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ABSTRACT
Data integration is a challenging task due to the large numbers of
autonomous data sources. This necessitates the development of
techniques to reason about the benefits and costs of acquiring and
integrating data. Recently the problem of source selection (i.e.,
identifying the subset of sources that maximizes the profit from in-
tegration) was introduced as a preprocessing step before the actual
integration. The problem was studied for static sources and used
the accuracy of data fusion to quantify the integration profit.

In this paper, we study the problem of source selection consid-
ering dynamic data sources whose content changes over time. We
define a set of time-dependent metrics, including coverage, fresh-
ness and accuracy, to characterize the quality of integrated data.
We show how statistical models for the evolution of sources can
be used to estimate these metrics. While source selection is NP-
complete, we show that for a large class of practical cases, near-
optimal solutions can be found, propose an algorithmic framework
with theoretical guarantees for our problem and show its effective-
ness with an extensive experimental evaluation on both real-world
and synthetic data.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous; G.3 [Mathematics
of Computing]: [Probability and Statistics]

General Terms
Algorithms, Experimentation, Performance

Keywords
Source Selection; Data Integration; Dynamic Data Sources

1. INTRODUCTION
Integrating data from multiple sources is essential in a growing

number of application domains, including large scale enterprises
that own many data sources, prediction of societal events, such
as disease outbreaks, and targeted data analytics where streams
of Web and social media data are heavily used. Analyzing multi-
ple data sources collectively can significantly enhance the value of
data; however, acquiring and integrating data comes with a mone-
tary and computational cost. To reason about the profits of integra-
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tion and find the optimal subset of sources to be integrated, Dong et
al. [3] introduced the problem of source selection focusing on static
sources, that is, data sources whose content does not change over
time. Often, however, data sources are dynamic (i.e., their content
changes over time) raising several challenges. Next, we use two
real-world scenarios to illustrate these challenges.

1.1 Challenges
The first scenario is that of listing aggregation, such as business,

job or rental listings. Typically, aggregators offer a search service
to end users by integrating listings from multiple sources. Each
source provides a set of listings and regular updates as new list-
ings become available, or existing listings get updated or removed.
Specifically, we consider aggregating business listings (BL) from
43 data sources providing records for US businesses over 2 years.

A second scenario that is increasingly popular is that of collec-
tive analysis of online news media for societal-event monitoring [7,
18]. Here, the analyst integrates events mentioned in a diverse
set of news media sources and analyzes them collectively to de-
tect patterns characterizing her domain of interest. In particular,
we consider the Global Database of Events, Languages and Tone
(GDELT) [10] where news articles from 15,275 sources are aggre-
gated in a single repository over one month for analytic tasks.

The first challenge stems from the fact that sources that update
their data more frequently are not always more effective at captur-
ing changes in a timely manner.

EXAMPLE 1. We focus on BL and the freshness of each source
(i.e., the ratio of provided up-to-date listings to the total number
of listings in the source) and the update frequency of each source.
Figure 1(a) shows the average update frequency and average fresh-
ness for each source over the 2 year time window. We observe that
there is no clear correspondence between the update frequency and
freshness of a source and see that sources with high update fre-
quencies may have low freshness, indicating that sources may add
to their content frequently but are ineffective at deleting stale data
or capturing value changes of previous data items. 2

Even sources with similar update frequencies exhibit different
levels of staleness, as exemplified next in our second domain.

EXAMPLE 2. We consider the 20 largest sources from GDELT
and examine how effective sources are at reporting events in a
timely manner. Figure 1(d) shows the average delay with which
events are reported and the corresponding fraction of delayed events
over the total content of each source over one month. While all
sources get updated daily, we see that a significant fraction of events
are reported with delays.2

The second challenge is that the quality of available sources may
change over time and often the subset of sources that maximizes
the integration quality may also change over time.
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Figure 1: (a) Average update frequencies and average freshness of data sources in BL. (b) Coverage evolution for two sets of sources
in BL. (c) Evolution of coverage for the largest source, when incorporating updates with different frequencies for BL. (d) Average
delay and fraction of delayed event mentions for the 20 largest sources in GDELT. All sources get updated every day. (e) Coverage
evolution for two sets of sources for GDELT corresponding to events in the US. (f) Evolution of coverage for the largest source, when
incorporating updates with different frequencies for GDELT.

EXAMPLE 3. We focus on listings for a single state in BL and
consider the coverage (i.e., the ratio of provided instances to total
number of instances in the domain) of the integration result for two
sets of sources. Both sets contain the two largest sources. More-
over, the first set contains one other source while the second set
contains three other sources, with comparable sizes to the source
added in the first set. Figure 1(b) shows the evolution of cover-
age for the two sets. Switching to GDELT, we focus on events for
the United States and consider two sets of sources, both containing
the two largest sources. The first one contains two extra smaller
sources, while the second has three other sources of comparable
size. Figure 1(e), shows the coverage evolution for the two sets. In
both cases, we observe that the coverage of the two sets differs over
time, and the set with the highest quality varies across time. 2

Finally, the third challenge is that choosing to integrate data from
a source at a lower frequency than the source update frequency can
lead to similar integration quality but reduced cost.

EXAMPLE 4. For BL, we consider the evolution of coverage for
the largest source, when its updates are acquired at half the update
frequency. As shown in Figure 1(c), the quality loss is not signif-
icant while the cost is reduced significantly since only half of the
updates are acquired. We observe the same behavior in GDELT as
illustrated in Figure 1(f).2

1.2 Contributions
Motivated by these examples, we study the problem of time-

aware source selection, that is, reasoning about the profit of acquir-
ing and integrating dynamic sources to select the optimal subset of
sources to be integrated. We build upon the work by Dong et al. [3]
that solved this problem for static sources.

We propose a framework that provides the necessary building
blocks to derive rigorous time-dependent definitions for data qual-
ity metrics, such as coverage and freshness, and statistically mod-
els the complex update patterns and data quality changes of differ-
ent data sources. These models enable us to efficiently and accu-
rately estimate the aforementioned quality metrics at different time
points. Our main contributions are as follows:

• We introduce the problem of time-aware source selection, where
we consider time-dependent data quality metrics to describe the
benefit of data integration, and in addition to selecting a sub-
set of sources, we decide the optimal frequency to acquire data
from each source (Section 2).
• We introduce a theoretical framework using statistical models

to describe the quality and data update patterns of dynamic
sources. An overview is presented in Section 2.3 and its com-
ponents are discussed in detail in Sections 3 and 4.
• While the problem of time-aware source selection is NP-complete

[3], we show that many of its instances correspond to well-
studied submodular optimization problems for which efficient
local-search algorithms with rigorous theoretical guarantees are
known (Section 5).
• Finally, we show that our techniques can efficiently find near-

optimal solutions on both real-world and synthetic data that
contain large numbers of data sources exhibiting various update
patterns (Section 6).

2. AN OVERVIEW
In this section we briefly review the source selection problem

for static sources. We formally define the problem of time-aware
source selection and present an overview of our solution.

2.1 Source Selection
Given a set of data sources, we assume two predefined functions

that measure the cost and gain of integration. The cost of inte-
gration is a function of the monetary cost to acquire data, and the
total resources (including time) needed for integration. The gain
quantifies the benefit from the integration and is a function of the
integration quality using the same unit as for cost. We define source
selection as follows:

DEFINITION 1. (SOURCE SELECTION [3]) Let S̄ be a set of
sources, F be an integration model, GF (·) be a gain function and
CF (·) a cost function using model F , and βc be a budget on cost.
The Source Selection problem finds a subset SI ⊆ S̄ that maximizes
GF (SI)− CF (SI) under constraint CF (SI) ≤ βc.



Figure 2: Sources covering different parts of the data domain.

Dong et al. [3] show how GF (SI) can be defined in the context
of data fusion as the accuracy of the integration result, and use an
additive cost function over the costs of the selected sources.

2.2 Selecting Fresh Sources
We consider a data domain Ω where entities change dynamically

over time, that is new entities may appear, disappear or the values
of existing entities may change over time. In the remainder of the
paper we will refer to this domain as the world for convenience.
Dynamic sources can be viewed as observers of the world that up-
date their content by capturing changes in the world.

DEFINITION 2. A data source S is dynamic when it is updating
its content by capturing entity appearances, disappearances and
value changes from a data domain Ω with a frequency fS .

We assume knowledge of the data evolution for a past time window
T ending at time t0. We consider a fixed set of future time points,
denoted by Tf , and we wish to maximize the profit of integration
for Ω and Tf . Let GF (SI , Tf ) be the overall gain of integrating
SI using model F for Tf , and CF (SI , Tf ) be the corresponding
integration cost. With GF (SI , t) denoting the gain of integrating
SI for a single time point t ∈ Tf , and At∈Tf denoting an aggre-
gate function (e.g., average or max) over the time points in Tf we
define the overall gain as GF (SI , Tf ) = At∈TfGF (SI , t). Sim-
ilarly to Dong et al. [3] we assume an additive cost model with
CF (SI , Tf ) =

∑
S∈SI

C(S, Tf ), where C(S, Tf ) denotes the
cost of source S ∈ SI for Tf . We define the problem of time-
aware source selection as follows:

DEFINITION 3. (TIME AWARE SOURCE SELECTION) Let S̄ be
a set of sources, F be an integration model, and βc be a budget on
cost. Let Tf be a set of time points of interest. The Time-Aware
Source Selection problem finds a subset SI ⊆ S̄ that maximizes
GF (SI , Tf )−CF (SI , Tf ) under the constraintCF (SI , Tf ) ≤ βc.

Generalizing the analysis by Dong et al. [3] one can easily show
that time-aware source selection is NP-complete. Next, we intro-
duce two variations of the basic time-aware source selection.
Varying update frequencies: Instead of acquiring every source
update, we consider acquiring updates at slower frequencies to re-
duce cost (Example 4). In this version of the time-aware source
selection problem, we wish to select both the subset of sources that
maximizes the integration profit and their optimal frequencies with
which updates should be acquired. Given a set of selected sources
SI and their selected frequencies fSI let GF (SI , fSI , Tf ) denote
the integration gain of SI , under model F , with the frequencies
specified in fSI for TF , and CF (SI , fSI , Tf ) denote the corre-
sponding integration cost. We have the following definition:
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Figure 3: Framework overview.

DEFINITION 4. (VARYING FREQUENCY SOURCE SELECTION)
Let S̄ be a set of sources with variable update frequencies, F be an
integration model, and βc be a budget on cost. Let Tf be a set
of time points of interest. The Varying Frequency Source Selection
problem finds a subset SI ⊆ S̄ and their corresponding update fre-
quencies fSI that maximize GF (SI , fSI , Tf ) − CF (SI , fSI , Tf )
under the constraint CF (SI , fSI , Tf ) ≤ βc.

Integrating slices of data: Often the data domain Ω can be high-
dimensional, characterized by a set of discrete dimensions DΩ, and
sources may exhibit significant differences in the types of data they
cover. Instead of acquiring all the entities from a source, we con-
sider acquiring only a subset (i.e., a slice) to reduce the cost.

To illustrate, we consider the business listings and two dimen-
sions: (a) the location of the listing and (b) the category of business
(e.g., restaurants in New York). Figure 2 shows three data sources:
(1) one providing entities for most location-category pairs, (2) one
providing entities for a specific set of locations but across all cate-
gories, and (3) one providing entities for a specific set of categories
but across all locations. A user focusing on certain locations may
consider acquiring the second source and small parts of the first
source to increase the overall coverage at a reduced cost.

In such cases, sources can be viewed as aggregates of multiple
micro-sources, i.e., elemental sources focusing on certain slices of
the data domain. The basic definition of time-aware source selec-
tion can be extended to account for this case as follows:

DEFINITION 5. (SLICE TIME AWARE SOURCE SELECTION)
Let S̄m be a set of micro-sources corresponding to slices obtained
from a set S̄ of data sources, F be an integration model, and βc be
a budget on cost. Let Tf be a set of time points of interest. The Slice
Time-Aware Source Selection problem finds a subset SI ⊆ S̄m
that maximizes GF (SI , Tf ) − CF (SI , Tf ) under the constraint
CF (SI , Tf ) ≤ βc.

The SLICE TIME AWARE SOURCE SELECTION problem can be
easily extended to identify optimal update frequencies as well.



2.3 Overview and Scope of Proposed Solution
The different components of our proposed framework for solv-

ing time-aware source selection are shown in Figure 3. Assuming
knowledge of data changes over a past time window T , we build
a collection of statistical models that describe the update patterns
in the world and the sources. We also construct a profile for each
source summarizing its content at the end of T , and its effective-
ness at capturing data changes (Section 4.1). Then, we estimate the
quality of integration for an arbitrary set of sources using the afore-
mentioned models and source profiles (Section 4.2), and propose
a set of algorithms for solving the problem of time-aware source
selection and its variations (Section 5).

We make the following assumptions in the rest of the paper:
• We assume that the majority of inaccuracies occur due to the

ineffectiveness of sources at capturing data changes from the
world and not erroneous insertions. We found that in both our
domains stale data dominates the mistakes. For BL we found
that sources exhibit delays in inserting new listings or delet-
ing listings that disappeared from the world, while for GDELT
we found that news sources present varying delays at reporting
events.
• We assume an integration scheme across sources that follows

the union semantics. For example, consider integrating two
sources at a time point t and a restaurant listing that is men-
tioned in the first one but was never mentioned in the second.
In this case, the restaurant entry will be present in the integra-
tion result of the two sources. On the other hand if the listing
was present in the second source for a time point prior to t but
deleted by time t then this entry will not be present in the inte-
gration result. This integration scheme is used in many practical
applications to form the integration result [6, 17].
• We assume that the sources are independent, that is, each source

updates its content independently from others. This assumption
is used to prove the theoretical guarantees of the proposed algo-
rithms in Section 5. While this assumption is strict and may not
fully hold for the BL and GDELT domains, we were still able
to obtain solutions of high quality for the different versions of
the time-aware source selection problem (Section 6).
• We assume that the content changes in the world follow a Pois-

son random process and that the lifespan of an entity and the
time interval between consecutive updates follow an exponen-
tial distribution. We observed that both assumptions hold for
the BL and GDELT domains (Section 4.1.1). No such assump-
tions are made for the content changes of sources, for which we
use generic statistical models based on empirical distributions
capable of capturing complex update patterns that depend on
the update frequency of each source (Section 4.1.2).
• Finally, we assume that in our integration scenarios sufficient

historical data are available to learn the statistical models de-
scribed above. Our approach is well suited for highly dynamic
sources since they provide us with more training points and
hence more accurate models can be learned.

3. QUALITY OF INTEGRATED DATA
As discussed in Section 2.2, the gain of integration GF (SI , t)

can be quantified using the quality of the integration result. We
introduce time dependent versions of coverage, freshness and ac-
curacy to characterize the quality of a set of dynamic sources.

We characterize the entities in a source or the integration result at
a time point t using three categories: (a) up-to-date, denoted by Up,
corresponding to entities mentioned in the source that also exist in
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Figure 4: (a) Coverage, (b) freshness and (c) accuracy of inte-
grated data; Sources processed in decreasing order of coverage.

the world and their attribute values in the source are in agreement
with the world, (b) out-of-date, denoted by Out, corresponding to
entities mentioned in the source that are present in the world but
latest value changes are not captured by the source, and (c) non-
deleted, denoted by NDel, corresponding to entities mentioned by
the source that have disappeared from the world. We next define
the quality of the integration result using these categories.

Let SI be the selected set of sources to be integrated at time t and
F (SI) the integration result using model F . We define the cover-
age of F (SI) at time t, denoted by Cov(F(SI), t), as the probability
that a random entity from the world Ω at time t belongs to F (SI).
We express this probability as:

Cov(F(SI), t) =
Up(F(SI), t) + Out(F(SI), t)

|Ω|t
(1)

where |Ω|t denotes the total entities in the world at time t.
Next, we define a localized freshness measure for the integrated

data at time t as the probability that a randomly selected entry of
F (SI) is up-to-date. We refer to this metric as local freshness,
denoted by LF, and express it as:

LF(F(SI), t) =
Up(F(SI), t)

|F(SI)|t
(2)

where |F (SI)|t denotes the total number of entities in the inte-
gration result at time t. The coverage and local freshness are or-
thogonal, that is, a source with high-freshness does not necessarily
exhibit high coverage. Moreover, while the coverage is expected
to increase monotonically as more sources are integrated the same
does not hold for freshness. We illustrate this using an example
from the business listing domain introduced in Section 1.

EXAMPLE 5. We consider integrating the available sources in
decreasing order of coverage. Figure 4(a) shows the coverage of
the integration result. The corresponding local freshness is shown
in Figure 4(b). While the coverage increases monotonically, we see
that the local freshness of the integration result decreases as more
source are integrated.2

In many cases, we wish to reason about coverage and local fresh-
ness collectively. Coverage and local freshness are similar to recall
and precision in information retrieval, and hence, can be combined
using an F-type measure. Thus, we introduce the accuracy of a
source or the integration result as the match rate accuracy [14].
Before defining accuracy we need to define a global measure of
freshness. We define global freshness, as the probability that a ran-
domly selected entity from Ω at time t belongs to F (SI) and its
reference is up-to-date. We have:

GF(F(SI), t) =
Up(F(SI), t)

|Ω|t
(3)

We define accuracy as the percentage of correctly matched en-
tities, corresponding to up-to-date entities in F (SI), to all entiies



in F (SI) together with entities that are present in Ω and not men-
tioned in F (SI). We have:

Acc(F(SI), t) =
Up(F(SI), t)

| F(SI) ∪ ΩP |t
(4)

Using Equations 1, 2 and 3, one can compute accuracy by:

Acc(F(SI), t) =
GF(F(SI), t)

1− Cov(F(SI), t) + GF(F(SI),t)
LF(F(SI),t)

(5)

Figure 4(c) shows the accuracy corresponding to Example 5.

4. ESTIMATING THE QUALITY METRICS
In this section we first introduce a collection of statistical mod-

els that describe the changes in the world and the update patterns
in each data source (Section 4.1). Then, we show how these can
be used to estimate the quality of integrated data for an arbitrary
collection of sources at a future time point (Section 4.2).

4.1 Modeling Data Changes
Estimating the quality of integrated data for future time points

requires knowledge of the appearance, disappearance and value up-
date patterns in the world and each source. Extracting the evolution
patterns for the world for source-based snapshots requires solving
the history integration problem [2, 15], that is, unifying the entity
streams of the sources into a single stream describing the evolution
of the world. The update patterns of sources can then be extracted
by comparing the evolution of each source with that of the world.

4.1.1 Modeling Changes in the World
Given a data domain Ω, we assume that (a) entity appearances,

disappearances and value changes follow a Poisson random pro-
cess; and (b) the lifespan of an entity and the time interval for which
it does not get updated follow an exponential distribution.
Appearances: We model the number of entity appearances Ni(·)
during the time interval (t, t + τ ] as a Poisson distribution with
intensity parameter λi and have that:

Pr[(Ni(t+ τ)−Ni(t)) = k] =
e−λiτ (λiτ)k

k!
(6)

We approximate λi as its maximum likelihood estimate (MLE)
corresponding to the average rate of data appearances in the world.
To compute the latter, we divide the time window T into intervals
of fixed length, and calculate the average occurrence rate of entity
appearances over these intervals. Finally, we extract the starting
point of the Poisson process by calculating the total number of en-
tities in the world by the end of T .
Disappearances: The lifespan of an entity follows an exponential
distribution with rate parameter γd, that is, the probability that the
lifespan of an entity is at most τ is Fd(τ) = 1 − e−γdτ . We
approximate γd by its MLE which is equal to the inverse of the
average entity lifespan observed over the time window T . Due to
the fixed length of the historical time window we have incomplete
observations, that is, there are entities for which we know a lower
bound but not their exact lifespan since they did not disappear until
the end of T . These observations are called right censored and the
MLE of γd for right censored data is given by:

γ−1
d =

total lifespan of entities
number of disappeared entities

(7)

According to the superposition property of Poisson processes [5],
if the appearances of entities occur based on a Poisson process and
the lifespan of each entity follows an exponential distribution, the

disappearances of entities should also occur based on a Poisson
random process with an intensity rate λd. Given a time window
(t, t+ τ ] and with |Ω|x denoting the total number of entities in the
world at time x we have that λd = 1

τ

∑t+τ
x=t γd · |Ω|x. The intensity

parameter λd can be estimated using its MLE which corresponds
to the average rate of disappearance over the time window T .
Value Updates: We assume that the interval between consecutive
value changes of an entity follows an exponential distribution with
parameter γu. This parameter can be learned similarly to entity
disappearance. Moreover, one can easily show that value updates in
the world occur based on a Poisson random process with intensity
parameter λu, following the same process presented above.
Discussion: We presented the aforementioned modeling consid-
ering the entire data domain Ω for ease of exposition. However,
these techniques are directly generalizable to heterogeneous data
domains where different subdomains Ω<i> ⊆ Ω exhibit different
change patterns, such as the business listing and GDELT domains
presented in Section 1. In the case of heterogeneous data domains,
we learn a collection of separate models for different homogenous
data subdomains. This enables capturing non-uniform update pat-
terns commonly observed in real-world domains. The details are
omitted due to space limitations.
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Figure 5: Fitting (a) a poisson distribution to the appearances
of data items per time point and (b) an exponential distribution
to the lifespan of data items for business listings.

Finally, we show that both BL and GDELT (Section 1) fit these
assumptions. We study the distribution of observed appearances
per day for various domain points in BL and GDELT and observe
that indeed the number of updates per day follows a Poisson dis-
tribution. Figures 5(a) and 6 show the fitted and exact distribution
for a domain point in BL and GDELT respectively. We next focus
on BL, and plot the observed lifespan of data entries for the same
domain point as before. Figure 5(b) shows that indeed the lifespan
of entities follows an exponential distribution. The observed cu-
mulative distribution for the lifespan presents a peak after 600 days
which corresponds to censored data. Similar results were observed
for all points in both domains.
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Figure 6: Fitting a poisson distribution to the appearances of
data items per time point for GDELT.

4.1.2 Modeling Updates in Data Sources
The update patterns of a data source depend on its effectiveness

in capturing changes from the world. We define the effectiveness
of a source S in capturing an entity appearance as the probability
Gi(τ) that S will incorporate this entity appearance in its content in
a maximum of τ time units. Similarly, we define the probabilities
Gd and Gu for entity disappearances and value changes.
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Figure 7: Exact and right censored insertion delay histograms
with the effectiveness distribution Gi for a source in BL

Next, we describe how to learn these distributions. For ease of
exposition we focus on Gi. The derivations of Gd and Gu are
similar. We approximate Gi as the Kaplan-Meier empirical distri-
bution [8] corresponding to the delay between the appearance of an
entity in the world and its insertion in a source S. Given the evo-
lution of source S and the world over the time-window T , one can
extract two delay histograms characterizing the insertions in S: (a)
one corresponding to exact observations, that is, insertions of items
that appeared in the world and were also inserted in S before the
end of the observed time window T , and (b) one corresponding to
right-censored observation, that is, insertions of items that appeared
in the world during T but were not inserted in S until the end of T .
These two histograms are then combined to extract the empirical
distribution Gi. To illustrate this, we consider the business listing
domain. Figure 7 shows the two delay histograms corresponding to
exact and right-censored observations for a source in BL, together
with the learned effectiveness distribution Gi of the source.

The effectiveness distribution Gi assumes as input the duration
of the time interval t − tc between a time point t and the actual
occurrence of an entity appearance tc. However, data sources get
updated with a fixed frequency, and hence, the time point tmay not
be aligned with the latest update point of the source. We extend
the effectiveness distributions Gi, Gu and Gd to account for the
common case of fixed update frequencies of the sources. Again,
we focus on Gi for ease of exposition. Given a source S that gets
updated with a frequency fS , we define TS(t) to be a function that
returns the latest update time point of S until time t inclusive. We

define TS(t) as TS(t) =
b(t−tS0 )fSc

fS
+ tS0 , where tS0 denotes the

last time S was updated during the historical time window T . Using
this we update the definition of Gi to be:

Gi(t, tc) =

{
Gi(TS(t)− tc) if t ≥ TS(t) ≥ tc
0 otherwise (8)

Finally, we compute the update frequency of a source S as fol-
lows: We consider that fS = 1

uS
, where uS denotes the average

update interval of S. Let MS = {t1, t2, . . . , tm} be the times-
tamps of different content updates in S ordered by time, and let
IS = {t2 − t1, t3 − t2, . . . , tm − tm−1} be the set of observed
time intervals for S. We compute uS by taking the average over
the elements of IS .
Discussion: Similarly to world changes, the aforementioned tech-
niques are directly generalizable to sources that exhibit varying ef-
fectiveness on capturing updates for different data subdomains. In
this case, we learn a collection of separate models for the different
homogenous subdomains to capture the complex update patterns
commonly exhibited by real-world sources.

4.2 Quality Estimation
We can now estimate the coverage, freshness and accuracy for

integrating a set of data sources SI at a future time point t. The
quality of the integration result for future time points relies on the

content changes in the integrated data. We first describe how to
estimate the content changes in F (SI) and we then present how
the different quality metrics can be estimated.

4.2.1 Content Changes Under Union Semantics
Given a set of sources SI we want to estimate the content of the

integrated data F (SI) at a future time point t. For this, we first
characterize the content of F (SI), in terms of up-to-date, out-of-
date and non-deleted entities, at the end t0 of the available histori-
cal time window T and then we examine how the content of F (SI)
changes by estimating how effectively the entity appearances, dis-
appearances and value changes occurring in the world up to time
t � t0 are captured in F (SI).

To determine the content of F (SI) for a set SI at time t0, we
consider the up-to-date, out-of-date and non-deleted entities in each
source S ∈ SI extracted by comparing the content of S with the
actual entities in the world. The set of up-to-date entities in F (SI)
is computed by taking the union of up-to-date entities across all
sources in SI . The set of out-of-date and non-deleted entities are
extracted in a similar fashion. Conflicts between entities that are
up-to-date in one source and out-of-date in another are resolved by
considering only the reference with the most recent time-stamp.

Procedurally, we store three different signatures (bit arrays) for
each source S ∈ S̄: (a) a signature BupS for the up-to-date items,
(b) a signatureBcovS for the up-to-date and out-of-date (i.e., the cov-
ered) items, and (c) a signature BS for all the items in the source.
All similar bit arrays have the same size across different sources.
Using these signatures the number of entities mentioned in F (SI)
is |
∨
S∈SI

BS |, the number of up-to-date entities is |
∨
S∈SI

BupS |,
and the number of covered entities is |

∨
S∈SI

BcovS |.
To estimate the content changes in F (SI) at time t, we need to

estimate the effectiveness of SI at capturing changes in the world.
We focus on insertions of new entities. Let Pr(Ins(F (SI), t, τ))
be the probability that a data appearance at time τ was captured in
F (SI) by time t. Assuming that the sources in Si are independent,
this probability corresponds to the probability of at least one source
in SI capturing the appearance of the new data item and have that:

Pr(Ins(F (SI), t, τ)) =

1−
∏
S∈SI

(
1−GSi (TS(t), τ)

) (9)

We continue with deletions in F (SI) corresponding to disap-
peared items from the world. Let Pr(Del(F (SI), t, τ)) be the
probability that an entity disappearance at time τ was captured by
F (SI) until time t. This probability corresponds to the probability
that at least one of the sources in SI that mentioned this entity at
time τ captured the disappearance event until time t. According
to Equation (1), the probability of an entity being mentioned in a
source at a particular time point is equal to its coverage. We have:

Pr(Del(F (SI), t, τ)) = 1−
∏
S∈SI

(1− Cov(S, τ)GS
d(TS(t), τ)) (10)

Following a similar process, we have that the probability of a
value update being captured in F (SI) is given by:

Pr(Upd(F (SI), t, τ)) = 1−
∏
S∈SI

(1− Cov(S, τ)GS
u(TS(t), τ)) (11)

4.2.2 Quality Estimation at Future Time Points
We now describe how we estimate the coverage and freshness of

the integrated data for a future time point t � t0. The accuracy can
be derived using Equation (5).



Coverage: Let E[|Ω|t] be the expected number of entities in the
world at time t, E[Ins(F (SI), t)] be the expected number of en-
tities of newly appeared entities in the world that have not been
deleted until time t and were also insured inF (SI) up to time t, and
E[OldCov(F (SI), t)] the expected number of entities that were al-
ready covered by F (SI) at time t0 and have not disappeared from
the world until time t. We can compute the coverage as follows:

Cov∗(F(SI), t) =
E[OldCov(F(SI), t)] + E[Ins(F(SI), t)]

E[|Ω|t]
(12)

To compute E[OldCov(F (SI), t)] we consider the number of
covered entities in F (SI) at t0, that is, the sum of up-to-date and
out-of-date entities, and multiply that with the probability of an
entity not disappearing until time t. Using the memoryless property
of the Poisson process for data disappearances we have that:

E[OldCov(F (SI), t)] = Cov(F(SI), t0) · |Ω|t0 · e
−γd(t−t0) (13)

where Cov(F(SI), t0) and |Ω|t0 can be computed by the signatures
and extracted statistics described above. Since data appearances
and disappearances occur based on a Poisson process we have for
E[|ΩP |t] that:

E[|Ω|t] = |Ω|t0 +

t∑
τ=t0

[λi − λd] (14)

Finally, we compute E[Ins(F (SI), t)] using Equation (9) and the
fact that data appearances follow a Poisson random process and the
entity lifespan is exponentially distributed:

E[Ins(F (SI), t)] =

t∑
τ=t0

λi · e−γd(t−τ) · Pr(Ins(F (SI), t, τ)) (15)

The coverage estimator corresponds to a non-decreasing sub-
modular function. A set function G : 2V → R mapping sub-
sets A ⊆ V into the real numbers is submodular [4] if for all
A ⊆ B ⊆ V , and v′ ∈ V \B, it holds thatG(A∪{v′})−G(A) ≥
G(B∪{v′})−G(B) (i.e., adding v′ to a setA increasesG no less
than adding v′ to a supersetB ofA). FunctionG is nondecreasing,
if for every A ⊆ B ⊆ V , it holds that G(A) ≤ G(B).

THEOREM 1 (SUBMODULAR COVERAGE). The coverage es-
timate Cov∗(·) for any set SI and time t is a non-decreasing sub-
modular function.

PROOF SKETCH. The coverage estimator (Equation (12)) is a
non-decreasing submodular function as it is a non-negative linear
combination of two monotonic submodular functions. The first
function referring to the coverage of F (SI) at time t0, can be
shown to be non-decreasing submodular as it is derived by the set
union function. The second function, corresponding to future time
points, is also non-decreasing submodular as it is derived from the
probability inclusion exclusion formula for independent events.

Freshness: Let E[Up(F(SI), t)] be the expected number of up-to-
date entities in the integration F (SI) of SI at time t, E[|F (SI)|t]
be the expected number of all entities in F (SI), and E[|Ω|t] the
expected number of entities in the world at time t. We estimate the
local and global freshness for SI as:

LF∗
(F(SI), t) =

E[Up(F(SI), t)]

E[|F (SI)|t]
(16)

GF∗
(F(SI), t) =

E[Up(F(SI), t)]

E[|ΩP |t]
(17)

We first show how to compute E[|F (SI)|t]. We need to estimate
the number of newly inserted and newly deleted entities in F (SI)
until time t. Let |F (SI)|t0 be the number of entities in F (SI) at t0
computed by the signatures in Section 4.2.1. We have:

E[|F (SI)|t] = |F (SI)|t0 +E[Ins(F (SI), t)]−E[Del(F (SI), t)] (18)

where E[Ins(F (SI), t)] is as in Equation (15) and E[Del(F (SI), t)]
denotes the expected number of deleted items from F (SI). To
compute the expected number of deleted items we multiply the
average number of data disappearances per time unit λd given by
the Poisson occurrence of data disappearances with the probabil-
ity that an entity disappearance was captured by the sources in SI .
The latter corresponds to Pr(Del(F (SI), t, τ)) computed in Equa-
tion (10). We have:

E[Del(F (SI), t)] =
t∑

τ=t0

λd · Pr(Del, F (SI), t, τ)) (19)

Next, we show how to compute E[Up(F(SI), t)]. The latter can
be expressed as the summation of three quantities:
• E[OldUp]: the expected up-to-date entities already present in
F (SI) that did not change in the world until time t.
• E[InsUp]: the expected newly inserted entities in F (SI) that

appeared in the world during [t0, t] and their values were not
updated until t.
• E[ExUp]: the expected entities that were present in both F (SI)

and the world, their latest update was captured in F (SI), and
have not disappeared from the world by t.

We have E[Up(F(SI), t)] = E[OldUp] + E[InsUp] + E[ExUp].
To compute the three aforementioned quantities we first need

to compute the probability of an entity not disappearing until t,
denoted by Pr(In Ω at t) and the probability of none of its values
getting updated during [t0, t], denoted by Pr(Not Upd., t). Since
the lifespan and update intervals follow exponential distributions,
we have that Pr(In Ω at t) = e−γd(t−t0) and Pr(Not Upd., t) =

e−γu(t−t0). Finally, recall that the up-to-date entities in F (SI) are
Up(F(SI), t0) = |

∨
S∈SI

Bup
S |. According to the Poisson arrival of

changes, we have:

E[OldUp] = Up(F(SI), t0) Pr(In world at t) Pr(Not upd., t)

E[InsUp] =

t∑
τ=t0

λi Pr(In Ω at t) Pr(Not upd., t) Pr(Ins(F (SI), t, τ))

E[ExUp] =

t∑
τ=t0

λu Pr(In Ω at t) Pr(Not upd., t) Pr(Upd(F (SI), t, τ))

where Pr(Ins(F (SI), t, τ)) and Pr(Upd(F (SI), t, τ)) are as in
Equation (9) and Equation (11).

We can prove that the global freshness estimate is also a non-
decreasing submodular function. However, the same does not hold
for local freshness.

THEOREM 2 (SUBMODULAR GLOBAL FRESHNESS). The global
freshness estimate GF∗(·) for any set SI and time t is a non-decreasing
submodular function.

PROOF SKETCH. Similar to the previous proof sketch.

Estimator Complexity: Given a set of time points of interest Tf ,
we need to estimate the quality for each t ∈ Tf (Section 2.2). The
run time complexity is O(

∑
t∈Tf

(t − t0) · |SI |), since evaluating
the estimators presented above requiresO((t−t0)·|SI |) operations
for each t ∈ Tf .

5. SELECTING FRESH SOURCES
Dong et al. [3] proved that not only source selection in the con-

text of data fusion is NP-complete but also estimating the integra-
tion quality is #P-hard. In contrast to static source selection, the



quality estimators for time-dependent metrics can be approximated
efficiently under an integration model using the union semantics
(Section 4.2). Moreover, we identified that the coverage and global
freshness estimates are non-decreasing submodular functions. Ex-
ploiting submodularity, we next present a set of local-search algo-
rithms for solving the different versions of time-aware source se-
lection (Section 2.2) that come with theoretical guarantees on the
quality of the solution.

Next, we focus on integration profit functions that satisfy the
submodularity property. We discuss how time-aware source selec-
tion can be solved for arbitrary profit functions at the end of this
section. Given a set of time points of interest Tf , the necessary
conditions for a profit function to be submodular are:
• The integration gain GF (SI , t) for each time point t ∈ Tf has

to be a non-negative linear function of either estimated cover-
age or global freshness of F (SI).
• The aggregate functionA to computeGF (SI , Tf ) (Section 2.2)

should be an average (or non-negative weighted average) since
the class of submodular functions is closed under non-negative
linear combinations.
• The cost functionCF (SI , Tf ) has to be an additive function, so

that the profit function GF (SI , Tf )− CF (SI , Tf ) is also sub-
modular since the difference of a submodular and an additive
function is still submodular.

Time-Aware Source Selection: We consider the basic version of
time-aware source selection (Definition 3). For simplicity, we con-
sider that no constraint is set on the budget βc. This version cor-
responds to the problem of maximizing a monotone submodular
function, and can be solved by a local-search algorithm introduced
by Feige et al. [4] (Algorithm 1).

Algorithm 1 Submodular Maximization

1: Input: S̄: set of sources available; f : value oracle access to
submodular function; n: cardinality of S̄;

2: Output: SI : a set of selected sources;
3: Set v ← arg max{f(u)|u ∈ S̄} and SI ← {u}
4: while one of the following local operations applies do
5: /* Addition operation on SI . */
6: if e ∈ S̄\SI such that f(SI ∪{e}) > (1+ ε

n2 f(SI)) then
7: SI ← SI ∪ {e}
8: /* Deletion operation on SI . */
9: if e ∈ SI such that f(SI \ {e}) > (1 + ε

n2 f(SI)) then
10: SI ← SI \ {e}
11: return arg maxS̄∈{SI ,S̄\SI}(f(S̄))

This algorithm starts by selecting a single source that maximizes
the profit (Ln.3) and then tries to increase the value of the running
solution SI either by including a new element in SI or by discard-
ing one of the elements of SI until a local optimum is reached (Ln.
4 - 10). Once a local optimum is reached, the algorithm checks if
the complement of the running selection improves the solution and
returns the selected sources (Ln.11). The algorithm is proven to
yield a constant-factor approximation of (1 + ε

n2 ) and is shown to
use O( 1

ε
n3logn) oracle calls [4].

Varying Frequency Source Selection: Selecting the optimal set
of sources and their corresponding frequencies can be expressed as
an optimization problem with a unified objective function. Let S̄ be
the set of available sources. For each source Si ∈ S̄ we can select
a variable update frequency f ′Si =

fSi
li

, li ∈ {1, 2, . . . ,mi},mi ∈
Z+ lower than the original frequency fSi of the source. We de-
fine the augmented set of available sources defined as Saug =

{S1
1 , S

2
1 , . . . , S

m1
1 , . . . , S1

i , . . . , S
mi
i , . . . S

mk
k } where Sji denotes

a version of source Si with an update frequency of
fSi
j

. We can
now select sources from Saug instead of S̄ - each entry of Saug

can be considered as a different source - under the constraint that
only one of the [li] versions of an actual source Si will be selected
for integration.

The submodular objective is now defined over the ground set
Saug and the frequency constraints can be expressed as a uniform
matroid constraint. A uniform matroidUrn is defined over a set of n
elements, and a subset of the elements is independent if and only if
it contains at most r elements. Thus, each of the k constraints cor-
responds to a uniform matroid constraint of rank 1. Every uniform
matroid is also a partition matroid. The varying frequency time-
aware source selection corresponds to the problem of maximizing
a monotone submodular function under a fixed number of partition
matroid constraints, and can be solved by an algorithm that yields
a constant-factor approximation of 1

k+ε
[9].

Algorithm 2 Submodular Maximization with Matroid Constraints
1: Input: Saug: ground set of sources; k: number of matroid

constraints;
2: Output: Sopt: a set of selected sources;
3: Set V1 = Saug

4: for i = 1, · · · , k + 1 do
5: Apply the approximate local search procedure A on a

ground set Vi to obtain a solution Si ⊆ Vi corresponding
to the problem:

max{f(S) : S ∈ ∩kj=1Ij , S ⊆ Vi}

6: Set Vi+1 = Vi \ Si
7: return Sopt ← max{f(S1), · · · , f(Sk+1)}

The algorithm is shown in Algorithm 2. The independent sets
defined by the matroid constraints divide the ground set of sources
in multiple partitions, each corresponding to the intersection of a
combination of independent sets from all constraints. The algo-
rithm identifies k+ 1 disjoint partitions for which the optimization
objective is locally maximized and returns the partition with the
highest objective value. In fact, the algorithm performs k + 1 iter-
ations (Ln. 4) and at each iteration i uses a local-search procedure
(Ln. 5) similar to the one used in the basic version (Algorithm 3)
to select an approximately optimal set of sources over a subset Vi
of the available sources. Each of the sets Vi corresponds to the
union of a subset of the aforementioned partitions. After each iter-
ation the set of available sources for the next iteration is restricted
to sources that were not previously selected (Ln. 6). Finally, the al-
gorithm returns the partition, i.e., a subset of the data sources, with
the highest objective value (Ln. 7).

The local search procedure is given a set of available data sources
and greedily selects a set of available sources that maximizes the
optimization objective under the given constraints. The algorithm
detects a single source that yields the highest objective value (Ln.
4) and proceeds by searching the neighborhood of the running so-
lution for solutions that improve the objective. The local neigh-
borhood of the running solution is constructed either by removing
a source from the solution (Ln. 5-7) or by exchanging a set of
selected sources with a new source such that all the constraints are
satisfied (Ln. 8-10). The local search procedure iterates until a local
optimum is retrieved. The running time of Algorithm 3 is 1

ε
nO(k)

with n = |Saug| and k is the number of matroid constraints, and
thus the running time of Algorithm 2 is O((k + 1) 1

ε
nO(k)) [9].



Algorithm 3 Local Search Procedure
1: Input: X: ground set of sources; f : value oracle access to

submodular function; n: cardinality of Saug;
2: Output: SI : a set of selected sources;
3: Set v ← arg max{f(u)|u ∈ X} and SI ← {u}
4: while one of the following local operations applies do
5: /* Delete operation on SI . */
6: if e ∈ SI such that f(SI \ {e}) > (1 + ε

n4 f(SI)) then
7: SI ← SI \ {e}
8: /* Exchange operation on SI . */
9: if d ∈ X \ SI and ei ∈ SI ∪ {∅} (for 1 ≤ i ≤ k) are such

that (SI \ {ei}) ∪ {d} ∈ Ii for all i ∈ [k] and f((SI \
{e1, · · · ek}) ∪ {d}) ≥ (1 + ε

n4 )f(SI) then
10: SI ← (SI \ {e1, · · · , ek}) ∪ {d}
11: return SI

Slice Time-Aware Source Selection: The basic submodular op-
timization problem of time-aware source selection can be trivially
extended to account for this case by including all the micro-sources
in S̄. The set of available sources can also be replaced by its corre-
sponding augmented set to account for variable update frequencies
of the micro-sources.
Generic Profit Functions: When the profit function used to quan-
tify the integration profit is not submodular (e.g., when the gain
is quantified using the accuracy or local freshness of F (SI)), we
use the GRASP heuristic introduced by Dong et al. [3] to solve
time-aware source selection. We point out that GRASP needs to be
extended only when solving the varying frequency source selection
problem to account for the frequency constraints presented above.
We refer the reader to Dong et al. [3] for details on the algorithm.

6. EXPERIMENTS
We present an empirical evaluation of the proposed framework.

The main questions we seek to address are: (1) how accurately
can the proposed models predict the data changes in the world, and
how effective they are at estimating the quality of data sources at
future time points, (2) how the different source selection algorithms
perform under different families of gain and cost functions, and (3)
how well do the proposed algorithms scale. We empirically study
these questions on both real-world and synthetic datasets.

6.1 Experimental Setup
Data: The first dataset we consider is the business listing (BL)
dataset introduced in Section 1 containing daily snapshots from 43
data sources providing business listings over a period of 23 months.
Each data entry includes the source-id, a description of the busi-
ness (i.e., phone, address, category) and the timestamp of the last
insertion or update operation performed on it. We assign a deletion
timestamp to an entry by considering the timestamp of the latest
snapshot mentioning it. If that timestamp corrsponds to the end of
the observed time window, we assume the entry was not deleted.

To extract the evolution of the world we first detected duplicates
across the source snapshots using standard canonicalization and
format standardization techniques together with an exact matching
algorithm, and then applied an integration scheme following the
union semantics describe earlier. The output was verified against a
gold standard provided with BL containing a subset of businesses.
The sources provide 84,791,789 listings for 28,094,382 distinct
businesses over 51 locations (i.e., states including Washington, DC)
corresponding to 1496 business types. Figure 8(a) shows the dif-
ferent types of sources contained in the dataset.
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Figure 8: Different source types (a) in BL and (b) GDELT. The
radius of each circle is proportional to the size of the source.

The second dataset we use is GDELT (Section 1). GDELT con-
tains daily snapshots of events extracted from articles published in
15,275 news sources over a period of 22 days. All entries contain
information about the source reporting the event, and characteris-
tics such as the actors associated with the event, the location and
the type of the event. We extract the evolution of the world using
similar techniques as for BL. In total the sources provide 2,833,755
entries for 2,219,704 distinct events corresponding to 242 differ-
ent locations and 236 different event types. Figure 8(b) shows the
different types of the 500 largest sources in the dataset.

Finally, we use a collection of synthetically generated datasets
BL+ , using BL as a seed, to evaluate the scalability of the pro-
posed algorithms. We decompose the sources in BL into multi-
ple overlapping micro-sources, where each micro-source covers a
randomly selected subset of the initial source. If |L| denotes the
locations in a source S, we construct each micro-source to con-
tain all the entities from S belonging to a randomly selected subset
of locations from the original source. The number of locations in
each micro-source is chosen uniformly at random from a uniform
distribution U(0.2 · |L|, 0.5 · |L|). We vary the total number of
micro-sources to be in {0, 1, 2, 5, 10, 20, 50, 100, 200} obtaining 9
different datasets ranging from 43 to 8643 sources.
Preprocessing: We train the statistical models that describe the
changes in BL using the data corresponding to the first 10 months,
and evaluate our techniques on the next 13 months. For GDELT,
we train the change models using the first 15 days and use the next
7 days for evaluation.
Algorithms: We evaluate the following algorithms:
• Greedy: The same as the greedy algorithm used by Dong et

al. [3]. Starting from an empty selection set the algorithm iter-
atively selects the source that maximizes the integration profit
until it reaches a local optimum.
• MaxSub: Depending on the version of time-aware source selec-

tion MaxSub corresponds to the submodular optimization algo-
rithms in Section 5.
• GRASP: The GRASP algorithm proposed by Dong et al. [3] for

different configurations of (κ, r).
All algorithms are implemented in Java and the evaluation is per-
formed on an Intel(R) Core(TM) i5 2.3 GHz/64bit/8GB machine.
Gain-Cost Models: We consider two families of gain models, i.e.,
(1) quality driven, and (2) data driven models. For the first, letQ be
the quality (i.e., coverage, freshness or accuracy) of the integrated
data. We consider: LINEARGAIN assumes that the gain grows lin-
early with a certain data quality metric Q and sets G(Q) = 100Q;
QUADGAIN assumes that the gain grows quadratically with Q and
setsG(Q) = 100Q2; STEPGAIN assumes that reaching a milestone
of quality would significantly increase the gain and sets

G(Q) =


100Q if 0 ≤ Q < 0.2
100 + 100(Q− 0.2) if 0.2 ≤ Q < 0.5
150 + 100(Q− 0.5) if 0.5 ≤ Q < 0.7
200 + 100(Q− 0.7) if 0.7 ≤ Q < 0.95
300 + 100(Q− 0.95) if 0.95 ≤ Q ≤ 1.0



 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1  2  3  4  5  6  7  8  9  10  11  12  13

R
e
la

ti
v
e
 E

rr
o
r

Time Index

Relative Pred. Err. per State Group

St.Gr.1 (2)

St.Gr.2 (10)

St.Gr.3 (18)

St.Gr.4 (15)

St.Gr.5 (6)

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 1  2  3  4  5  6  7  8  9  10  11  12  13

R
e
la

ti
v
e
 E

rr
o
r

Time Index

Relative Pred. Err. per Bus. Group

Bus.Gr.1 (2)

Bus.Gr.2 (2)

Bus.Gr.3 (2)

Bus.Gr.4 (4)

Figure 9: The relative error for predicting the total listings
in BL for (a) five state groups and (b) four business category
groups over 13 future time points.
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Figure 10: The relative error for predicting (a) the total events
for four different event-location pairs in GDELT and (b) the
quality of three large US news sources from GDELT for 7 con-
secutive future time points.

For the second category, denoted by DATAGAIN, we assume a
gain of $10 for each covered item in F (SI) and for a particular
time point t we have G(F (SI), t) = 10 · Cov∗(F(SI), t)|Ω|t.

Finally, we assume an additive cost function. Similarly to DATA-
GAIN, we consider that each entity has a basic cost of $10 and an
actual cost of c = $10

( #sources mentioning the item) . The cost of a source c
is the total cost of items contained in it. When considering vary-
ing frequencies for sources we assign the source cost to be c′ =
c/(1 + m/10), where m is the frequency divisor. Finally, we
rescale the gain and cost to take values in [0, 1].

6.2 Verifying Model Predictions
We examine how effective our change models are at predicting

the world and source changes both in BL and GDELT.
For BL, we predict the number of businesses for the 51 locations,

and the ten largest business categories. We compute the relative er-
ror between the actual and predicted values. We found that states
can be divided in five groups with respect to the absolute value of
their prediction error. Figure 9(a) shows the relative error for the
representative state of each group. The size of each group is men-
tioned in the legend. Similarly, the ten largest business categories
can be divided in four error groups. Figure 9(b) shows the relative
error for the representative business category of each group. Sim-
ilar behavior was observed for the rest of the business categories.
We observe that our models can accurately predict the number of
listings as the average relative error is around 2%. Moreover, the
increase rate of the error is 0.001.

For GDELT, we predict the number of events for four event-
location pairs over 7 days in the future and show the result in Fig-
ure 10(a). We observe that the prediction error is relatively small,
considering that the amount of training data used in GDELT spanned
over a time period of only 15 days. The variation observed is due
to the dynamic nature of this domain.

Next, we evaluate our models on predicting the source quality
over time. Figure 11 shows the relative error for predicting the
coverage, accuracy and local freshness of the two largest sources in
BL for 13 months in the future. The maximum relative error is less
than 1.5% for the largest source and less than 2.5% for the other
source. Figure 10(b) shows the relative error corresponding to the

Table 1: Various algorithms for source selection in BL on the
percentage of outputting the best selection and average and
worst (reported in parenthesis) profit difference from the best
selection. Notation (κ, r) denotes the best performing GRASP
algorithm. We consider sources with a fixed update frequency.

Avg. Selection Quality
Gain Metric Msr. Greedy Maxsub Grasp

Linear
cov. best 16.7% 50% 100% (5, 20)

diff. .005 (.01)% .001 (.007)% -

acc. best 0% 33.3% 83.3% (2, 100)
diff. 9.5 (53.7)% .39 (2.31)% 8.9 (53.7)%

Quad.
cov. best 33.3% 66.7% 100% (10, 100)

diff. .017 (.06)% .012 (.06)% -

acc. best 100% 100% 100% (1,1)
diff. - - -

Step
cov. best 50.0% 66.7% 83.3% (10, 100)

diff. 7.45 (27.8)% 1.76 (10.6)% .7 (4.2)%

acc. best 50% 66.7% 83.3% (5,100)
diff. 6 (23.98)% .8 (4.7)% 3.99 (23.98)%

Data - best 16.7% 50% 83.3% (5, 20)
diff. .004 (.01)% .001 (.003)% .002 (.007)%
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Figure 11: The relative error for predicting the quality of the
two largest sources in BL for 13 consecutive future time points.

coverage of the four largest US data sources in GDELT for 7 days
in the future. Again, we observe that the relative error is small.

6.3 Source Selection
Next, we evaluate the performance of the proposed source selec-

tion algorithms. We focus on two scenarios.
Fixed update frequencies. We assume a fixed update frequency
for each data source and consider the basic time-aware source se-
lection problem with a user being interested in ten future time points
for six data domain points. We compute the overall gain by tak-
ing the average gain across time points. For BL, we select the
six largest domain points corresponding to four business types in
the states of California and New York. For GDELT, we consider
six domain points corresponding to events in the United States.
We compare the different algorithms for DATAGAIN, and LINEAR-
GAIN, QUADGAIN, STEPGAIN considering the gain is quantified
using coverage and accuracy for BL and coverage for GDELT.

We apply Greedy, MaxSub and GRASP with κ ∈ {1, 2, 5, 10}
and r ∈ {1, 10, 20, 100} in solving the source selection problem
for both datasets. GRASP with (κ = 1, r = 1) corresponds to a
hill-climbing algorithm. For each gain function, we compare the
selections by the various algorithms and choose the one with the
highest profit as the best. We report the percentage of times the
best selection is returned by each algorithm and for sub-optimal
selections we report the average and maximum, reported in paren-
thesis, profit difference from the best selection. For GRASP we
report the (κ, r) configuration that obtained the best selection.

The results for BL are shown in Table 1. MaxSub and GRASP
outperform Greedy returning solutions that result in up to 9.5%
higher objective values on average and up to 53.7% in the worst
case. While GRASP returns the best solution most of the times,
the solutions returned by MaxSub are on average comparable to
the ones obtained by GRASP with a low average profit difference.
This behavior is expected since MaxSub unlike Greedy comes with
rigorous theoretical guarantees, and GRASP applies a similar local



search procedure to the one used by MaxSub. Nevertheless, we
observe that randomization and multiple iterations help GRASP to
obtain marginally better solutions. However, if we consider the run
time of the algorithms (shown in Table 2), we see that MaxSub
is one to two orders of magnitude faster than GRASP. Eventually,
depending on the gain function, MaxSub can be a viable alternative
compared to GRASP. Although, if the profit requirements are strict
one should use GRASP.

Table 2: Average run times of the source selection algorithms
for BL. Notation (κ, r) denotes the parameters of GRASP.

Avg. Run Time (sec)
Gain Metric Greedy Maxsub (1,1) (2,10) (5,20) (10,100)

Linear cov. 0.05 0.16 0.16 2.23 4.35 20.13
acc. 0.42 1.6 1.5 14.9 39.9 144.2

Quad cov. 0.03 0.11 0.14 1.6 3.3 17.6
acc. 0.14 0.35 0.43 5.5 11.9 57.8

Step cov. 0.03 0.11 0.13 1.6 2.8 15.25
acc. 0.14 0.46 0.5 6.4 14.16 74.02

Data - 0.04 0.18 0.17 2.4 4.6 25.7

We observed similar results for GDELT. In Table 3 we report the
performance and runtime of the various algorithms. We see that
for LINEARGAIN and DATAGAIN both MaxSub and GRASP out-
perform Greedy. While GRASP never fails to detect the best so-
lution, the profit difference between MaxSub and GRASP is very
small and more importantly MaxSub is again one to two orders of
magnitude faster. We omit the results for QUADGAIN and STEP-
GAIN since all algorithms were able to retrieve the same solution.

Table 3: Performance and runtime comparison of the source se-
lection algorithms for GDELT, showing the percentage of out-
putting the best selection and average and worst (reported in
parenthesis) profit difference from the best selection. Notation
(κ, r) denotes the best performing GRASP algorithm.

Avg. Selection Quality
Gain Msr. Greedy Maxsub Grasp

Linear Cov.
best 16.7% 50% 100% (10, 100)
diff. 4.01 (13.7)% 0.5 (2)% -

runtime (sec) 8.58 (37) 74.12 (326) 1231.05 (4363)

Data
best 3.3% 0% 100% (10, 100)
diff. 5.64 (14.9)% .91 (3)% -

runtime (sec) 1.01 (5.03) 8.96 (44) 868.87 (4322)

Next, we report the average quality of the retrieved solution and
the average number of sources selected for BL and GDELT. The
results for BL are shown in Table 4. As shown, all algorithms tend
to choose fewer sources when the gain is measured with respect to
accuracy. We observe that all algorithms tend to select fewer large
uniform sources and prefer more specialized smaller sources. Fig-
ure 12 shows the various source types selected from GRASP when
the LINEARGAIN function with coverage and accuracy is used to
specify the gain. A similar behavior was observed for all algo-
rithms. Finally, Table 5 shows the results for GDELT. We see that
GRASP and MaxSub were able to select significantly more sources
and increase the coverage of the retrieved solution by 5% and 8%.

Table 4: Characteristics of the selected sources for various al-
gorithms on BL for fixed source update frequencies.

Alg Coverage Accuracy
Avg. Qual. Avg. #Srcs Avg. Qual. Avg. #Srcs.

Greedy 0.52 10 0.49 8
MaxSub 0.56 11 0.57 7.6
GRASP 0.56 11 0.57 8.6

Variable update frequencies. Next, we consider different versions
for each source corresponding to different update frequencies. We
focus on BL and take seven different versions S1

i · · · , S7
i for each

original source. As before, we assume that the user is interested
in the same ten future time points and the same six data domains.

Table 5: Characteristics of the selected sources for various al-
gorithms on GDELT for fixed source update frequencies.

Alg Greedy MaxSub GRASP
Avg. Coverage 0.57 0.62 0.65

Avg. # Srcs 154 163 167
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Figure 12: Selected sources when the gain is defined using cov-
erage and accuracy. For accuracy smaller and more specialized
sources are preferred.
We observe similar performance for the algorithms, as the one pre-
sented above. Namely, GRASP outperforms both Greedy and Max-
Sub. However, the difference in profit between the retrieved solu-
tions is significantly smaller (less than 0.5% in average) compared
to the previous case.

Focusing on the quality of the solutions returned by the vari-
ous algorithms, we observe that allowing sources to have variable
frequencies significantly improves the quality of the retrieved so-
lutions. We observe that the average coverage and accuracy rise
to 0.976 and 0.958 respectively, compared to 0.56 and 0.57 for the
case of fixed frequencies. The reason is that by reducing the up-
date frequency of a source the corresponding cost is reduced, and
hence, the algorithms choose to integrate more sources. We report
the corresponding results in Table 6. Finally, we observe that all
algorithms preferred selecting large sources with a significantly re-
duced update frequency. However, for small specialized sources
they either select the original update frequency or a small divisor
of that. We report the average frequency divisors for uniform and
specialized sources in Table 7.

Table 6: Characteristics of the selected sources for various al-
gorithms on BL for sources with variable update frequencies.

Alg Coverage Accuracy
Avg. Qual. Avg. #Srcs Avg. Qual. Avg. #Srcs.

Greedy 0.96 15.6 0.948 14.6
MaxSub 0.976 15.6 0.958 15
GRASP 0.976 16 0.958 16

6.4 Scalability
First, we evaluate the scalability of the various algorithms as the

number of available sources increases. We set the gain function
to LINEARGAIN with coverage, and use the synthetically generated
datasets BL+ , considering source selection for a single data point
for 10 future time points. The corresponding run times are shown in
Figure 13(a), where the x-axis corresponds to the number of avail-
able data sources and the y-axis (shown in log-scale) to the run time
measured in milliseconds. As shown, MaxSub is one to two orders
of magnitude faster compared to the best performing alternatives of
GRASP, and scales better as the number of sources increases.

Finally, we use BL to examine the scalability of the various al-
gorithms with respect to the size of the input data domain, where
the size of the input domain is the number of location-business
type pairs specified in a certain user query. We evaluate the per-
formance of Greedy, MaxSub and GRASP with (κ = 5, r = 20)
for LINEARGAIN with coverage and accuracy. The corresponding
run times are shown in Figure 13(b), where the x-axis corresponds
to the size of the input domain and the y-axis (shown in log scale)
to the run time measured in milliseconds. Again, we observe that
MaxSub is an order of magnitude faster than GRASP-(5,20).
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Figure 13: Run time of the various algorithms as (a) the number of sources and (b) the the size of the input domain increases.

Table 7: Average frequency divisor for uniform and specialized
sources in the solution of the various algorithms.

Alg Greedy MaxSub GRASP
Uniform Srcs. 4.9 5.2 4.9

Specialized Srcs. 2.6 2.9 3.2

6.5 Discussion
From our experiments we see that the proposed models can ac-

curately estimate the evolution of the world and a source’s quality.
Also, the quality of the solution returned by MaxSub is compa-
rable to GRASP. However, for large instances of source selection
MaxSub is a more appealing option since it is one to two orders of
magnitude faster than GRASP and presents better scalability. Fi-
nally, selecting the optimal update frequency for the selected set of
sources can significantly increase the quality of integrated data.

7. RELATED WORK
Recently, Dong et. al [3] introduced the problem of source se-

lection, and showed how one can maximize the profit of integra-
tion by optimizing the gain and cost of integrating sources jointly.
However, this work focuses on static sources and is not applica-
ble to sources whose content changes dynamically. Moreover, the
proposed algorithms, while effective in practice, do not come with
rigorous theoretical guarantees on their performance. In this pa-
per, we considered the problem of source selection for dynamic
sources and showed how to select a nearly-optimal set of sources
and determine their optimal update frequencies by providing a set
of algorithms with rigorous theoretical guarantees.

There has also been a lot of work on source relevance identifi-
cation [12], but the focus is on finding sources relevant to a given
query or domain and not on the quality of sources. A different
line of work has considered the problem of online data integra-
tion [2, 15], however the cost of acquiring data is not considered.
Moreover, a fair amount of work has considered the problem of de-
termining the quality of multiple data sources and leveraging this
information during data integration to improve the quality of the
outcome [11, 13, 16, 19]. However, this work does not consider
dynamic sources. Finally, Cho et al. [1], considered the problem of
finding the optimal data extraction frequency from web-pages, but
the authors do not reason about their quality and the cost as it is not
of high importance in the web-page crawling scenario.

8. CONCLUSIONS AND FUTURE WORK
We studied the problem of source selection for dynamic sources

whose content changes over time. We introduced statistical mod-
els describing the changes in the data domain and each source, and
showed how to estimate the quality of integrated data at future time
points. We defined the problem of time-aware source selection
where we jointly select the optimal subset of sources to be inte-
grated and their optimal update frequencies. We proposed an ef-

ficient local-search algorithm with rigorous theoretical guarantees
on the quality of the retrieved solution for a large family of objec-
tive functions. Finally, experimental results show the effectiveness
and scalability of our proposed framework.

One interesting research direction is to examine scenarios where
new sources appear over time. It is of particular interest how sam-
pling or online data integration techniques can be employed to de-
rive meaningful estimates for the quality of newly appeared sources.
Finally, we are actively working on relaxing some of the assump-
tions in the proposed framework such as source independence.
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