sources and their gain
and cost

changed← true;1
while changed do2

changed← false;3
foreach S ∈ S̄ do4

S̄0 ← S̄ \ {S}; c0 ← c− C(S);5
g0 ← G(Â(F (S̄0)));// Invoke estimation methods6
< S̄0, g0, c0 >←CONSTRUCTION(S, F, S̄0, g0, c0, k);7
if g0 − c0 > g − c then8

S̄ ← S̄0; g = g0; c = c0;9
changed← true; break;10

return < S̄, g, c >;11

We next extend our results for sources without full coverage. We
define the coverage of source S as the percentage of its provided
data items over D, denoted by V (S). First, considering coverage
would affect accuracy estimation. We need to revise Eq.(9-11) by
considering the possibility that the k-th source does not provide the
data item at all.

Pr1(k, d) = V (Sk)A(Sk)Pr1(k − 1, d− 1); (13)
Pr2(k, d) = V (Sk)A(Sk)Pr2(k − 1, d− 1)

+(1− V (Sk) + V (Sk)(1− p)(1−A(Sk)))

·(Pr1(k − 1, d) + Pr2(k − 1, d)); (14)
Pr3(k, d) = V (Sk)A(Sk)Pr3(k − 1, d− 1)

+(1− V (Sk) + V (Sk)(1− p)(1−A(Sk)))Pr3(k − 1, d)

+V (Sk)p(1−A(Sk))

3X
i=1

Pri(k − 1, d+ 1); (15)

Note that the revised estimation already incorporates coverage of
the results and is essentially the percentage of correctly provided
values over all data items (i.e., the product of coverage and accu-
racy); we call it recall, denoted by R.

Second, the gain model can be revised to a function of recall such
that it takes both coverage and accuracy into account. Lemma 5.2
does not necessarily hold any more so whether the optimization
problems are in PTIME under the constant cost model remains an
open problem. However, the GRASP algorithm still applies and we
report experimental results in Sec.7.

7. EXPERIMENTAL RESULTS
This section reports experimental results showing that (1) our al-

gorithms can select a subset of sources that maximizes fusion qual-
ity; (2) when we consider cost, we are able to efficiently find a
subset of sources that together obtains nearly the highest profit; (3)
POPACCU outperforms the other fusion models and we estimate
fusion quality quite accurately; (4) our algorithms are scalable.

7.1 Experiment setup
Data: We experimented on two data sets. The Book data set con-
tains 894 data sources that were registered at AbeBooks.com and
provided information on computer science books in 2007 (see Ex.1.1-
1.2). In total they provided 24364 listings for 1265 books on ISBN,
name, and authors; each source provides .1% (1 book) to 86%
(1088 books) of the books. By default, we set the coverage and
accuracy of the sources according to a gold standard containing

the author lists from the book cover on 100 randomly selected
books. In quality estimation we set the maximum popularity p as
the largest popularity of false values among all data items.

The Flight data set contains 38 Deep Web sources among top-
200 results by Google for keyword search “flight status”. We col-
lected data on 1200 flights for their flight number and departing air-
port code (serving as identifier), scheduled/actual departure/arrival
time, and departure/arrival gate on 12/8/2011 (see [10] for details of
data collection). In total they provided 27469 records; each source
provides 1.6% to 100% of the flights. We used a gold standard
containing data provided by the airline websites AA, UA, and Con-
tinental on 100 randomly selected flights. We sampled source qual-
ity both for overall data and for each attribute.

Fig.8 shows distribution of recall (coverage∗accuracy) of the sources
in the two data sets. For both data sets we observe a few high-
recall data sources (3 Book sources and 8 Flight sources with a re-
call above .5), some medium-recall sources (11 Book sources and
3 Flight sources with a recall in [.25, .5)), and a large number of
“tail” sources with low recall; however, the “tail” recall is mainly
due to low coverage in Book but due to low accuracy in Flight.
We observed very similar results on these two data sets; [5] also
describes experiments on synthetic data.
Implementation: We implemented three fusion models VOTE,
ACCU, and POPACCU. We handled ties by randomly choosing a
value with highest votes.

We considered three optimization goals: MAXGLIMITC with
τc = G(1)

2
(G(1) corresponds to the maximum gain), MINCLIMITG

with τg = G(.8), and MARGINALISM with τc = ∞. We imple-
mented GRASP for each goal; by default we set r = 20, k = 5.
For MARGINALISM, we in addition implemented the GREEDY al-
gorithm, which essentially invokes CONSTRUCTION with k = 1.

We tried different cost and gain models to study their effect on
source selection. We used three gain models: LINEARGAIN as-
sumes that the gain grows linearly with recall of fusion results,
denoted by R, and sets G(R) = 100R; QUADGAIN assumes
that the gain grows quadratically with recall and sets G(R) =
100R2; STEPGAIN assumes that reaching some “milestone” of re-
call would significantly increase gain and so sets

G(R) =

8>>><>>>:
100R : 0 ≤ R < .8
100 + 100(R− .8) : .8 ≤ R < .9
150 + 100(R− .9) : .9 ≤ R < .95
200 + 100(R− .95) : .95 ≤ R < .97
300 + 100(R− .97) : .97 ≤ R ≤ 1

We assigned the cost of a source in [1, 10] in seven ways (we
observed similar patterns for other ranges):

• CONSTCOST applies C(S) = 1;
• RANDOMCOST assigns a random integer cost in [1, 10];
• LINEARCOVCOST assumes that the cost grows linearly with

the coverage of the source and applies C(S) = 9V (S) + 1,
where V (S) is the coverage of S;
• LINEARACCUCOST assumes the cost grows linearly with

the accuracy of the source and applies C(S) = 9A(S) + 1;
• LINEARQUALCOST assumes the cost grows linearly with

the recall, denoted byR(S) = A(S)V (S), and appliesC(S)
= 9R(S) + 1;
• QUADQUALCOST assumes the cost grows quadratically with

the recall and applies C(S) = 9R(S)2 + 1;
• STEPQUALCOST assumes reaching some “milestone” of re-

call would significantly increase cost and so applies

C(S) =

8><>:
1 + 5R(S) : 0 ≤ R(S) < .5
5 + 5(R(S)− .5) : .5 ≤ R(S) < .7
7 + 5(R(S)− .7) : .7 ≤ R(S) < .8
9 + 5(R(S)− .8) : .8 ≤ R(S) ≤ 1
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Figure 8: Fusion quality for different models.
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Figure 9: Estimation efficiency.
Table 2: Estimated recall vs. real fusion recall averaged on each
data set.

Domain Model Avg real Avg est. Abs diff Rel diff
VOTE .868 .939 .071 8.3%

Book ACCU .908 .971 .064 7.2%
POPACCU .933 .975 .043 4.7%

VOTE .813 .877 .073 8.9%
Flight ACCU .857 .956 .100 11.7%

POPACCU .924 .976 .052 5.7%

We implemented in Java and experimented on a Linux server
with 2.26 GHz Intel Xeon Processor X7560 and 24M Cache.

Measures: For fusion results, we compared the returned results
with the gold standard and reported the recall. For quality esti-
mation, we reported the absolute and relative difference between
the estimated recall and the fusion recall. For source selection we
compared the selected sources by profit.

7.2 Maximizing fusion quality
We first considered maximizing fusion quality; this is equivalent

to solving the MARGINALISM problem with zero-cost sources.
Among the 894 sources in the Book data set, 228 provide books

in the gold standard; among them MARGINALISM selects 165 (72.4%)
for POPACCU. Actually, since POPACCU is monotonic (under the
independence assumption), MARGINALISM selects all “good” sources.
Also, MARGINALISM selects the same sources for VOTE and ACCU.
All 38 sources in the Flight data set provide flights in the gold
standard; among them Marginalism selects 18 sources (47%) for
POPACCU, and 15 sources (39.5%) for VOTE and ACCU.

We ordered the sources such that the selected sources are ordered
before the unselected ones, and the selected (resp. unselected)
sources are in decreasing order of their recall. Fig.8 shows the re-
call by each fusion model as we gradually added the sources in this
order. We made three observations. (1) the recall of POPACCU in-
deed is the highest (.96 for Book and .95 for Flight) on the selected
sources and gradually decreases after fusing unselected sources,
showing effectiveness of the selection. (2) The recall of POPACCU
increases most of the time when processing the selected sources.
Even though the assumptions that the data items are indistinguish-
able and the sources are independent do not hold on either data set,
there are very few decreases for POPACCU at the beginning of the
curve for each domain. (3) On average POPACCU improves over
VOTE by 7.5% and over ACCU by 2.8% on Book, and by 13.7%
and 7.8% respectively on Flight.

Table 2 compares the estimated recall with the real one. The
difference is quite small and is the smallest for POPACCU. Fig.9
shows quality-estimation time on Flight (note that for each sub-
set of sources we estimate quality for each attribute and then take
the weighted average). POPACCU finished in 37 seconds on all
sources, taking considerably longer time (3 orders of magnitude)
than ACCU, which in turn took 1 order of magnitude longer time
than VOTE. Thus, although POPACCU over-performs other models
for fusion, it takes longer time to estimate its quality.

Table 3: Various algorithms for MARGINALISM on the percent-
age of outputting the best selection and average profit differ-
ence from the best selection. Notation (k, r) denotes GRASP
with top-k selections and r iterations.

Gain Cost Msr Greedy (1,1) (5,20) (5,320) (10,320)
Best 100% 100% 100% 100% 100%Random
Diff - - - - -Linear
Best 80% 100% 100% 100% 100%LinearQ
Diff 0.4% - - - -
Best 90% 100% 100% 100% 100%Random
Diff 0.4% - - - -Quad
Best 60% 100% 100% 100% 100%LinearQ
Diff 0.7% - - - -
Best 10% 20% 40% 50% 70%Random
Diff 14.3% 13.8% 3.7% 2.8% 2.3%Step
Best 0 20% 40% 80% 50%LinearQ
Diff 19.7% 17.8% 15.4% 2.9% 1.0%

7.3 Source selection
We next took cost into account for source selection and con-

ducted five experiments.

I. Selection-goal comparison: Fig.10 compares different source-
selection goals when we applied VOTE, LINEARGAIN, and various
cost models on Book data (we observed the same pattern for other
fusion and gain models). First, MARGINALISM has the highest
profit most of the time; on average it beats MAXGLIMITC by 72%
as the latter always incurs a big cost, and beats MINCLIMITG by
15% as the latter always stops with a fairly low gain (depending
on the thresholds). This difference is even more pronounced for
the other gain models. Second, with more expensive sources, we
tend to select fewer sources, so obtain a higher cost and a lower
gain and thus a lower profit. In particular, under cost model CON-
STCOST with C(S) = 1, MARGINALISM selects 7 sources and
obtains an estimated gain of 90.5 (profit 90.5 − 7 = 83.5); recall
from Section 1 that with C(S) = .1, MARGINALISM selects 26
sources with profit 97− 2.6 = 94.4.

We have similar observations on Flight data: MARGINALISM
beats MAXGLIMITC by 55% and beats MINCLIMITG by 4.9%.

II. Algorithm comparison: We applied GREEDY and GRASP
with k ∈ [1, 80] and r ∈ [1, 320] in solving the MARGINAL-
ISM problem. We repeated the experiment 10 times on Book, each
time on randomly selected 150 sources with books in the gold stan-
dard. On each data set we compared the selections by various al-
gorithms and chose the one with the highest profit as the best. For
each method we reported the percentage of times that the best se-
lection is returned and for returned sub-optimal selections we re-
ported the average difference on profit from the best selection. Ta-
ble 3 shows the results for VOTE with RANDOMCOST or LINEAR-
QUALCOST; we have similar observations for other cost models.
We observed that (1) GREEDY has the worst performance, and the
profit difference can be as high as 19.7%; (2) for LINEARGAIN and
QUADGAIN, even GRASP with k = r = 1, which essentially is
hill climbing, can usually obtain the best solution; and (3) the per-
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Figure 11: Scalability of source selection.

Table 4: Profit difference for various quality measures.
Domain Gain Estimated accu Overall cov Both

LINEARGAIN 0 .3% .4%
Book QUADGAIN 0 .9% .9%

STEPGAIN .3% 31% 29%
LINEARGAIN .8% .2% .5%

Flight QUADGAIN 1.5% 0 1.1%
STEPGAIN 10.0% .5% 3.9%

formance of various methods for STEPGAIN, where the gain can
be noncontinuous with fusion quality, is much worse; GRASP with
k = 10, r = 320 often obtains the best selection; even when the
solution is not the best, the profit difference is very low.

Fig.12 shows the percentage of finding the best selection, the dif-
ference of profit, and the execution time for various combinations
of r and k with VOTE, STEPGAIN, and RANDOMCOST on Book
data. We have three observations. First, not surprisingly, repeating
more times takes longer time but can often lead to better results.
Second, k = 10 often has the highest percentage to obtain the best
results and very low profit difference; setting k too low may not
find the best solution, while setting k too high is close to random
selection and can actually lower the result quality. Third, the exe-
cution time increased when k was increased from 5 to 20, but then
decreased when k went over 20, because when k is large, it is less
likely to find a better solution in the random search and so there
were fewer iterations in each local search. In the rest of the experi-
ments, we set r = 200, k = 10 for STEPGAIN.

Source selection on Flight data (we randomly chose 15 sources
each time) turns out to be easy. Even GREEDY obtains the optimal
results for LINEARGAIN and QUADGAIN, and GRASP with k =
5, r = 10 obtains the optimal results for STEPGAIN.

III. Fusion-model comparison: We compared various fusion mod-
els and observed quite similar selections on both data sets. For LIN-
EARGAIN and various cost models, on Book the profit of VOTE is
only 2.7% less than that of POPACCU on average and that of ACCU
is only .3% less. In addition, we applied POPACCU on the sources
selected by each fusion model, finding that the profit on selections
by VOTE and ACCU is only .3% and 1% respectively less than that
on selections by POPACCU. On the Flight data the four percentages
are 1.6%, .1%, 1% and .1% respectively. This is not surprising be-
cause no matter which fusion model we apply, our algorithm tends
to select sources with high quality and low cost.

IV. Robustness: We studied the effect of using less accurate qual-
ity measures on source selection. In particular, we used the over-
all coverage and the accuracy computed by applying iterative fu-
sion [3] on source selection. Table 4 shows the average profit dif-
ference over various cost models from using the precise measures.
We observed that (1) for LINEARGAIN and QUADGAIN, the dif-
ference is very small, showing robustness of selection; and (2) for
STEPGAIN, the difference is quite large when we use overall cover-
age on Book and estimated accuracy on Flight. STEPGAIN can be
much more sensitive because the gain is not continuous with fusion

quality; we did not observe a big difference for non-continuous cost
models (RANDOMCOST and STEPCOST) though.
V. Scalability: For scalability test, we gradually added non-zero-
coverage sources in three orders: increasing order of recall, de-
creasing order, and random order. Fig.11 plots the execution time
for LINEARGAIN and LINEARQUALCOST and we have similar ob-
servations for other cost and gain models. First, our algorithm is
fast: it took 12 minutes for POPACCU on Book data, less than 1
minute for any other fusion model and data, and less than 1 hour
for synthetic data with up to a million sources of various quality
distributions. This is quite acceptable since source selection is con-
ducted offline and only once a while. Second, the execution time
increases slowly after reaching a certain number of sources and
may even drop: in random order when we increased the number
of Book sources from 50 to 228 (3.56 times more), the execution
time increased by 1.57 times for VOTE, by 3.32 times for ACCU,
but decreased by 35% for POPACCU. This slow growth is because
with presence of high-quality and low-cost sources, source selec-
tion often starts with those sources and spends very little time on
other sources, whose number thus does not affect execution time
much. Third, source selection reasons about only quality of data,
so the execution time depends not on data size but on data qual-
ity: source selection took the longest time with a large number of
sources with small-to-medium recall because of more hill-climbing
steps (see the peak with in increasing order). Fourth, source selec-
tion is the slowest for POPACCU and fastest for VOTE, consistent
with our observation on quality-estimation time reported in Fig.9.

Recommendations: We have the following recommendations ac-
cording to the experimental results.

• MARGINALISM is effective for source selection as far as we
can measure cost and gain in the same unit.
• For continuous gain functions, even local search performs

quite well and setting k = 5 and r = 20 seems to be suf-
ficient for GRASP; source selection is quite robust with re-
spect to (sampled) source accuracy and coverage. Source
selection is much more sensitive for StepGain, but setting
k = 10 and r = 200 typically obtains good enough results.
On the other hand, different cost models do not seem to make
a big difference.
• POPACCU is preferred for real fusion, but can be expensive

for quality estimation. Using VOTE in source selection can
save a lot of time and generate a set of sources nearly as good
as using POPACCU.

8. RELATED WORK
To the best of our knowledge, there has been very little work

towards source selection for offline data aggregation. For online
data integration, there has been a lot of work on source identi-
fication for the hidden Web (see [12] for a survey), but they fo-
cus on finding sources relevant to a given query or domain and
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Figure 12: Effectiveness and efficiency of various parameter combinations for GRASP.

do not take quality into consideration. There has also been a fair
amount of work focused on turning data-quality criteria into op-
timization goals for query-planning decisions in various contexts
(collaborative information system [6, 13, 14, 18, 20], P2P sys-
tems [9], sensor networks [17, 19]). In particular, [13] proposed a
data model for source quality and studied how to efficiently query
such information; [6, 20] proposed incorporating quality require-
ments in queries; [18] proposed ranking returned answers accord-
ing to source quality. None of them studies automatic source se-
lection with cost in consideration and they optimize for each indi-
vidual query. Naumann and Freytag [14] applied the data envelope
analysis and measured the “efficiency” of each source by maximiz-
ing the weighted sum of quality (including intrinsic quality, acces-
sibility, contextual quality) minus the weighted sum of cost (includ-
ing response time, price). They did not discuss source selection ac-
cording to the efficiency and did not consider the marginal quality
gain a source can contribute regarding the rest of the sources.

Data fusion has received a lot of recent interest (see [2, 4] for
surveys and [8, 15, 16, 22] for recent works). We showed that none
of the existing fusion models is monotonic, and proposed a mono-
tonic model. We are unaware of any work that estimates quality
for any particular fusion model or for other integration tasks based
purely on quality measures of the sources.

9. CONCLUSIONS AND RESEARCH AGENDA
This paper studies source selection with respect to data fusion.

We proposed algorithms that can efficiently estimate fusion accu-
racy and select the set of sources that maximizes the profit. In ad-
dition, we proposed a monotonic data-fusion model and show how
monotonicity can simplify source selection. Experimental results
show effectiveness and scalability of our algorithms.

There are many opportunities to extend this work for full-fledged
source selection for data integration. We next lay out a research
agenda by describing several future research directions.

Other quality measures: We can consider other quality mea-
sures, such as freshness, consistency, redundancy of data. We can
also consider relationships between the sources, such as copying
relationship, correlation between provided data items, etc. Future
work includes efficiently estimating quality of the integrated data
and selecting sources given these new measures.

Complex cost and gain models: When we have multi-dimensional
quality measures, the gain model can be much more complex. Also,
the cost model can be more complex according to some sophisti-
cated pricing strategies [1]. Future work includes providing declar-
ative ways for cost and gain specification and studying their effect
on source selection.

Using subsets of data: Different slices of data from the same
source can have different quality; for example, a source may pro-
vide high-quality data for novels but low-quality data for books of
other categories. Research directions include source selection with
use of a subset of data from each source.

Other components of data integration: So far we incorporate
mistakes in resolving schema and instance heterogeneity in source
accuracy. Future work includes treating schema-mapping and entity-
resolution as first-class citizens in the picture.
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