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Abstract

We consider the problem of query containment for XML queries with nesting. Given two queries, Q

and Q′, Q is said to be contained in Q′ if Q produces a subset of the answers of Q′ for any database
instance. Query containment is important for query optimization, verification of integrity constraints,
information integration and verification of knowledge bases. Query containment has been studied in the
relational context and for XPath queries, but not for XML queries with nesting.

We begin by considering conjunctive XML queries (c-XQueries), and show that containment is in
PTIME if we restrict the fanout (number of sibling sub-blocks) to be 1. We show that for arbitrary
fanout, containment is coNP-hard already for queries with nesting depth 2, even if the query does
not include variables in the return clauses. We then show that for queries with fixed nesting depth,
containment is coNP-complete.

We consider several extensions to c-XQueries, including queries with union, negation and queries
where the XPath expressions may include descendant edges (besides wildcards and branching). In each of
these cases we show that even with fanout 1, query containment is coNP-complete, and query containment
for queries with fixed nesting depth is still coNP-complete. Finally, we show that for queries with
equalities on tag variables, containment is NP-complete for queries with fanout 1 and Πp

2
-complete for

queries with arbitrary fanout but fixed nesting depth; for queries with arithmetic comparisons on tag
variables, containment is Πp

2
-complete for both cases.

1 Introduction

We consider the problem of determining query containment for XML queries with nesting. Query contain-
ment is the most fundamental relationship between a pair of queries. In the context of relational databases,
where answers are sets of tuples, we say that a query Q is contained in the query Q′ if, for any given database
instance, the answer of Q is a subset of the answer of Q′. In the context of XML queries with nesting (or more
generally, queries over complex objects), where answers are trees, we require the answer of Q be embedded
in the answer of Q′.

Query containment is important in several data management tasks. Originally, query containment was
studied for optimization of relational queries [10, 33]. Removing redundant parts of a query reduces the
number of joins performed by the query processor. Determining that a minimized query is equivalent
to the original one requires a containment test. Later, query containment was used in answering queries
using views [21], maintenance of integrity constraints [19, 15], knowledge-base verification [26] and data
integration [35, 9, 17]. In fact, in several recent data integration products [14, 1], which offer an XQuery
interface to a multitude of data sources, there was a need for certain kinds of semantic caching of answers
which, in turn, requires algorithms for query containment of XML Queries with nesting.

Our particular interest in this problem arises from query processing in Peer Data Management Systems
(PDMS) [22, 20, 32, 24, 4]. A PDMS offers a decentralized architecture for sharing data among peers,
removing the need for a mediated schema required in data integration systems. Semantic relationships
between peers are described locally by mappings between pairs (or small sets) of peers. These semantic
mappings enable reformulating a query on a peer to queries on its neighbors. Given a query at a peer,
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the query processor applies reformulation iteratively to explore all possible semantic paths in the PDMS,
until it reaches every relevant peer. In recent experiments on the Piazza PDMS, we have shown that
detecting redundant reformulation goals reduces reformulation times by an order of magnitude. Detecting
this redundancy cannot be based on XPath containment alone, but requires a query containment algorithm
for XML queries with nesting.

Query containment has been studied in depth for the relational model, beginning with conjunctive queries
[10, 2], then acyclic queries [37], queries with union [33], negation [27], arithmetic comparisons [25, 36, 27,
38, 19], recursive queries [34, 11] and queries over bags [12, 23].

Query containment for XML faces two challenges: the use of XPath expressions to specify patterns
on the input data, and the nesting structure of the resulting tree. Several recent works considered query
containment for XPath in isolation. In [30] it is shown that for a simple fragment of XPath that contains
descendant axis(//), wildcards(*), and qualifiers (or branching, denoted [...]), but without either tag variables
or disjunctions, query containment is coNP-complete. If we drop any one of the constructs *, //, and [...]
in the above case, query containment is in PTIME [3, 31]. In [13] the authors studied XPath containment
under a limited use of tag variables and equality testing, and showed the problem is Πp

2-complete in general
and NP-complete if no disjunction or wildcards are allowed. Finally, [16] showed that containment of queries
with regular path expressions on general cyclic graphs is PSPACE-hard.

Containment for queries returning nested structures has only been considered for the general case of
queries over complex objects [28]. However, that paper only presents a necessary condition for containment,
whereas our results offer a necessary and sufficient condition. Furthermore, our analysis exploits the special
structure of XML instances to obtain a more refined set of complexity results. In particular, we show how
the complexity depends on the nesting depth and fanout in the queries.

We begin by considering a fragment of XML queries, called conjunctive XML Queries (c-XQueries),
which covers many queries used in practice. We show that query containment for this fragment is in PTIME
if we restrict the fanout (number of sibling sub-blocks) in the query to be 1. However, if we allow arbitrary
fanout, then query containment is coNP-hard even for queries with nesting depth 2 and even if the query
does not include variables in the return clauses. Since XPath expressions in c-XQueries can be modeled as
acyclic conjunctive queries, and containment of unnested acyclic queries is in PTIME, our result isolates the
exact effect of nesting on the complexity of query containment.

Next, we show that query containment for c-XQueries with arbitrary fanout but fixed nesting depth is
coNP-complete. Our technique is based on considering a finite number of canonical databases (a technique
also used in [25, 16]). Here, the appropriate set of canonical databases is obtained by inspecting a set of
canonical answers to the query, each representing a possible structure for the answer tree. We obtain our
results by first considering queries that do not include tag variables (cc-XQueries), and then extend the
technique of query simulation [28] to obtain results for c-XQueries. We note that without restricting the
nesting depth of the query, the number of canonical databases that need to be inspected can be super-
exponential (even for cc-XQueries), and the exact complexity for this case remains open.

Finally, we consider several extensions of c-XQueries, including queries with union, negation, and queries
where the XPath expressions may include descendant edges (besides wildcards and branching). In each
of these cases we show that even with fanout 1, query containment is coNP-complete, and that query
containment for queries with fixed nesting depth is still coNP-complete. We also consider nested queries
with equality predicates on tag variables, and show that containment is NP-complete for queries with fanout 1
and Πp

2-complete for queries with arbitrary fanout but fixed nesting depth. Finally, we show that for queries
with arithmetic comparisons on tag variables, containment is Πp

2-complete both for queries with fanout 1
and for queries with arbitrary fanout but fixed nesting depth.

This paper is organized as follows. Section 2 formally defines the problem. Section 3 considers cc-
XQueries, and Section 4 extends the results to c-XQueries. Section 5 describes our results for extensions of
c-XQueries, and Section 6 concludes.
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Piazza

<project>
  <title>Piazza</title>
  <member>Alice</member>
</project>
<project>
  <title>Tukwila</title>
  <member>Bob</member>
</project>

R

project project

title member member

Alice Tukwila Bob

title

D:

Figure 1: An XML instance and corresponding tree.

2 Preliminaries

We begin by defining XML instances and the different query language fragments we consider. We then define
containment on instances and on queries.

2.1 XML Objects and Instances

An XML object is defined recursively as a binary record: each record contains a tag and contents. A tag is
an atomic value and contents are a set of XML objects. Formally, the definition is the following:

Definition 2.1 (XML Object and Instance). An XML object is a binary record [t, {e1, . . . , en}], where
t is an atomic tag value from a tag constant domain T , and e1, . . . , en are XML objects. Its abstract syntax
is given by

e ::= [T , {ε|e1, e2, . . . , en}].

An XML instance is an XML object with a distinguished root tag <. < appears nowhere else in the instance.
�

In our discussion we model an XML instance as an unordered edge-labeled tree. Nodes in the tree
represent XML objects, and have identifiers from a domain N , which is disjoint from the domain of tag
constants, T . Edges between nodes represent nesting relationships, and the labels on the edges (taken from
T ) represent tags. The identifier of the root is <. Note that in the tree representation, labels on edges leading
to leaf nodes correspond to text values in the XML document, while labels on edges leading to internal nodes
correspond to XML element tags. In our notation, a tag variable can be bound to either kind of label in the
tree representation.

Example 2.2: Figure 1 shows an XML instance and its corresponding tree. It lists the projects in a database
research group and members in each project. �

2.2 Conjunctive XML Queries

We now define a fragment of XML queries, called conjunctive XML queries (c-XQueries).

Syntax: A c-XQuery represents a FOR-WHERE-RETURN query in XQuery with the following restrictions.
First, the returned variables can be bound to only tag names or text values (i.e. cannot be bound to XML
elements). Second, XPath expressions in c-XQuery contain only child axis (/), wildcards (*) and branching
([...]). Note that the descendant axis (//) is not allowed, nor is negation, union, comparisons except of the
form variable=constant (either in XPath expressions or in WHERE-clause conditions). We consider each of
these extensions of c-XQuery in Section 5.

For analysis purposes, we often describe c-XQueries with a syntax which is reminiscent of conjunctive
queries. The c-XQuery in Figure 2(a) is shown below in our syntax.

Q: group ← < project X {
projtitle ← X title W
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Q: FOR $x IN /project RETURN
     <group>{
         FOR $w IN $x/title RETURN
         <projtitle>$w/text()</projtitle>
         FOR $y IN $x/member RETURN
         <name>$y/text()</name>
     }</group>

(a)

R

group

projtitle

S

(b)

name

T

Figure 2: An example c-XQuery: (a) query Q; (b) the head tree of Q.

{S ←WSV }
name ← X member Y

{T ← Y TZ }
}

A c-XQuery consists of nested query blocks. A query block q̂ returns either a constant in T or a tag
variable (shown on the left-hand side of the←). We use lowercase letters for tag constants and capital letters
for tag variables. In the above query Q, the top-level query block returns a tag constant group, while the
leaf query blocks return the tag variables S and T.

In our syntax, path expressions and predicates in the FOR and WHERE clauses are translated into
sets of conjuncts in the appropriate query blocks. Each conjunct relates two node variables with either a
tag constant or a tag variable. We use italic capital letters for node variables, and assume the domain of
node variables and tag variables are disjoint. Note that wildcards (*) can be represented by tag variables.
A node variable that appears in q̂ but not in q̂’s ancestor query blocks is called a fresh node variable of
q̂. In the above example, the path expression /project in the top-level query block is translated into the
conjunct < project X , while the path expression $y/text() is translated into the conjunct Y TZ. The fresh
node variables in the last leaf block are Y and Z.

A query block may have a set of sub-blocks. The fanout of q̂ is the number of sub-blocks it has. A query
with no sub-blocks has a nesting depth of 1. The nesting depth of q̂ is 1 plus the maximal nesting depth of
its sub-blocks. The nesting depth of the query is the depth of its outer-most block. In the above query Q,
the outer-most query block has fanout 2 and nesting depth 3.

The answer to the outer-most block of the c-XQuery is the answer to the query (we usually omit the
root, which always has the reserved tag <). We also identify the head tree of the query, which is created by
removing all the conjuncts from the query (i.e. the head tree shows us the shape of the answers.) Note that
a head tree is also an XML instance if we apply a substitution to the variables in the head tree. The head
tree of the example query Q is shown in Figure 2(b).

To ensure that c-XQueries do not allow disjunction, we require that sibling blocks always return distinct
tag constants. Consequently, a block can return a tag variable only when it has no siblings.

For our analysis in Section 3 we define a smaller fragment of c-XQueries, called constant conjunctive XML
queries (cc-XQueries). A cc-XQuery is a c-XQuery that does not contain tag variables (i.e. tag variables
are not allowed on the left-hand side of the ←, nor as the middle components of conjuncts.)

Semantics: The semantics of a c-XQuery is an extension of the semantics of an un-nested conjunctive query.
Specifically, each node n in the answer is generated by a query block with the same depth as n. Note that
since c-XQuery does not allow disjunction, each node has a unique generator. We generate a return tag of
a query block for every possible variable substitution that satisfies the conjuncts of the block. When there
is at least one satisfying substitution, we evaluate the block’s sub-blocks. Note that a variable substitution
of a sub-block is an extension of the substitution that satisfies its parent block. Finally, in this paper we
consider set semantics for queries: at any level of the answer tree, there exists at most one copy of identical
sibling sub-trees.

A c-XQuery can be evaluated on an input XML instance in polynomial time of data size, and exponential
time of query size. Let |D| be the size of the input instance, |Q| be the size of the query. Each query block
is an acyclic query; evaluating it on the input data takes O(|Q| · |D|) time [37]. Let d be the depth of Q, and
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Figure 3: Three XML instances that contain each other pairwise but are not equivalent.

n be the maximum number of fresh variables in a query block of Q. In the worst case, there can be O(|D|n)
number of embeddings for a query block; a query block with depth d can be evaluated for up to O(|D|nd)
times. This gives the upper bound of c-XQuery evaluation as O(|Q| · |D||Q|).

2.3 Containment and Equivalence

An XML object is a special case of a complex object, where each record is binary. Hence, we follow the
definition of containment given in [28].

Definition 2.3 (XML Object Containment). Let e = [t, {e1, . . . , en}] and e′ = [t′, {e′1, . . . , e
′
n′}] be two

XML objects. e is contained in e′, denoted as e v e′, if t = t′ and ∀i.∃i′.ei v e′i′ . �

This notion of containment has also been used previously for Verso relations [5], partial information [8],
and or-sets [29]. It is a particular case of the lower (Hoare) powerdomain ordering [18], and it coincides with
the simulation relation between complex objects represented as graphs [6, 7]. It is also the smallest order
relation for XML instances which is reflexive (i.e. e v e), is a congruence (i.e. e1 v e′1∧· · ·∧en v e′n implies
[t, {e1, . . . , en}] v [t, {e′1, . . . , e

′
n}], {e1} v {e

′
1}, and e1 ∪ e2 v e′1 ∪ e

′
2), and satisfies the empty set ∅ v e.

The containment of two XML instances can be justified by tree homomorphism (not necessarily injective).
Following [30], we define an embedding from a tree t1 to t2 as a node mapping, which is root preserving,
respects node relationships and edge labels. It is trivial to verify that two XML instances e and e′ satisfy
e v e′, if and only if e’s corresponding tree can be embedded in e′’s corresponding tree.

XML instance containment is reflexive and transitive, but not antisymmetric: e v e′ and e′ v e do not
imply e = e′. As an example, consider the three XML instances in Figure 3. They contain each other
pairwise, but are not equivalent.

In the development of our algorithms we will use the notion of a minimal XML object, defined as follows.

Definition 2.4 (Minimal XML Object). Let e be an XML object. e is said to be minimal if there is no
XML object [t, {e1, . . . , en}] nested in e, where there exist i, j ∈ [1, n], i 6= j, and ei v ej . �

Proposition 2.5. Containment on minimal XML objects is a partial order.

Proof: As for general XML objects, containment on minimal XML objects is reflexive and transitive. Below
we prove it is also anti-symmetric; i.e., given two minimal XML objects, D and D′, D = D′ if and only if
D v D′ and D′ v D.

Assume to the contrary, D 6= D′. D v D′ and D′ v D imply the existence of a tree embedding from D
to D′, denoted as e1, and a tree embedding from D′ to D, denoted as e2. Because D 6= D′, there must exist
a node which is not mapped to itself through e1 and e2. Suppose n1 of D is such a pair, and all its parents
are mapped to themselves through e1 and e2. Suppose e1 maps n1 to n2, but e2 maps n2 to another node
n′

1 6= n1. According to the assumption, n2’s parent is mapped to n1’s parent, so n′
1 must be one of n1’s

sibling node. Accordingly, the subtree rooted at n1 is embedded in the subtree rooted at n2 and transitively
embedded in the subtree rooted at n′

1. Therefore, D is not minimal, which contradicts our assumption. �

Intuitively, an XML object that is not minimal contains redundant information. We can minimize it
by removing redundancy. We define a weaker equivalence relationship between XML objects by comparing
their minimized forms. As stated by Proposition 2.9 this notation of equivalence agrees with bi-directional
XML object containment.

Definition 2.6 (Minimized Form of an XML object). Let e be an XML object and e′ be a minimal
XML object. e′ is called a minimized form of e, if e v e′ and e′ v e.
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Proposition 2.7. Every XML object has one and only one minimized form.

Proof: We first show the existence by minimizing D to a minimal XML object. We process D bottom-up.
For each two sibling subtrees T and T ′ in D, where T v T ′, we remove T from D. The process halts when
it reaches the root. It’s easy to verify that the result, D′, is a minimal XML object.

Next, we show the uniqueness. Assume to the contrary, D can be minimized into two different minimal
XML objects D1 and D2. D1 v D and D v D2 imply D1 v D2; similarly D2 v D1. Based on Proposition
2.5, D1 = D2, which contradicts our assumption.

Definition 2.8 (XML Object Weak Equivalence). Let e and e′ be two XML objects. e is weak equivalent
to e′, denoted as e

.
= e′, if the minimized form of e is equivalent to the minimized form of e′.

Proposition 2.9. Let e and e′ be two XML instances. e
.
= e′, iff e v e′ and e′ v e.

Proof: Let M be the minimized form of D, and M ′ be the minimized form of D′.

if: D v D′ implies M v D v D′ v M ′, so M v M ′. Similarly, D′ v D implies M ′ v M . Because M
and M ′ are minimal, from above M = M ′. So D

.
= D′.

only if D
.
= D′ implies M = M ′. D vM = M ′ v D′, so D v D′; similarly, D′ v D.

Based on the definition of XML object containment and weak equivalence, we define containment and
weak equivalence of c-XQueries as follows.

Definition 2.10 (c-XQuery Containment). Let Q and Q′ be two c-XQueries. Q is contained in Q′,
denoted as Q v Q′, if for every input XML instance D, Q(D) v Q′(D). �

Proposition 2.11. Let Q and Q′ be two c-XQueries. Q
.
= Q′ iff Q v Q′ and Q′ v Q.

3 Containment of cc-XQueries

We begin by considering query containment for cc-XQueries. A cc-XQuery does not contain tag variables,
thus can be viewed as a generalization of a boolean conjunctive query (i.e, a conjunctive query with an empty
head), except that they can return one of several tree structures, rather than only true or false. Although
cc-XQueries are rarely useful in practice, we study them for two reasons. First, they already show some of
the important lower bounds on query containment, and second, they help us obtain insights on the number
of canonical answers we need to consider, which later carry over to c-XQueries.

Intuitively, given a pair of queries Q and Q′, we cannot check that for every possible XML input D,
Q(D) v Q′(D). Hence, our goal is to find a finite set of representative inputs, called canonical databases,
which have the property that Q v Q′ if and only if Q(DB) v Q′(DB) for every canonical database DB.

Our approach is based on considering the different canonical answers that can be generated for Q, and
creating a canonical database for each canonical answer. Initially, one could conjecture that it suffices to
consider all the answers corresponding to subtrees of the head tree of Q that contain the root. However,
the following example refutes this conjecture. Furthermore, it shows that the result in [28] offers only a
necessary condition for query containment, but not a sufficient one.

Example 3.1: Consider the two cc-XQueries, Q and Q′, in Figure 4(a) (and in our syntax below).

Q: g ← <pX ′ {
n ← <pX, XmY {

a ← Y aZ

b ← Y bW

}}

Q’: g ← <pX {
n ← XmY {

a ← Y aZ

b ← Y bW

}}

The queryQ checks whether Alice and Bob are in the research group, and groups them together regardless
of their projects. The query Q also checks whether Alice and Bob are in the research group, but in contrast,
groups them according to whether or not they are working on the same project. Figure 4(b) shows the
results of Q and Q′ on the XML instance D of Example 2.2. Q(D) 6v Q′(D), and thus Q 6v Q′. In contrast,
containment does hold for canonical databases generated for all subtrees of the head tree. �

6



(a) (b)

Q: FOR $x IN /project RETURN
     <group>{
         FOR $y IN /project/member RETURN
         <name>{

WHERE $y=``Alice``
RETURN <Alice/>
WHERE $Y=``Bob``
RETURN <Bob/>

         </name>
     </group>

R

group

Alice

name name

Bob

Q`: FOR $x IN /project RETURN
     <group>{
         FOR $y IN $x/member RETURN
         <name>{

WHERE $y=``Alice``
RETURN <Alice/>
WHERE $Y=``Bob``
RETURN <Bob/>

         </name>
     </group>

R

group group

name name

Alice Bob

Figure 4: Example 3.1: (a) Q and Q′; (b) the answers to Q and Q′.
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Figure 5: Example 3.1: (a) Q’s canonical answers; (b) Q’s canonical databases.

3.1 Canonical Answers and Databases

The observation leading to our first result is that it suffices to consider canonical answers that are minimal
XML instances and are contained in the head tree (which is different from being subtrees of the head tree).

Definition 3.2 (Canonical Answer of a cc-XQuery). Let Q be a cc-XQuery and H be its head tree. A
canonical answer of Q is a minimal XML instance CA, such that CA v H. �

For each canonical answer we define a canonical database as follows.

Definition 3.3 (Canonical Database of a cc-XQuery). Let Q be a cc-XQuery, and CA be a canonical
answer of Q. Q’s canonical database for CA, denoted as DBCA, is an XML instance, s.t. for each node N
of CA where N ’s generator query block is q̂n, the following holds:

• Let X be a fresh node variable in q̂n. There is a distinct node in DBCA for X, denoted as NX .

• Let XlY be a conjunct in q̂n. There is an edge labeled l from NX to NY . �

The number of canonical databases for a cc-XQuery is the same as the number of canonical answers. The
size of a canonical database is polynomial in the size of its corresponding canonical answer.

For example, Figure 5(a) shows six canonical answers for Q in Example 3.1. Figure 5(b) shows the
corresponding canonical databases.
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3.2 Query Containment Algorithm

Our first result shows that to test query containment, it suffices to consider only canonical databases con-
structed from the canonical answers. In the following theorem, DBCA (DB′

CA) refers to the canonical
database of Q(Q′) corresponding to the canonical answer CA.

Theorem 3.4 (Containment of cc-XQueries). Let Q and Q′ be two cc-XQueries. The following three
conditions are equivalent:

1. Q v Q′;

2. for every canonical database DB of Q, Q(DB) v Q′(DB);

3. for every canonical answer CA of Q, (a) CA is a canonical answer of Q′; and (b) DB′
CA v DBCA.

�

The proof of the above theorem is based on two important properties of canonical answers and canonical
databases.

Lemma 3.5. Let Q be a cc-XQuery and D be an XML instance. There exists a unique canonical answer
CA of Q, such that Q(D) v CA and CA v Q(D). �

Proof: Each Q(D) has a unique minimized form, denoted as A. Let H be the head tree of Q. Q(D) v H
and A v Q(D) imply that A v H . So A is a canonical answer of Q. �

Lemma 3.6. Let Q be a cc-XQuery, CA be a canonical answer of Q, DBCA be the canonical database for
CA of Q, and D be an XML instance. CA v Q(D) if and only if DBCA v D. �

Proof: if: DBCA v D implies that there exists a tree homomorphism σ : DBCA → D.

Let n be a node in CA generated by query block q̂n in Q, and N̄ be the nodes in DBCA associated with n
and n’s ancestors. There exists a substitution ϕDB : q̂n → N̄ . Composing it with σ, results in a substitution
ϕ = ϕDB ◦ σ : q̂n → σN̄ . The result node obtained from the substitution is the node to which n maps. This
proves CA v Q(D).

only if: CA v Q(D) implies that there exists a tree homomorphism σ : DBCA → D. Let n be a node
in CA. σ(n) is n’s corresponding node in Q(D). The definition of a cc − XQuery guarantees that n and
σ(n) are generated by the same query block, denoted as hatqn. The definition of a canonical database DB
indicates a one-to-one correspondence between the nodes associated with n and the node variables in q̂n,
denoted as φ : DBCA → q̂n. Besides, there exists a substitution ϕ : q̂n → D. Compose φ with ϕ results in
the tree homomorphism from DBCA to D. Thus, DBCA v D.

Proof for Theorem 3.4:

(1) ⇒ (2): Follows from the definition.

(2) ⇒ (3): Consider a canonical answer CA and its canonical database, DBCA. According to Lemma 3.6,
CA v Q(DBCA). Since condition (2) holds, Q(DBCA) v Q′(DBCA). Putting the above two containments
together, we have CA v Q′(DBCA). This implies that (a) holds. Applying Lemma 3.6 again gives DB ′

CA v
DBCA. Hence, (b) holds.

(3) ⇒ (1): To show Q v Q′, we need to show for every XML instance D, Q(D) v Q′(D). According
to Lemma 3.5, there exists a unique canonical answer CA of Q, such that Q(D) v CA and CA v Q(D).
According to Lemma 3.6, DBCA v D. Since conditions (a) and (b) hold, DB′

CA v DBCA. So DB′
CA v D.

Applying Lemma 3.6 again gives CA v Q′(D). Based on containment transitivity, Q(D) v Q′(D). �

The third condition of Theorem 3.4 will become useful in the complexity analysis. The condition states
that we do not actually have to evaluate the two queries on each of the canonical databases. Instead, it
suffices to check tree embedding (which is a sufficient and necessary condition for containment) on each
pair of canonical databases, which can be done in polynomial time in the size of the canonical databases.
However, as the following analysis shows, the number and sizes of canonical databases, determined by the
number and sizes of canonical answers, are quite large.
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Let m be the largest fan-out of a query block in Q, and let d be the nesting depth of Q. We next show

that the maximal size of Q’s canonical answers is Θ(m · 2
m·

(
2··

m·(2m)
)

) (which is a tower of exponents with
d− 1 levels). Because the tag of a node’s incoming edge has m options, the number of canonical answers is
similar to the above complexity, but with d exponents. We obtain this by considering the upper and lower
bounds of the maximal size of canonical answers.

Consider a query block q̂ with depth d − 1 in Q, and its parent query block p̂. The query block q̂ has
no more than m children query blocks, each of which is a leaf block. Thus, the subtrees rooted at the nodes
generated by q̂ have no more than 2m different shapes; and the node generated by p̂ has no more than 2m

children that are generated by q̂. Since p̂ has up to m children query blocks, it can have up to m ·2m children
subtrees. For a similar reason, there are no more than 2(m·2m) different shapes for subtrees rooted at the
nodes generated by p̂; thus, p̂’s parent can have up to m · 2(m·2m) children. Iteratively, the top-level query

block can have no more than m · 2
m·

(
2··

m·(2m)
)

children, where the number of the exponents is d− 1. This
is the upper bound of the maximal size of canonical answers.

The real size of canonical answers is far less than the upper bound because of the concern for sibling
tree containment; however, the maximal size has a lower bounded in the same class as the upper bound.
Again, we analyze bottom-up. Consider a node generated by q̂. Among the trees rooted by the node,(

m
bm/2c

)
≥ 2bm/2c have exactly bm/2c leaf nodes. These subtrees do not contain each other pairwise. A node

generated by p̂ can have any of them as subtrees. The query block p̂ has up to m children query blocks, so

among the subtrees rooted at a node generated by p̂, at least 2(m·( m
bm/2c)) ≥ 2(m·(2bm/2c)) do not contain each

other. Iteratively, among the subtrees rooted at a node generated by a query with depth i, there are at least

ti = 2
(m·( ti+1

bti+1/2c)) ≥ 2(m·(2bti+1/2c)) shapes. When the depth is 2, t2 is in class O(2
m·

(
2··

m·(2(m/2))
)

), which

is a tower of powers with height d − 1. This implies that the lower bound is O(m · 2
m·

(
2··

m·(2(m/2))
)

). As
a special case, when m = 1, the maximum size of a canonical answer equals the depth of the query. This
agrees with the discussion in the next section.

3.3 Effect of the Fanout

In this section, we show that fanout has a significant impact on the complexity of query containment. A
cc-XQuery is said to be linear if the fanout of each query block is at most 1. We show the following:

Theorem 3.7 (PTIME). Let Q and Q′ be cc-XQueries. If either of them is linear, testing Q v Q′ is in
PTIME. �

Proof: The proof of Theorem 3.7 is based on the following observations. First, to check that Q v Q′, where
Q is a linear cc-XQuery, the number of canonical answers we need to consider is equal to the nesting depth of
Q, denoted as d, and the sizes of canonical answers are bounded by d. Consequently, the size of a canonical
database for Q is bounded by |Q|, and that for Q′ is bounded by |Q′|.

Second, as entailed by the third part of Theorem 3.4, for each such canonical answer we need to perform
an embedding test on the corresponding canonical databases, which can be done in polynomial time in the
sizes of the canonical databases. Specifically, the time complexity for one canonical database embedding
checking is O(|Q| · |Q′|), and that for containment checking is O(d · |Q| · |Q′|). �

We note that this is the only case in which nesting does not add to the complexity of containment in
comparison to similar queries without nesting. As we will soon see, the restriction on the fanout is crucial
for obtaining polynomial-time complexity.

The following theorem shows that the restriction on the fanout is critical.

Theorem 3.8 (coNP-Hardness). Testing containment of cc-XQueries with nesting depth 2 and arbitrary
fanout is coNP-hard. �

Proof: We reduce the 3CNF problem to query containment of cc-XQueries with depth 2.

9



Let ψ be a 3-CNF formula with variables x1, . . . , xn and clauses c1, . . . , cm. We construct two cc-XQueries,
Q and Q′, s.t. ψ is satisfiable iff Q 6v Q′. We show that ψ is satisfied by an assignment ν, iff we can construct
a canonical answer CA of Q from ν, which is also a canonical answer of Q′, but violates DB′

CA v DBCA.
Hence, the proof follows from the third condition of Theorem 3.4.

Both Q and Q′ have two levels: a top-level query block, and 2n children blocks. In each query, the top
level block returns the tag u; for each variable xi, i ∈ [1, n], there are two children query blocks on the second
level, returning vi and wi respectively. Hence, Q and Q′ have exactly the same canonical answers.

In query Q, there are two groups of conjuncts. Group A contains m2 conjuncts in the top level query
block. For each clause ci, i ∈ [1,m], there are m conjuncts: <aCi, and Cidj for each j ∈ [1,m], j 6= i. (
indicates a node variable) In group B, there are n conjuncts in the top level query block. For each variable
xi, i ∈ [1, n], there is a conjunct <aXi. On the second level, for each variable xi, there is a conjunct Xid1

in the query block returning vi, and m− 1 conjuncts Xidj , j ∈ [2,m], in the query block returning wi.

In query Q′, the top-level query block has the conjunct <aX . On the second level, if xi occurs in clause
cj , there is a conjunct Xdj in the query block that returns vi; if x̄i occurs in clause cj , there is a conjunct
Xdj in the query block that returns wi.

As an example, consider the formula ψ = (x1 ∨x2 ∨¬x4)∧ (¬x1 ∨ x2 ∨x3)∧ (x1 ∨ x2 ∨ x3). We build the
following two queries:

Q: for <aC1, C1d2 , C1d3 ,<aC2, C2d1 , C2d3 ,<aC3, C3d1 , C3d2 ,<aX1,<aX2,<aX3,<aX4 return
[u, {

for X1d1 return
[v1,{}]
for X1d2 , X1d3 return
[w1,{}]
for X2d1 return
[v2,{}]
for X2d2 , X2d3 return
[w2,{}]
for X3d1 return
[v3,{}]
for X3d2 , X3d3 return
[w3,{}]
for X4d4 return
[v4,{}]
for X4d2 , X4d3 return
[w4,{}]

}]
Q’: for <aX return

[u, {
for Xd1 , Xd3 return
[v1,{}]
for Xd2 return
[w1,{}]
for Xd1 , Xd2 , Xd3 return
[v2,{}]
for true return
[w2,{}]
for Xd2 , Xd3 return
[v3,{}]
for true return
[w3,{}]
for true return
[v4,{}]
for Xd1 return

10
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Figure 6: (a) An example canonical answer CA of Q that corresponds to an assignment ν, in which x1 =
true, x2 = false, x3 = true, x4 = false; (b) Q and Q′’s canonical databases for CA.

[w4,{}]
}]

We construct CA from ν, as follows. Consider a two-level canonical answer, which has a single node with
incoming edge labeled u on the first level. There is a node with incoming edge labeled vi, iff ν(xi) = true;
there is a node with incoming edge labeled wi, iff ν(xi) = false. (Note that if for a given i ∈ [1, n], neither vi

nor wi occurs in CA, then in the corresponding assignment, xi can be assigned either true or false.) Based
on this, we partition these canonical answers into three classes. If both vi and wi occur in CA, we say the
canonical answer corresponds to an invalid assignment. Otherwise, the canonical answer must correspond to
a valid assignment. If the assignment does not satisfy ψ, we say the canonical answer corresponds to a bad
assignment. If the assignment satisfies ψ, we say the canonical answer corresponds to a good assignment. In
our example, a canonical answer that corresponds to the assignment x1 = true, x2 = false, x3 = true, x4 =
false is shown in Figure 8(a).

Constructing Q and Q′ takes polynomial time. Now we show that Q 6v Q′ iff ψ is satisfiable.

if Assume ν is an assignment that satisfies ψ. Consider the canonical answer corresponding to ν, which
is a good assignment. The canonical answer in Figure 8(a) corresponds to a good assignment for the given
example. The two canonical databases, DBCA and DB′

CA, are shown in Figure 8(b).

Since ν satisfies ψ, each clause cj = true, j ∈ [1,m]. So at least one of its three literals is satisfied by ν.
Accordingly, the edge corresponding to the literal occurs in CA, and in turn dj must occur in DB′

CA. Thus,
in DB′

CA there exists a full-width node X with depth 1, which has incoming edge labeled a, and outgoing
edges labeled d1, . . . , dm respectively.

On the other hand, DBCA does not contain any full-width nodes. Thus, DB′
CA 6v DBCA, and so Q 6v Q′.

only if Assume ψ is not satisfiable. Then a two-level canonical answer CA of Q must either correspond
to an invalid assignment or correspond to a bad assignment.

If CA corresponds to an invalid assignment, then there exists i ∈ [1, n], where both vi and wi occur in
CA. The Group-B conjuncts of Q guarantee that there will be a full-width node in DBCA. Thus DB′

CA

must be contained in DBCA.

If CA corresponds to a bad assignment, then in DB′
CA there do not exist full-width nodes. On the other

hand, the Group A conjuncts of Q ensures DB′
CA v DBCA as far as DB′

CA does not contain full-width
nodes. So again, DB′

CA v DBCA.

Finally, it’s easy to verify that for the empty canonical answer CA0 and the one-level canonical answer
CA1 of Q, we have DB′

CA0
v DBCA0 , DB

′
CA1
v DBCA1 . This proves Q v Q′. �

3.4 cc-XQueries with Fixed Nesting Depth

In this section we show that for any fixed nesting depth, query containment for cc-XQueries is in coNP.
Hence, we obtain the following result:

Theorem 3.9 (coNP-Completeness). Let Q and Q′ be cc-XQueries. If either of them has a fixed nesting
depth, testing Q v Q′ is coNP-complete. �

The key observation behind Theorem 3.9 is to further reduce the number of canonical answers (and
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hence of canonical databases) we need to consider. As we show below, it suffices to consider kernel canonical
answers.

Definition 3.10 (Kernel Canonical Answer). Let Q be a cc-XQuery. Let d be the nesting depth of Q
and c be the maximum number of conjuncts in a query block of Q. A canonical answer CA of Q is called a
kernel canonical answer if the following hold: (1) The root node has a single child, and (2) Suppose N is a
node in CA and p is a path from N to a leaf. Then p appears in at most cd− 1 siblings of N . �

In the following lemma, DBKCA (DB′
KCA) refers to the canonical database of Q(Q′) corresponding to

the canonical answer KCA.

Lemma 3.11. Let Q and Q′ be two cc-XQueries. The containment Q v Q′ holds if and only if for each
kernel canonical answer KCA of Q, (1) KCA is a canonical answer of Q′; and (2) DB′

KCA v DBKCA. �

Proof: In the proof, we call a canonical answer CA a violator if it violates the condition DB ′
CA v DBCA.

We call a violator CA a minimum violator, if CA does not have any proper subtree C̃A, which also violates
DB′

C̃A
v DB

C̃A
. We prove the theorem by showing that a non-kernel canonical answer cannot be a minimum

violator. By induction, if CA is a non-kernel canonical answer that violates DB ′
CA v DBCA, there must

exist a kernel canonical answer KCA, which is a proper subtree of CA, and violates DB ′
KCA v DBKCA.

So even without checking containment on CA, we can still get the right conclusion that Q 6v Q′.

Assume to the contrary, there exists a non-kernel canonical answer CA, which is a minimum violator for
Q and Q′. Let N be the node in CA with l > cd children, C1, . . . , Cl. We denote the subtrees rooted at
C1, . . . , Cl as T1, . . . , Tl. Each of them contains a common path pattern p.

Consider the nodes in DB′
CA that correspond to N or N ’s ancestors, i.e. correspond to the node variables

in the query block of Q′ that generate N or N ’s ancestors. According to the structure of CA, in DB ′
CA there

must be nodes that have no less than l children, where each subtree Ti, i ∈ [1, l], generates at least one of
the children together with the subtree rooted at that child. We call those nodes l-children nodes. Below we
discuss l-children nodes, their ancestors, their descendants, and the rest nodes in DB ′

CA separately, showing
that nodes in each category can be mapped to some nodes in DBCA. This implies DB′

CA v DBCA.

• We first consider an l-children node in DB′
CA. If we remove a subtree Ti, i ∈ [1, l] from CA, and

accordingly Y ’s descendants in DB′
CA corresponding to Ti, the result subtree rooted at Y must be

embedded in a subtree in DBCA, because CA is a minimal violator. We denote the root of the subtree
in DBCA as Yi. If there exist Yi, Yj , i 6= j that are the same node, Y can be mapped to it. Below
we show that those Yi’s, i ∈ [1, l], can not be all different; otherwise, the number of nodes in DBCA

exceeds the maximum number of nodes in Q’s canonical database for CA.

Suppose there are k leaves in CA. Each leaf corresponds to at least one descendant node of Y ; otherwise,
removing that leaf will not affect the subtree rooted at Y , and Y still cannot be mapped to any node
in DBCA, which implies CA is not a minimal violator. As a result, Y has at least k descendant
nodes. Each descendant node that corresponds to a node in Ti, can be mapped to a descendant of
Yj , j ∈ [1, l], j 6= i. If Y1, . . . , Yl are different, their descendants are disjoint. So each descendant node
has l− 1 counterparts in DBCA. Plus Y1, . . . , Yl, we have at least l + k(l − 1) nodes in DBCA.

On the other hand, there are at most kd nodes in CA. Each node has a generator query block; each
query block contains no more than c conjuncts; and each conjunct introduces no more than one new
node variable, and in turn no more than one node to the canonical database. So there can be no more
than kdc ≤ k(l − 1) < l + k(l − 1) nodes in DBCA, which leads to contradiction.

• In the same fashion we prove an ancestor of an l-children node must be able to map to a node in
DBCA. We denote the ancestor as X and its l-children child as Y . Similarly, since CA is a minimal
violator, after removing Ti, i ∈ [1, l], and accordingly Y ’s descendants corresponding to Ti, X must be
able to map to a node in DBCA, denoted as Xi. There must exist two Xi, Xj , i 6= j that are the same
node; otherwise, for the same reason as discussed for l-children nodes, there are at least l + k(l − 1)
nodes in DBCA; but no more than kdc < l + k(l − 1) of them can correspond to nodes in CA, which
leads to contradiction. Therefore, X can be mapped to that Xi.

12



• If a node, denoted as X , is a descendant of an l-children node, it corresponds to a node in one
Ti, i ∈ [1, l]. Removing other Ti’s from CA does not affect the subtree rooted at X in DB′

CA. Given
CA is a minimal violator, X must be able to map to a node in DBCA.

• Finally, consider the rest of the nodes, denoted as X . In the subtree rooted at X , any node cannot
correspond to the node at the very end of the path pattern p in CA. Otherwise, X must be an l-
children node, or an ancestor, or a descendant of an l-children node. Thus, removing the nodes at the
very end of the path pattern p in CA does not affect the subtree in DB ′

CA rooted at X . Given CA is
a minimal violator, X must be able to map to a node in DBCA.

From the above analysis, all nodes in DB′
CA can be mapped to some node in DBCA. This contradicts

with the assumption that DBCA 6v DBCA. �

Now we examine the time complexity of the algorithm derived from Theorem 3.4(3), by analyzing the
number and sizes of kernel canonical answers. Let m be the maximum fanout, and b be the number of query
blocks in Q. In a kernel canonical answer, the fanout of each node is no more than bcd, since there are
no more than cd outgoing edges containing a common path pattern, and there are at most b different path
patterns in the query. Hence the size of the canonical answer is in O((bcd)d). Consider a specific node N in
the canonical answer. There are no more than m candidate labels for the edge leading to N . So the number

of kernel canonical answers is in O(m(bcd)d

). Hence, the time complexity of the algorithm is in O(m(bcd)d

).

Corollary 3.12. Testing containment for cc-XQueries with fixed nesting depth is in coNP. Testing contain-
ment for cc-XQueries with arbitrary nesting depth is in coNEXPTIME. �

Proof: Given two cc-XQueries Q and Q′, to check Q 6v Q′, we need to guess a kernel canonical answer of Q,
denoted as KCA; construct Q′ and Q’s canonical databases for KCA, denoted as DB′ and DB; and check
whether DB′ 6v DB. When the nesting depth is fixed, the size of a kernel canonical answer is polynomial in
the size of Q. Thus, constructing canonical databases and checking containment both take polynomial time.
Hence, query containment is in coNP. When the nesting depth is arbitrary, the size of a kernel canonical
answer is exponential in the nesting depth, thus query containment is in coNEXPTIME. �

From Corollary 3.12 and Theorem 3.8 we obtain Theorem 3.9.

Finally, we note that the complexity of query containment for cc-XQueries with arbitrary nesting depth
remains an open problem.

4 Containment of c-XQueries

We now consider general c-XQueries, which may return tag variables. A tag variable can be set to any
value in T , and therefore the number of candidate answers to a given query is infinite. Consequently, the
algorithms for cc-XQueries do not apply directly.

There are two key points underlying our algorithm for checking containment of c-XQueries. First, we
consider canonical answers that may contain variables. As we will see, the number of such canonical answers
is the same as we had in Section 3. Second, we check query containment by applying a more elaborate
procedure for each canonical answer. Specifically, we apply a condition called query simulation [28] to a pair
of indexed conjunctive queries that we create for each canonical answer. Since query simulation, albeit more
elaborate, is also in PTIME, we are able to show that the complexity results for c-XQueries are, for the most
part, the same as for cc-XQueries.

4.1 Simulation of Indexed Queries

We begin by explaining indexed conjunctive queries and the condition of query simulation, both from [28].
We represent indexed conjunctive queries using a datalog-like notation, as follows.

Q(Ī1; . . . ; Īm; V̄ ) : −X1R1Y1, . . . , XnRnYn
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The body of the indexed conjunctive query is similar to that of an ordinary conjunctive query (except that
we write XRY instead of R(X,Y )), but the head has a set of tuples of index variables, Ī1, . . . , Īm, in addition
to the head variables V̄ . An indexed conjunctive query produces a nested structure: the tuples V̄ of the
answer are grouped first by the index variables Ī1, then by Ī2, etc., and finally by Īm.

Formally, simulation is defined as follows.

Definition 4.1 (Query Simulation). Let Q and Q′ be two indexed conjunctive queries, each with m sets
of index variables. We say that Q′ simulates Q to depth m, denoted by Q �m Q′, if for any database:

∀Ī1.∃Ī
′
1 . . .∀Īm.∃Ī

′
m.[∀V̄ .

(Q(Ī1; . . . ; Īm; V̄ )⇒ Q′(Ī ′1; . . . ; Ī
′
m; V̄ ′))] �

In [28] it is shown that query simulation can be checked by establishing a simulation mapping from Q′ to
Q, defined as follows. We denote with Ij the set of index variables in Īj , j ∈ [1,m], with I the set of all index
variables, with V the set of non-index variables (head and non-head) of Q, and with C the set of constants.
For each j = 1, . . . ,m, the witness variables at level j are a fresh copy of Ij+1 ∪ · · · ∪ Im ∪V , denoted Wj ; in
particular,Wm is a fresh copy of V . We denoteQw

j a copy ofQ in which the variables in Ij+1∪· · ·∪Im∪V have
been replaced with those inWj , and letQw = Qw

1 ∪· · ·∪Q
w
m. Then a simulation mapping from Q′ to Q of depth

m is a mapping ϕ : I ′∪V ′ → I ∪W1∪ · · ·∪Wm∪V ∪C such that (1) ϕ(Body(Q′)) ⊆ Body(Q)∪Body(QW ),
(2) ϕ(V̄ ′) = V̄ , and (3) ϕ(I ′j) ∩ (Ij+1 ∪ · · · ∪ Im ∪ Wj+1 ∪Wm ∪ V) = ∅, j ∈ [1,m]. In our context, where
the body of the conjunctive query is acyclic, finding a simulation mapping can be translated into a tree
embedding problem, where the sizes of trees are polynomial in the sizes of the queries. Thus, checking
simulation for the indexed conjunctive queries we will create is in PTIME.

Compare a simulation mapping to a classical containment query mapping τ , where each variable in Q′

can be mapped to any variable in Q, s.t. (1) τ(Body(Q′)) ⊆ Body(Q), (2) τ(V̄ ′) = V̄ . As shown in the
following prepositions, query simulation is a generalization of query containment for indexed conjunctive
queries. Simulation reduces to query containment when there are no index variables.

Proposition 4.2. Let Q and Q′ be two flattened queries. If there is a simulation mapping from Q′ to Q,
there is a query mapping from Q′ to Q. �

Proof: Given a simulation mapping ϕ from Q′ to Q, we construct a classical containment mapping τ .
Construct mapping ψ : I ∪W1 ∪ · · · ∪Wm ∪ V ∪ C → I ∪ V ∪ C, sending each witness variable to its original
variable in the index, each witness conjunct in Qw to its original conjunct in the body of Q, and other
variables and conjuncts to themselves. Compose ϕ with ψ results in τ = ϕ ◦ ψ : I ′ ∪ V ′ → I ∪ V ∪ C. It’s
easy to verify τ is a mapping from Q′ to Q. �

Proposition 4.3. Let Q and Q′ be two flattened queries where V̄ = ∅. There is a simulation mapping from
Q′ to Q, iff V̄ ′ = ∅, and there exists a query mapping from Q′ to Q. �

Proof: The only if direction holds according to Proposition 4.2. We prove the if direction. Given a
classical query mapping τ from Q′ to Q, we construct a simulation mapping ϕ. Let ψ : I → I1 ∪W1 be a
mapping where each index variable in I1 is mapped to itself, and other index variables are mapped to their
witnesses in W1. Compose τ with ψ results in ϕ = τ ◦ ψ : I ′ ∪ V ′ → I ∪W1 ∪ V ∪ C. It’s easy to verify ϕ is
a simulation mapping from Q′ to Q. �

4.2 Query Containment Algorithm

In general, a c-XQuery may have an infinite number of candidate answers, given all the possible substitutions
to the tag variables. Recall that a head tree of a c-XQuery may contain tag variables. When creating
canonical answers, we treat the variables as constants. Hence, we can still represent all candidate answers
with a finite number of canonical answers.

Given a canonical answer CA, we create an indexed conjunctive query, which is a generalization of the
canonical database, as defined below.
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Definition 4.4 (Indexed Conjunctive Query for a Canonical Answer). Let Q be a c-XQuery and
CA be a canonical answer with depth d. Q’s indexed conjunctive query for CA, denoted as IQCA, has the
form

IQCA(Ī1; . . . ; Īd−1;V ) : −X1R1Y1, . . . , XnRnYn,

and is constructed in two steps. Let N be a node of CA on level k, k ∈ [1, d], and let q̂n be N ’s generator
query block in Q. First, if there exists any node M , which may be N ’s ancestor, descendant, or N itself,
where the incoming edge of M is labeled by a tag constant c from T , the generator query block of M returns a
tag variable T , and T also occurs in q̂n, we substitute T with c in q̂n. Second, we compose IQCA as follows:

• If k < d, then Īk includes every fresh node variable and tag variable of q̂n.

• V̄ includes the returned tag variable in q̂n, if any.

• The body includes every conjunct in q̂n. �

We can now show how to test query containment for c-XQueries. The following theorem shows that
it suffices to check query simulation on pairs of indexed conjunctive queries generated from the canonical
answers. In the theorem, IQCA (IQ′

CA) refers to Q’s (Q′’s) indexed conjunctive query for CA.

Theorem 4.5. Let Q and Q′ be two c-XQueries. The containment Q v Q′ holds iff for every canonical
answer CA of Q, (1) CA is a canonical answer of Q′ (modulo variable isomorphism); and (2) IQCA � IQ′

CA.
�

Proof: From the definition of query simulation, it is easy to verify that conditions (1)(2) hold, iff for every
canonical answer CA and its canonical database DBCA, we have Q(DBCA) v Q′(DBCA). Composing this
with Theorem 3.4 gives that conditions (1)(2) hold iff Q v Q′. �

Example 4.6: Consider query Q in the example of section 2. Given the head tree, shown in Figure 2(b),
as the canonical answer CA, the indexed conjunctive query for CA is the following (note that tag names are
abbreviated):

IQCA(X ;W,Y ;S, T ) : −<pX,XtW,WSV,XmY, Y TZ

Note that the last XML instance shown in Figure 5(a), denoted as CA′, is also a canonical answer of Q
by applying variable isomorphism. The indexed conjunctive query for CA′ is the following:

IQCA′(X ;Y1, Y2; ∅) : −<pX,XmY1, XmY2, Y1aZ1, Y2bZ2

By applying Theorem 4.5, we can justify that the query Q′ in Example 3.1 is contained in the above
query Q, but not the other way around. �

Together with the insights into kernel canonical answers from Section 3, we obtain the following com-
plexity results, which show that the introduction of output tag variables does not make the containment
problem harder. (Note that the first bullet is slightly weaker than Theorem 3.7. We require that Q has
fanout 1, rather than this holding for either Q or Q′.)

Theorem 4.7. Let Q and Q′ be c-XQueries.

• If Q has a maximal fanout of 1, then query containment is in PTIME.

• For arbitrary fanout, if either Q or Q′ has fixed nesting depth, then containment is coNP-complete.

• Otherwise, containment is in coNEXPTIME. �

5 Extensions to c-XQuery

The previous section established the basic complexity results on query containment for conjunctive XML
queries with nesting. This section discusses several extensions of c-XQueries that occur frequently in appli-
cations.
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5.1 Union and Disjunction

Union can be introduced into XML queries when two sibling query blocks return XML objects with the same
tag. This happens when either two sibling query blocks return the same tag constant, or when at least one
of the siblings returns a tag variable, which may be instantiated to the same value returned by the other
sibling. We call such queries u-XQueries.

We start with constant queries, which may contain unions only in the first form. Each of such queries,
Q, can be rewritten as a union of cc-XQueries as follows:

1. Suppose Q contains a subquery in the shape of

Q′ ::= for B return [T , {Q1, Q2, . . . , Qn}],

where there exist i, j, i, j ∈ [1, n], i 6= j, s.t. Qi and Qj return the same tag constant. Then the union
of cc-XQueries for Q is the union of all cc-XQueries for Q where Q′ does not contain Qi, and all
cc-XQueries for Q where Q′ does not contain Qj .

2. If Q is a cc-XQuery, then the union of Q is Q itself.

Similar to Theorem 3.4, we prove the following theory.

Theorem 5.1. Let Q =
⋃n

i=1 CQi and Q′ =
⋃m

j=1 CQ
′
j be two u-XQueries composed of unions of cc-

XQueries. The following three conditions are equivalent:

1. Q v Q′;

2. for every i ∈ [1, n] and every canonical database DB of CQi, Q(DB) v Q′(DB);

3. for every i ∈ [1, n] and every canonical answer CA of CQi, there exists j ∈ [1,m], s.t. (1) CA is a
canonical answer of CQ′

j ; and (2) DB′
j,CA v DBi,CA. �

In a similar fashion, we consider the second form of union. To simplify, we first assume in the query there
is no union in the first form. We rewrite each query, Q, as a union of c-XQueries as follows:

1. Suppose Q is a query in the shape of

Q ::= for B return [T , {Q1, Q2, . . . , Qn}],

where there exists i, i ∈ [1, n], s.t. Qi returns a tag variable. Then the union of cc-XQueries for Q is
the union of all c-XQueries for Q where Q′ only contains Qi, and all c-XQueries for Q where Q′ does
not contain Qi.

2. If Q is a cc-XQuery, then the union of Q is Q itself.

For a general u-XQuery, we combine the above to rewrite it as a union of c-XQueries. Note that the
number of the c-XQueries is linear in terms of the size of the u-XQuery. Similarly, we have the following
theorem.

Theorem 5.2. Let Q =
⋃n

i=1 CQi and Q′ =
⋃m

j=1 CQ
′
j be two u-XQueries composed of unions of c-

XQueries. Containment Q v Q′ holds iff for every i ∈ [1, n], and every canonical answer CA of CQi, there
exists j ∈ [1,m], s.t. (1) CA is also a canonical answer of CQ′

j , and (2) IQi,CA � IQ′
j,CA.

Next, we show that adding unions to c-XQueries does not increase the complexity of the containment
problem. The key ingredient is to show that checking simulation on an existence quantifier of Theorem 5.1
can still be done in polynomial time in the size of the canonical database.

Theorem 5.3. Let Q and Q′ be u-XQueries. Query containment is in PTIME when Q has nesting depth
of 1, or Q has maximal fanout of 1; query containment is coNP-complete if Q has a fixed nesting depth. �
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Proof: The lower bounds are no less than that of the query containment problem for c-XQueries. Now we
prove the upper bound.

In case (1) and (2), the number and size of canonical databases are bounded by the size of Q and Q′.

Given CA, a canonical answer of Q, we construct the indexed queries for CA, denoted as IQCA and
IQ′

CA, in the same way as stated in Definition 4.4, except that when constructing IQ′
CA, (1) for each node

of CA, we repeat the process for every candidate generator query block; (2) let q̂1 and q̂2 be two disjunctive
query blocks; we mark variables for q̂1 as a back-up of variables for q̂2. Now we find the simulation from IQ′

CA

to IQCA. This can be reduced to a tree embedding problem, where the embedding condition is loosened so
that a node P can be mapped to a node Q as far as P ’s children or the respective back-up children can be
mapped to children of Q. Establishing such an embedding is in polynomial time of the size of the canonical
database, thus in polynomial time of the query size.

In case (3), let Q =
⋃n

i=1 CQi and Q′ =
⋃m

j=1 CQ
′
j be two u-XQueries. We describe a non-deterministic

polynomial algorithm, that checks whether there exists i ∈ [1, n] and a canonical answer of CQi, none of
j ∈ [1,m] satisfies both conditions (1)(2) in Theorem 5.1. We guess i ∈ [1, n] and a canonical answer CA.
Similar to the cases of (1) and (2), it takes polynomial time to decide whether none of j ∈ [1,m] satisfies
both conditions (1)(2). So the problem is in co-NP. �

Disjunctions in the query’s XPath expression or WHERE-clause is another way of expressing certain
types of unions. This case can be translated into the above cases, but with an exponential blowup in the size
of the resulting queries. We refer to queries with disjunctions as d-XQueries. We have the following result.

Theorem 5.4. Let Q and Q′ be d-XQueries. Query containment is coNP-complete in each of the following
cases:

• Q has nesting depth of 1,

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth.

If Q is a c-XQuery, then the complexity results of Theorem 4.7 still apply. �

The difference between Theorem 5.3 and Theorem 5.4 is that the lower bound of case (1) and (2) rises to
co-NP hard. This result is analogous to the relational case, where containment for conjunctive queries and
containment for queries with unions are both NP-complete, while containment for disjunctive queries (when
union can occur anywhere in the query) is Πp

2 complete. The complexity of the first two cases also increases
when we consider negation and descendant edges.

5.2 Negation

We consider XQueries where predicates in XPath expressions can contain the “not” operator (e.g. person[not paper]).
This type of negation is similar in spirit to “NOT EXISTS” in SQL. We refer to such queries as c-XQueries¬.

Following the spirit of containment checking for relational queries[27], every canonical answer of a c-
XQueries¬n may correspond to several indexed queries, and we need to check containment on each of them.
We construct the indexed queries for a canonical answer CA of Q as follows: (1) Construct a model indexed
query as in Definition 4.4, ignoring the negated conjuncts. (2) Consider all possible partitions of node
variables in the model indexed query. For each one, we merge all nodes in the same group into a single
node (without destroying the tree structure), resulting in an indexed query. For query containment Q v Q′

to hold, it must be the case that every indexed conjunctive query IQCA of Q either violates the negation
predicates in Q, or satisfies IQCA � IQ′

CA.

Example 5.5: Consider the following c-XQueries¬ Q¬ with negation ¬Y bW .

Q¬: for <pX ′ return
[g, {

for <pX,XmY return
[n, {
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|g p/|p\p p/\p p/|p |p

n/ \n X’ X1 X2 (X’)X1 X2 X’ X1(X2) X1(X2,X’)

a| |b |m |m |m |m |m |m

Y1 Y2 Y1 Y2 Y1(Y2) Y1(Y2)

|a |b |a |b a/ \b a/ \b

Z W Z W Z W Z W

(a) (b) (c)

Figure 7: (a)Q¬’s canonical answers, CA; (b)the model canonical database for CA; (c) extended canonical
databases for CA.

for Y aZ,¬Y bW return
[a, {}]
for Y bW return
[b, {}]

}]
}]

Since Q¬ does not return tag variables, we discuss canonical database to simplify. Given the canonical
answer in Figure 7(a), the model canonical database obtained according to the definition for c-XQueries is
shown in Figure 7(b). Without destroying the tree structure, we can group nodes among X ′, X1 and X2; if
we group nodes X1 and X2, we also need to group nodes Y1 and Y2. The result canonical databases for this
particular canonical answer are shown in Figure 7(b)(c).

We compare Q¬ with Q in Example 3.1. Q¬ is the same as Q except that it has an additional negative
predicate.

We first check whether Q¬ v Q. Consider the canonical answer CA shown in Figure 7(a), and its
corresponding canonical databases shown in Figure 7(b)(c). The last two canonical databases in (c) do not
satisfy the negation predicates in Q. The rest one in (c) and the one in (b) both satisfy DB ′

CA v DBCA. In
a similar fashion we check canonical databases for other canonical answers of Q, and conclude Q¬ v Q.

Now we check whether Q v Q¬. CA in Figure 7(a) is also a canonical answer of Q′, and its corresponding
canonical databases of Q′ are the same as those of Q, shown in Figure 7(b)(c). Because Q′ does not contain
any negation predicates, we need to check DB′

CA v DBCA on all of the four canonical databases. Because
of the negation predicates in Q, the containment does not hold for the last two canonical databases in Figure
7c. This implies Q′ 6v Q. �

We show the following complexity result.

Theorem 5.6. Let Q and Q′ be c-XQueries¬. Query containment is coNP-complete in each of the following
cases:

• Q has nesting depth of 1,

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth. �

Proof:The problem is in co-NP. Let Q and Q′ be two c-XQueries¬. We describe a non-deterministic
polynomial algorithm. We guess a kernel canonical answer CA and a possible partition of the node variables
in CA. In the three cases stated above, it takes polynomial time to decide whether IQCA � IQ′

CA. Hence,
containment of d-XQueries is in co-NP.

The problem is co-NP hard. Follow from the result of testing containment of acyclic queries with negation.
�

5.3 Descendant Edges

We refer to c-XQueries in which the XPath expressions contain the descendant axis (//) as c-XQueries//.
Recall that wildcards(*) and branching([...]) are already allowed in c-XQueries. In [30] it is shown that
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containment of XPath expressions with //,* and [...] is coNP-complete. The following theorem shows that
nesting with fixed depth does not increase the complexity of containment.

Theorem 5.7. Let Q and Q′ be c-XQueries//. Query containment is coNP-complete in each of the following
cases:

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth.

If the number of // in Q is fixed, then the complexity results of Theorem 4.7 still apply. �

Proof: By applying the technique in [30], given a c-XQuery//, we guess a kernel canonical answer CA, and
an indexed query IQCA (by guessing the number of edges for each descendant edge). Checking simulation
with consideration of descendant edges takes polynomial time. The problem is coNP-hard following that
containment of such XPath expressions is already coNP-hard. �

5.4 Equi-join Predicates

We consider equi-join predicates on tag variables. They result in cyclic queries, where simulation mapping
becomes NP-complete [28]. We refer to c-XQueries with equi-join predicates on tag variables as c-XQueries=.

Theorem 5.8. Testing containment of c-XQueries= with maximal fanout 1 is NP-complete. Testing con-
tainment of c-XQueries= with arbitrary fanout but a fixed nesting depth is Πp

2-complete. �

Proof: c-XQueries= with maximal fanout 1: Testing containment can be reduced to query simulation in
polynomial time, so it is NP-complete.

c-XQueries= with arbitrary fanout but fixed depth: We guess a kernel canonical answer CA, and decide
IQCA 6� IQ′

CA by a co-NP oracle. So the problem is in Π2
p. Π2

p hardness is proved by reduction from the
∀∃-CNF problem.

Let ψ be a 3-CNF formula with variables x1, . . . , xn, y1, . . . , yp and clauses c1, . . . , cm. The ∀∃-CNF
problem asks whether for each truth assignment ν to x̄, there exists a truth assignment to ȳ that satisfies ψ.

We construct two queries cc-XQueries, Q and Q′, s.t. ψ is satisfiable iff Q 6v Q′. We show that for each
truth assignment to x̄, ψ is satisfied by an assignment ν to ȳ, iff we can construct from ν a canonical answer
CA of Q, such that CA is also a canonical answer of Q′, DB′

CA and DBCA satisfy DB′
CA v DBCA. Hence,

the proof follows from Theorem 4.5(3).

Both Q and Q′ have two levels: a top-level query block, and 2n children blocks. In each query, the top
level block returns the tag u; for each variable xi, i ∈ [1, n], there are two children query blocks on the second
level, returning vi and wi respectively. Hence, Q and Q′ have exactly the same canonical answers.

In query Q, there are three groups of conjuncts. Group A contains 7m + 2n + 2p + 1 conjuncts in the
top-level query block. There is one conjunct <aV . For each clause cj , j ∈ [1,m], there are seven conjuncts:
<djC

k
j , k ∈ [1, 7]. For each variable Xi, i ∈ [1, n], there are two conjuncts V xiXi and V xiX

′
i. For each

variable Yi, i ∈ [1, p], there are two conjuncts V yiYi and V yiY
′
i .

In group B, there are 21m conjuncts. For each clause cj , j ∈ [1,m], there are seven satisfying assignments.
In the top-level query block, if yi is assigned true in the k, k ∈ [1, 7]-th assignment, there is a conjunct CksYi

in the top-level query block; if yi is assigned false, there is a conjunct CksY
′
i in the top-level query block.

In addition, if xi is assigned true in the k-th assignment, there is a conjunct CksXi in the query block that
returns vi; if if xi is assigned false in the k-th assignment, there is a conjunct CksX

′
i in the query block

that returns wi.

In group C, there are n(4m+ n+ p) conjuncts in total. For each variable xl, l ∈ [1, n], there are 4m+ p
conjuncts in the top-level query block. For each clause cj , j ∈ [1,m], there is a conjunct <djB

l
j . For each

variable yi, i ∈ [1, p], there is a conjunct V yiY
l
i . If variable yi, i ∈ [1, p] occurs in clause cj , j ∈ [1,m], there

is a conjunct Bl
jsY

l
i . If variable xi, i ∈ [1, n] occurs in clause cj , j ∈ [1,m], there is a conjunct Bl

jsX
l
i . There

are n conjuncts in the second-level query block. For each variable xi, x ∈ [1, n−1], there is a conjunct V xiX
l
i

in the query block returning vi. Besides, there is a conjunct V xnX
l
n in the query block returning wi.
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Figure 8: (a) An example canonical answer CA of Q that corresponds to an assignment ν in which x1 =
true, x2 = false; (b) Q and Q′’s canonical databases for CA.

Now we consider query Q′. In the top-level query block, there is one conjunct <aV . Besides, for each
variable Xi, i ∈ [1, n], there is a conjunct V xiXi. For each variable Yi, i ∈ [1, p], there is a conjunct V yiYi.
For each clause cj , j ∈ [1,m], there is a conjunct <djBj . If variable yi occurs in clause cj , there is a conjunct
CjtYi. In the second-level query blocks, if variable xi occurs in clause cj , there is a conjunct CjsXi in the
query block that returns vi and the one that returns wi.

As an example, consider the formula ψ = (x1 ∨ x2 ∨ ¬y1) ∧ (¬x1 ∨ x2 ∨ y1). We build the following two
queries.

Q: for <aV, V x1X1, V x1X
′
1, V x2X2, V x2X

′
2, V y1Y1, V y1Y

′
1 , V y1Y

1
1 , V y1Y

2
1 ,

<d1C
1
1 , · · · ,<d1C

7
1 ,<d2C

1
2 , · · · ,<d2C

7
2 ,

C1
1 tY1, C

2
1 tY1, C

3
1 tY1, C

4
1 tY

′
1 , C

5
1 tY1, C

6
1 tY

′
1 , C

7
1 tY

′
1 ,

C1
2 tY1, C

2
2 tY1, C

3
2 tY1, C

4
2 tY

′
1 , C

5
2 tY1, C

6
2 tY

′
1 , C

7
2 tY

′
1 ,

<d1B
1
1 , B

1
1sX

1
1 , B

1
1sX

1
2 , B

1
1sY

1
1 ,<d2B

1
2 , B

1
2sX

1
1 , B

1
2sX

1
2 , B

1
2sY

1
1 ,

<d1B
2
1 , B

2
1sX

2
1 , B

2
1sX

2
2 , B

2
1sY

2
1 ,<d2B

2
2 , B

2
2sX

2
1 , B

2
2sX

2
2 , B

2
2sY

2
1 return

[u, {
for C1

1sX1, C
3
1sX1, C

4
1sX1, C

7
1sX1, C

2
2sX1, C

5
2sX1, C

6
2sX1, V x1X

1
1 return

[v1,{}]
for C2

1sX
′
1, C

5
1sX

′
1, C

6
1sX

′
1, C

1
2sX

′
1, C

3
2sX

′
1, C

4
2sX

′
1, C

7
2sX1, V x2X

1
2 return

[w1,{}]
for C1

1sX2, C
2
1sX2, C

4
1sX2, C

6
1sX2, C

1
2sX2, C

2
2sX2, C

4
2sX2, C

6
2sX2, V x1X

2
1 return

[v2,{}]
for C3

1sX
′
2, C

5
1sX

′
2, C

7
1sX

′
2, C

3
2sX

′
2, C

5
2sX

′
2, C

7
2sX

′
2, V x2X

2
2 return

[w2,{}]
}]

Q’: for <aV, V x1X1, V x2X2, V y1Y1,<d1C1,<d2C2, C1sY1, C2sY1 return
[u, {

for C1sX1, C2sX1 return
[v1,{}]
for C1sX1, C2sX1 return
[w1,{}]
for C1sX2, C2sX2 return
[v2,{}]
for C1sX2, C2sX2 return
[w2,{}]

}]

We construct CA from ν, as follows. Consider a two-level canonical answer, which has a single node with
incoming edge labeled u on the first level. There is a node with incoming edge labeled vi, iff ν(xi) = true;
there is a node with incoming edge labeled wi, iff ν(xi) = false. Based on this, we partition these canonical
answers into three classes. If both vi and wi occur in CA, or neither vi or wi occurs in CA, we say the
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canonical answer corresponds to an invalid assignment. The former is called a conflict assignment, and
the latter is called a missing assignment. Otherwise, the canonical answer must correspond to a valid
assignment. If given the assignment, there does not exist a satisfying assignment for ψ, we say the canonical
answer corresponds to a bad assignment. If there exists a satisfying assignment for ψ, we say the canonical
answer corresponds to a good assignment. In our example, a canonical answer that corresponds to the
assignment x1 = true, x2 = false is shown in Figure 8(a).

Constructing Q and Q′ takes polynomial time. Now we show that Q v Q′ iff ψ is satisfiable given any
assignment for x̄.

if We first discuss two-level canonical answers CA of Q that correspond to a valid assignment ν. Since
given any assignment for x̄, there exists a satisfying assignment µ for ψ. So CA corresponds to a good
assignment. There exists a graph embedding from DB′

CA to DBCA, sending V in DB′
CA to V in DBCA,

sending each Ci, i ∈ [1,m] to a Cj
i , j ∈ [1, 7], sending each Xi, i ∈ [1, n] to Xi if ν(xi) = true or X ′

i otherwise,
and sending each Yi, i ∈ [1, p] to Yi if µ(yi) = true or Y ′

i otherwise. Thus, DB′
CA v DBCA.

To illustrate, the canonical answer in Figure 8(a) corresponds to a good assignment for the given example.
The two canonical databases, DBCA and DB′

CA, are shown in Figure 8(b). There is a graph embedding
sending V,C1, C2, X1, X2, Y1 in DB′

CA to V,C3
1 , C

5
2 , X1, X

′
2, Y1 respectively.

If a two-level canonical answers CA of Q corresponds to an invalid assignment, there are two cases. In
case CA corresponds to a conflicting assignment, where both vl and wl, l ∈ [1, n] occur in CA. Consider the
subgraph containing nodes V,C l

j , j ∈ [1,m], X l
i , i ∈ [1, n], Y l

k , k ∈ [1, p] and associated edges in DBCA. It’s
trivial that there exists a graph embedding from DB′

CA to this subgraph. Thus, DB′
CA v DBCA.

In case CA corresponds to a missing assignment, where neither vl nor wl, l ∈ [1, n] occurs in CA. In
DB′

CA there does not exist any edge from a node representing a clause to a node representing a quantitative
variable. Consider the subgraph containing nodes V,C l

j , j ∈ [1,m], Y l
k , k ∈ [1, p], Xi, i ∈ [1, n] and associated

edges in DBCA. It’s trivial that there exists a graph embedding from DB′
CA to this subgraph. Thus,

DB′
CA v DBCA.

Finally, it’s easy to verify that for the empty canonical answer CA0 and the one-level canonical answer
CA1 of Q, we have DB′

CA0
v DBCA0 , DB

′
CA1
v DBCA1 . This proves Q v Q′.

only if Assume ψ is not satisfiable. Then there must be an assignment ν, s.t. there does not exist
a satisfying assignment µ for ψ. The canonical answer CA of Q for ν corresponds to a bad assignment.
Trivially, there does not exist a graph embedding from DB ′

CA to DBCA. So DB′
CA 6v DBCA, and so

Q′ 6v Q. �

5.5 Arithmetic Comparisons

We consider arithmetic comparisons on tag variables. We assume the comparison predicates are interpreted
over an ordered and dense domain, and we consider the predicates < and ≤. We refer to queries with
arithmetic comparisons as c-XQueries≤.

In [36] it is shown that containment of cyclic queries with arithmetic comparisons is Πp
2-complete. We

show the following. Similar to the case of containment checking for queries with negations, every canonical
answer may correspond to several indexed queries. We need to check containment on each of them. Given
a canonical answer, we construct indexed queries in three steps: (1) construct a model indexed query as in
Definition 4.4 ignoring arithmetic comparison predicates; (2) Consider all possible partitions of tag variables
in the model indexed query. For each one, consider tag variables in the same group as having the same
value, assign order to different variable groups and also tag constants occurring in the queries, resulting in
an indexed query.

For query containment Q v Q′ to hold, it must be the case that every indexed conjunctive query IQCA

of Q either violates the negation predicates in Q, or satisfies IQCA � IQ′
CA. We show the following:

Theorem 5.9. Let Q and Q′ be c-XQueries≤. Query containment is Πp
2-complete in each of the following

cases:

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth. �
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Table 1: Complexity Results for Containment of Nested XML Queries
With With With

Nesting cc-XQueries c-XQueries With With Descendant Equi-join Arithmetic
Type Union Negation Edges (//) on Tags Comparisons

Fanout=1 PTIME PTIME coNP coNP coNP NP Πp
2

Arbitrary Depth complete complete complete complete complete
Arbitrary Fanout coNP coNP coNP coNP coNP Πp

2 Πp
2

Fixed Depth complete complete complete complete complete complete complete
General in coNEXPTIME

Proof: The lower bound follows from Theorem 5.8. Now we prove the upper bound. We guess a kernel
canonical answer CA, a tag partition, and an order assignment; then we decide IQCA 6� IQ′

CA by a co-NP
oracle. So the problem is in Π2

p. �

6 Conclusions

We considered the complexity of query containment for XML queries with nesting. Our results are sum-
marized in Table 1. Our main result is that query containment is coNP-complete for queries with bounded
nesting depth, under a variety of conditions. If we consider queries with maximal fanout of 1, then we are
able to obtain PTIME results in some cases. The main open gap in the complexity analysis is the case of
queries with arbitrary nesting depth.

In addition to closing that gap, we are also interested in the complexity of containment when the schema
of the input documents is known (hence possibly reducing the number of canonical answers for consideration).
We are also building on our containment results to develop algorithms for answering queries using views,
where both the queries and the views contain nesting.
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