
Mining Summaries for Knowledge Graph Search

Qi Song 1 Yinghui Wu 1 Xin Luna Dong2

1Washington State University 2Amazon, Inc.

{qsong, yinghui}@eecs.wsu.edu lunadong@amazon.com

Abstract—Mining and searching heterogeneous and large-scale
knowledge graphs is very challenging under real-world resource
constraints (e.g., memory, response time). In this paper, we study
a novel graph summarization framework to facilitate knowledge
graph search. 1) We introduce a class of summaries character-
ized by graph patterns. In contrast to conventional summaries
defined by frequent graph patterns, the summaries are capable
of adaptively summarize entities with similar neighbors up to
a bounded hop. 2) We formulate the computation of graph
summarization as a bi-criteria pattern mining problem. Given
a knowledge graph G, the problem is to discover k diversified
summary patterns that maximizes the informativeness measure.
Although this problem is NP-hard, we develop two algorithms to
solve this problem: a 2-approximation algorithm, and a resource-
bounded anytime algorithm to trade-off speed and accuracy,
under given resource constraints. 3) We develop query evalu-
ation algorithms by leveraging the graph summarization. These
algorithms efficiently compute (approximate) answers with high
accuracy by only accessing a small number of summary patterns
and their materialized views. Using real-world knowledge graphs,
we experimentally verify the effectiveness and efficiency of our
parallel algorithms for computing summarizations; and query
evaluation guided by summarization.

I. INTRODUCTION

Knowledge graphs are routinely used to represent entities

and their relationships in knowledge bases [5], [11]. Unlike

relational data, real-world knowledge graphs lack the support

of well-defined schema and typing system.

To search knowledge graphs, a number of query processing

techniques are proposed [11], [15], [19], [27]. Nevertheless,

it is hard for end-users to specify precise queries that will

lead to meaningful answers without any prior knowledge of

the underlying data graph. Mining and search such knowledge

graphs is challenging due to the ambiguity in queries, the

inherent computational complexity (e.g., subgraph isomor-

phism [11], [19]) and resource constraints (e.g., data allowed

to be accessed, response time) [8] for large knowledge graphs.

Example 1: Fig. 1 illustrates a sample knowledge graph G
of artists and bands. Suppose a music publisher wants to find

(artists) who are experts in two genres (genre), acted in a

(film), and also collaborated with a band whose manager is

located in the same country as the band. This search can be

represented as a graph query Q [11], [15], [19], [27] as shown

in Fig 1. The answer of Q refers to the set of entities typed

with artist in the subgraphs of G that are isomorphic to Q. In

this example, T.McGraw is the correct answer for Q.

The evaluation of Q over large G is expensive. For example,

the ambiguous label “artist” requires the inspection of all the

Fig. 1: Knowledge graph, summary patterns, and graph query.

entities having the type. Moreover, it is hard for the users to

specify Q without prior knowledge of G.

Observe that the graph G can be described by three small

graph patterns as summaries P1, P2, and P3, as illustrated

in Fig. 1. Each pattern abstracts a fraction of G, by sum-

marizing a group of entities as a single node, along with

their common neighboring entities in G. For example, P1

specifies three artists J.Browne, T.McGraw and D.Yoakam in

G as a single node artist, who are associated with their band,

genre and films as 1 hop neighbors, indicating “musicians”;

and P3 distinguishes the artists T.Hanks and M.Ryan who are

associated with only films and country (i.e., “actors”). These

concise summaries help the users in understanding G without

a daunting inspection of low-level entities.

We may further use these patterns as “views” [7], [14]

to speed up knowledge discovery in G. For example, Q
can be correctly answered by accessing only the entities and

relationships summarized by P1 and P2 in G. Indeed, all the

matches of Q are contained in those entities. ✷

This example suggests that summaries as graph patterns

can benefit knowledge graph search by suggesting (and can

be directly queried as) “materialized views”. In addition,

such summaries can help users in understanding complex

knowledge graphs without inspecting a large mount of data,

as well as suggesting meaningful queries in mining tasks.

Although desirable, computing summaries for schema-less,

noisy knowledge graph is nontrivial. Conventional graph

summaries are defined by frequent subgraph patterns, which

capture their isomorphic counterparts in a graph [6], [12], [13],

[15]. This can often be an overkill for entities with similar,

relevant neighbors up to a certain hop. For example, the two



entities J.Browne and T.McGraw, along with their relevant 1
hop neighbors should be summarized by a single summary P1,

despite that the two subgraphs induced by these entities are not

isomorphic to each other; similarly for the entities T.Hanks and

M.Ryan summarized by P3. Indeed, such cases are commonly

seen in schema-less and noisy knowledge graphs. We ask the

following questions: 1) How can we construct summaries in a

schema-less knowledge graph? and 2) How can we leverage

the summaries to support knowledge graph search?

Contributions. This paper studies a novel graph summariza-

tion framework to facilitate knowledge graph search.

1) We introduce a class of graph patterns, namely, d-

summaries, to summarize similar entities in terms of their

labels and neighborhood information up to a bounded hop

d. In contrast to conventional summaries defined by frequent

subgraph patterns, (a) a d-summary is characterized by a d-

similarity relation, which induces a lossy representation of

similar entities and their d-hop neighbors; (b) it is in PTIME to

verify if a graph pattern is a d-summary, without the need for

isomorphism checking which is already NP-hard (Section II).

2) We introduce a bi-criteria function to quantify the quality of

a summarization for knowledge graphs, which integrates both

informativeness and diversity measures. Based on the quality

function, we introduce the diversified graph summarization

problem. Given a knowledge graph G, integers k and d, the

problem is to compute a set of k d-summaries that maximizes

the bi-criteria quality function.

This problem is (not surprisingly) NP-hard. We show that it

already requires verifying all possible d-summaries to generate

a summarization with approxiamtion ratio 2. In response, we

develop a stream-style anytime mining algorithm. Instead of

waiting for all summaries to be verified, the algorithm can be

interrupted at any time, and provides summaries with desirable

quality guarantees, adapting to specific resource bounds (e.g.,

memory, response time) (Section IV).

3) We further develop a query evaluation algorithm over

knowledge graphs for the class of subgraph queries. The

algorithm selects and refers to a small set of summaries

that best “cover” the query, and fetches entities from the

original knowledge graph only when necessary (Section V).

This enables a knowledge graph search paradigm that adapts

to resource constraints with high quality answers, regardless

of how large the original knowledge graph is.

4) Using real-world knowledge bases and synthetic graphs, we

experimentally verify the effectiveness and efficiency of our

summarization and query-evaluation algorithms (Section VI).

We found that 1) It is feasible to compute summarizations over

real-world knowledge graphs (300 seconds over a knowledge

graph YAGO with 3.9 million nodes and relationships), 2) the

summaries effectively support concise, informative and diver-

sified summarization, and 3) the summarization significantly

improves querying efficiency (e.g., by 40 times for YAGO).

To the best of our knowledge, this is the first work to employ

diversified pattern discovery for approximate summarization

and querying large-scale knowledge graphs. We envision that

our framework suggests promising tools for accessing, search-

ing, and understanding complex knowledge graphs.

Related work. We categorize the related work as follows.

Graph summarization. Graph summarization has been studied

to describe the data graph with a small amount of informa-

tion [13], [18], [21]–[24]. These approaches can be classified

as follows: 1) Graph compression, which aim to compress

graphs within a bounded error by minimizing a information

complexity measure [13], [18], [21], e.g., Minimum Descrip-

tion Length (MDL), or to reduce the space cost such that

the topology of the original data graph can be approximately

restored [18], [21]. The algorithm in [13] employs clustering

and community detection to describe the data graph with

predefined frequent structures (vocabulary) including stars and

cliques. 2) Summarization techniques attempt to construct

summaries over attributed graphs, where nodes with similar

attributes are clustered in a controlled manner using parame-

ters such as participation ratio [23]. 3) (Bi)simulation relation

is adopted [4] to group paths carrying same labels up to a

bounded length. Relaxed bisimulation has also been studied

to generate summaries over a set of answer [24]. These work

summarizes the entities only when they are pairwise similar,

which can be an overkill for knowledge graphs. 4) Entity

summarization [22] generates diversified answers for entity

search, instead of summaries for general subgraph queries.

Our work differs from the above works in the following

ways: 1) We introduce lossy summaries to facilitate efficient

knowledge graph query processing, rather than to restore the

exact topology of the graph as in [13], [18], [21]. Moreover,

labels of nodes/edges are not considered in these works. 2)

Our algorithms produce summaries for a single knowledge

graph rather than for multiple query answers [22], [24]. On

the other hand, they can also be applied for diversified result

summarization. 3) Our summarization is measured by both

informativeness and diversity, which is more involved than

MDL-based approaches. 4) In contrast to [18], [23], our

methods do not rely on auxiliary structure and parameters for

preserving the entity and relationships. None of these work

addresses diversified summaries as general graph patterns.

Graph clustering. A number of graph clustering approaches

have been proposed to group a set of similar graphs [1]. These

techniques can not be directly applied for summarizing a single

knowledge graph. Frequent subgraph patterns can be mined

from a single graph to describe large graphs [6], [13]. Diver-

sified pattern mining is studied for general patterns [25] and

graph patterns defined by subgraph isomorphism [9]. Type-

based summarization is applied to facilitate keyword search

in RDF graphs [15]. In contrast, 1) We capture summaries

based on d-similarity rather than subgraph isomorphism [6],

[9] or homomorphism [15]; and 2) We study bi-criteria sum-

marization that integrates diversification and informativeness,

which is not addressed in [15].

Answering queries using views: View-based query evaluation



has been shown to be effective for SPARQL queries [14] and

general graph pattern queries [7]. View-based query evaluation

typically requires equivalent query rewriting by accessing

views defined in the same query language. Our work differs in

the following ways: 1) We use d-summaries as views to eval-

uate graph queries defined by subgraph isomorphism, rather

than requiring views and queries to be in the same language;

and 2) We develop feasible summarization algorithms as view

discovery process. These are not addressed in [7], [14].

II. KNOWLEDGE GRAPHS AND SUMMARIES

A. Knowledge Graphs and summaries

We start with the notions of knowledge graphs, and then in-

troeduce summaries and summarization for knowledge graphs.

Knowledge graphs. We define a knowledge graph G as a

directed labeled graph (V,E,L), where V is a set of nodes,

and E ⊆ V × V is a set of edges. Each node v ∈ V
represents an entity with label L(v) that may carry the content

of v such as type, name, and attribute values, as found in

knowledge bases and property graphs [11]; and each edge

e ∈ E represents a relationship L(e) between two entities.

We do not assume a standard schema over G, and our

techniques will benefit from such a schema, if exists.

Example 2: Fig. 1 depicts a fraction of a typed knowledge

graph. Each entity (e.g.,J.Browne) has a label that carries

its type (e.g.,artist), and connects to other typed entities

(e.g.,band) via labeled relationships (e.g., collaborated). ✷

We use the following notations: 1) A path ρ in a graph

G is a sequence of edges e1, . . . , en, where ei=(vi, vi+1)
is an edge in G; 2) The path label L(ρ) is defined as

L(v1)L(e1) . . . L(vn)L(en)L(vn+1), i.e., concatenation of all

the node and edge labels on the path ρ; and 3) A graph

G′=(V ′, E′, L′) is a node induced subgraph of G=(V,E,L) if

V ′ ⊆ V , and E′ consists of all the edges in G with endpoints

in V ′. It is an edge induced subgraph if it contains E′ ⊆ E
and all nodes that are endpoints of edges in E′.

Summaries. Given a knowledge graph G, a summary P of G
is a directed connected graph (VP , EP , LP ), where VP (resp.

EP ⊆ VP × VP ) is a set of summary nodes (resp. edges).

Each node u ∈ VP (resp. edge e ∈ EP ) has a label LP (u)
(resp. LP (e)). Each node u ∈ VP (resp. e ∈ VE) represents a

non-empty node set [u] (resp. edge set [e]) from G.

The base graph of P in G, denoted as GP , refers to the

subgraph of G induced by the node set
⋃

u∈VP

[u], and the edge

set
⋃

e∈EP

[e], for each u ∈ VP and e ∈ EP . Note that a base

graph can be disconnected for a connected summary.

As remarked earlier, a summary should adaptively describe

entities with similar neighborhood up to certain hops in G. To

capture this, we introduce a notion of d-similarity.

d-similarity. Given a graph pattern P and a graph G, a

backward (resp. forward) d-similarity relation is a binary

relation R↑
d ⊆ VP × V (resp. R↓

d ⊆ VP × V ), where

◦ (u, v) ∈ R↑
0 and (u, v) ∈ R↓

0 if LP (u)=L(v);
◦ (u, v) ∈ R↑

d if (u, v) ∈ R↑
d−1, and for every parent u′

of u in P , there exists a parent v′ of v in G, such that

LP (u
′, u)=L(v′, v) (i.e., edges (u′, u) and (v′, v) have

the same edge label), and (u′, v′) ∈ R↑
d−1;

◦ (u, v) ∈ R↓
d if (u, v) ∈ R↓

d−1, and for every child u′

of u in P , there exists a child v′ of v in G such that

LP (u, u
′)=L(v, v′), and (u′, v′) ∈ R↓

d−1.

We define a d-similarity Rd between P and G as the set

of node pairs {(u, v)|(u, v) ∈ R↑
d ∩ R↓

d}. A summary P is

a d-summary, if for every summary node u and every node

v ∈ [u]([u] 6= ∅), (u, v) ∈ Rd.

Intuitively, a d-summary P guarantees that for any incoming

(resp. outgoing) path ρ of a summary node u with a bounded

length d in P , there must exist an incoming (resp. outgoing)

path of each entities summarized in [u] with the same label.

That is, P preserves all the neighborhood information up to

length d for each summary node u in P . Note that for a given

summary P with diameter dm, d ≤ dm,

We now characterize knowledge graph summarization with

summaries and base graphs. Given a knowledge graph G and

an integer d, we define a summarization SG of G as a set of

d-summaries. In practice, additional mapping structures can

be used to trace the base graphs for the summaries.

Example 3: Fig. 1 illustrates a summarization of the knowl-

edge graph G, which contains three 2-summaries P1, P2, and

P3. The base graph of P1 is induced by the entities shown in

the table below (the edges are omitted).

summary node entities

[genre] { country, punk }
[film] {Going Home, Four Holidays}

[artist] {J.Browne, D.Yoakam, T.McGraw}
[band] {The Eagles, Husker Du, Def Leppard }

Indeed, for every path of length bounded by 2 in P1 (e.g.,

ρp={genre,artist, band}) and for every entity with label genre,

there exists a path ρ (e.g., {country, J.Browne, The Eagles})

in G with the same label as ρp. Similarly, one may verify that

P2 summaries the band Def Leppard and The Eagles, their

associated country and manager in G, and P3 summaries the

films You’ve got a Mail and Sleepless in Seattle, actors T.Hanks

and M.Ryan and their countries.

Note that P1 cannot summarize T.Hanks, as the latter has

no path to a band as suggested in P1. ✷

B. Verification of d-summaries

We next study the verification of d-summaries. Given a sum-

mary P and a knowledge graph G, the verification problem

is to determine if P is a d-summary of G, and if so, identify

the largest base graph GP of P in G.

In contrast to its counterpart defined by frequent subgraphs

(NP-hard), the verification of d-summaries is tractable.

Lemma 1: Given a summary P=(VP , EP , LP ) and a graph

G=(V,E,L), it is in O(|VP |(|VP |+ |V |)(|EP |+ |E|) + |G|)
time to verify if P is a d-summary of G, and if so, also finds

the largest base graph GP of P in G. ✷



As a proof of Lemma. 1, we outline an algorithm that

determines if P is a d-summary in polynomial time. (1) For

each node u ∈ VP , the algorithm initializes a set [u] with all

the nodes v where (u, v) ∈ R↑
0. (2) It then iteratively computes

backward d-similarity R↑
i for each edge (u′, u) ∈ EP , by

removing the nodes in [u′] that are not in R↑
i−1 by definition.

This step repeats until i=d. The forward d-similarity can be

similarly computed. (3) If for every node u ∈ VP , [u] 6= ∅, P
is verified as a d-summary. Otherwise, whenever [u] becomes

∅, it determines that P is not a d-summary.

The algorithm keeps the following invariants: (1) For any

pair (u, v) ∈ R↑
d ∩ R↓

d, v ∈ [u] when it terminates. (2) If a

node v is removed from [u] at any time, then (u, v) /∈ Rd.

Hence it correctly computes the largest Rd and GP . To see

the complexity, observe that (1) it takes O((|VP |+|V |)(|EP |+
|E|) time to verify forward and backward d-similarity for a

single summary node in VP , and the total verification time is

in O(|VP |(|VP | + |V |)(|EP | + |E|); and (2) it takes O(|G|)
time to induce GP .

Remarks. d-summaries differ from several other graph pat-

terns as follows. (1) Frequent graph patterns [6], [12], [15]

capture their isomorphic counterparts in G. However, this

requires (a) expensive isomorphism checking (NP-hard), and

(2) excessive number of redundant patterns. (2) (Bi)simulation-

based patterns [4], [24] enforce pairwise entity equivalence

induced by the label equivalence of their associated paths.

These semantics, while fit better for data supported by fixed

entity schema (e.g., XML data), can be an overkill for

schema-less knowledge graphs, where similar entities that are

not pairwisely equivalent are quite common (e.g., J.Browne,

D.Yoakam, and T.McGraw in Fig. 1). (3) Dual-simulation [16]

relax the pairwise similarity relation by requiring all the paths

with arbitrary length in a pattern to have a matched path.

This can also be restrictive to capture entities having similar

relevant neighbors up to a bounded hop (1 hops neighbors for

J.Browne and T.McGraw). In contrast, the parameter d can be

tuned to adapt to such relevant neighbors in d-summaries. (4)

Neighborhood based summaries [3] merge overlapped neigh-

bors. In contrast, a d-summary can group entities that share

no neighbors (e.g.,The Eagles and Def Leppard in Fig. 1).

The notations of this paper are summarized in Table I.

III. QUALITY OF SUMMARIZATION

In this section, we introduce a bi-criteria metric that captures

the quality of knowledge graph summarization in terms of both

informativeness and diversity.

A. Informative Summaries

The interestingness of a summary P can be quantified by

its informativeness, which should capture (1) summary size,

and (2) the total amount of information (entities and their

relationships) it encodes in a knowledge graph G . We define

the informativeness function I(·) of a summary P as:

I(P ) =
|P |

bP
∗ supp(P,G)

where 1) |P | refers to the size of a summary P , i.e., total

Symbol Definition

G=(V,E, L) knowledge graph G

P=(VP , EP , LP ) summary P as a graph pattern

GP base graph of summary P in G

SG summarization of G

card(SG) cardinality of SG

supp(P,G) support of summary P in G

I(P ) informativeness of summary P ; I(P )=|P | ∗ supp(P,G)
diff(Pi, Pj) distance between summaries Pi and Pj

F (SG) bi-criteria quality function of SG

TABLE I: Notations

number of nodes and edges in P , 2) bp is a size bound to

normalize |P |, which can be specified as a recognition budget

(i.e., the largest summary size a user can understand) [22],

and (3) the support supp(P,G) is defined as
|GP |
|G| , where |GP |

(resp. |G|) refers to the size (i.e., total number of entities and

relationships) in GP (resp. G). Intuitively, the function I(·)
favors larger summaries that have higher support.

B. Summary Diversification

A second challenge is to avoid redundancy among the

summaries for knowledge graphs [22]. The summaries can be

redundant due to: 1) common “sub-summaries”; and 2) they

summarize many common entities and relationships.

Maximal summaries. Most pattern mining tasks employ

maximal patterns (patterns with no super-pattern that is more

frequent) [26] to avoid redundancy as large common patterns.

This carries over for summaries as graph patterns. Given graph

G, a d-summary P of G is maximal if supp(P ) ≥ supp(P ′)
for every d-summaries P ′ derived by adding an edge to P .

Difference of Summaries. To cope with the summary re-

dundancy due to commonly summarized entities, we define

a distance function diff for two summaries P1 and P2 as

diff(P1, P2) = 1−
|VGP1

∩ VGP2
|

|VGP1
∪ VGP2

|

where VGP1
=

⋃

u∈VP1

[u] (resp. VGP2
=

⋃

u∈VP2

[u]); that is,

it measures the Jaccard distance between the set of entities

summarized by P1 and P2 in their base graphs.

One may verify that diff is a metric, i.e., for any three

d-summaries P1, P2 and P3, diff(P1, P2) ≤ diff(P1, P3) +
diff(P2, P3). We quantify entity set difference as a more im-

portant factor of summary difference than edge set difference.

Label/type difference of the entities can also be applied to

quantify weighted VGP
in diff.

Example 4: Consider the 2-summaries P1-P3 of the graph

G (with 45 entities and edges) in Fig. 1. Let the summary

size bound bp=8, we observe the following. (1) The size

of the base graph |GP1
| is 20. Hence, supp(P1, G)= 20

45 .

the informativeness of P1 I(P1)=
7
8 ∗ 20

45=0.39. Similarly,

I(P2)=
6
8 ∗ 12

45=0.20, and I(P3)=
6
8 ∗ 11

45=0.18. One may ver-

ify that P1 is also a maximal summary within size 8. (2)

diff(P1, P2)=1- 2
14=0.86, where they summarize two common

entities {The Eagles, Def Leppard}). Similarly, diff(P1, P3)=
1.00, and diff(P2, P3)=0.90. ✷



C. Diversified Knowledge Graph Summarization

Good summarizations should cover diverse concepts in a

knowledge graph with informative summaries. We introduce

a bi-criteria function F that integrates informativeness I(·)
and distance diff(·) functions. Given a summarization SG for

knowledge graph G, F is defined as:

F (SG) = (1− α)
∑

Pi∈SG

I(Pi) +
α

card(SG)−1

∑

Pi 6=Pj∈SG

diff(Pi, Pj)

where 1) card(SG) refers to the number of summaries it

contains; and 2) α(∈ [0, 1]) is a tunable parameter to trade-off

informativeness and diversification. Note that we scale down

the second summation (diversification) in F (SG) which has
card(SG)(card(SG)−1)

2 terms, to balance out the fact that the first

summation (informativeness) has card(SG) terms.

Based on the quality metrics, we next introduce a graph

summarization problem for knowledge graphs.

Diversified graph summarization. Given a knowledge graph

G, integers k and d, and a size budget bp, the diversified

knowledge graph summarization problem is to compute a

summarization SG of G as a top k summary set, where

◦ each summary in SG is a maximal d-summary with size

bounded by bp; and

◦ the overall quality function F (SG) is maximized.

Example 5: Set bp=8 and α=0.1, a top-2 diversified summa-

rization SG of G (Fig. 1) is {P1, P2}, with total quality score

F (SG)= 0.9 ∗ (0.39 + 0.20)+0.1 ∗ 0.86 = 0.62. ✷

This problem is (not surprisingly) intractable. One may

verify that it is NP-hard, by constructing a reduction from

the maximum dispersion problem [10] that is known to be

NP-complete. In the next section, we present algorithms to

solve the summarization problem with desirable quality and

efficiency guarantees.

IV. DISCOVERING SUMMARIZATION

We next study feasible mining algorithms for diversified

knowledge graph summarizations.

A. Approximability

Finding optimal summarization by mining and verifying all

k-subsets of summaries is not practical for large G, especially

under resource constraints such as memory and response time.

One may want to resort to faster approximation algorithms that

find sub-optimal d-summaries with provable quality guaran-

tees. Let S∗
G denote the optimal summarization that maximizes

the quality function F . For any given knowledge graph G,

an ǫ-approximation mining algorithm returns a summariza-

tion SG, such that F (SG) ≥ F (S∗
G)

ǫ
(ǫ ≥ 1). We show

that diversified knowledge summarization is approximable, by

introducing such an algorithm.

Approximation. The algorithm, denoted as approxDis, in-

vokes a mining procedure sumGen to discover all the maximal

d-summaries CP . It then greedily adds a summary pair {P, P ′}

from CP to SG that maximally improves a function F ′(SG),
where F ′ is defined as

F ′(P, P ′) = (1− α)(I(P ) + I(P ′)) + α ∗ diff(P, P ′)

That is, F ′ is obtained by rounding down the original function

F , which guarantees an approximation ratio for F . This step

is repeated ⌊k
2 ⌋ times to obtain top-k d-summaries SG. If k

is odd, it selects an additional summary P that maximizes

F (SG ∪ {P}) after ⌊k
2 ⌋ rounds of selection.

Procedure sumGen. The procedure sumGen follows exist-

ing A-priori graph pattern mining (e.g., [6]) to discover d-

summaries. The difference is that it invokes the polynomial-

time verification procedure (Lemma 1; see Section II-B) to

verify if a graph pattern P is a d-summary of G, and if so,

checks if P is maximal. It adds all maximal d-summaries to

set CP and return it to approxDis.

Analysis. The diversified summarization over the maximal

summaries set CP can be reduced to the max-sum diversi-

fication problem [10]. The latter is 2-approximation if the

difference function is a metric. The algorithm approxDis

adopts a greedy strategy to select summaries that maximizes a

rounded down function F ′, which simulates a 2-approximation

algorithm for the max-sum diversification constrained by the

difference metric diff.

B. Anytime Summarization

The main drawback of the algorithm approxDis is that it

needs to wait until all the maximal summaries are mined to

compute the summarization. In contrast to frequent subgraph

mining, the verification is no longer a major bottleneck for d-

summaries. This indicates that we can quickly select maximal

d-summaries in an online fashion, over a stream of summary

candidates. We next develop an anytime summarization algo-

rithm with tunable performance, controlled by two parameters

on time and space, respectively.

Anytime measures. Given a problem I and a function J
to measure the quality of a solution, an algorithm A is an

anytime [2] of I w.r.t. J if: a) A returns an answer A(I)t when

it is interrupted at any time t; and b) J (A(I)t′) ≥ J (A(I)t)
for t′ ≥ t, i.e., quality of results improve with more time.

To measure the quality of anytime output of A, we introduce

a notation of anytime approximation.

Anytime approximation. An optimal anytime algorithm A∗

will return locally optimal answer A∗(I)t at any time t, given

the fraction of the input accessed upto time t. We say an

anytime algorithm A is an anytime ǫ-approximation algorithm

with respect to I and J , if at any time t, the answer A(I)t
returned by A approximates the answer A∗(I)t with a fixed

approximation ratio ǫ.
Anytime approximation is desirable: it verifies that the

answer produced by A has guaranteed quality compared to the

best answer one can obtain from the “seen” input at any time

t. Note that it is “weaker” than an anytime quality guarantee

with respect to the globally optimal answer (over the entire



Algorithm streamDis

Input: a graph G, integer k,
threshold lp, bp, time bound tmax;

Output: summarization SG.

1. Initialization: SG:=∅; CP := ∅; termination:=false; and L:=∅;
2. while termination 6= true do

// fetch a new summary(bounded by bp) from summary stream
3. summary Pt := sumGen (G, k);
4. CP :=CP ∪ {Pt};
5. for each Li ∈ L do

6. Update top lp summary pairs in Li that maximizes F ′(·);
7. Update SG with top ⌊ k

2
⌋ summary pairs in L;

8. if no new summary can be generated
or time-bound reaches tmax then

9. termination:=true;
10. return SG;

Fig. 2: Algorithm streamDis

input) [2]. The latter typically requires the prior knowledge

of error distribution. We do not make such assumptions, and

defer this study to future work.

We present the main result of this section below.

Theorem 2: There exists an anytime 2-approximation algo-

rithm that computes a diversified summarization for a knowl-

edge graph, which takes (measured by input size) (1) O(Nt ∗
bp(bp+ |V |)(bp+ |E|)+ k

2N
2
t ) time, and (2) O(k ∗Nt+ |SG|)

space, where Nt is the number of summaries it verified when

interrupted, and |SG| refers to the total size of summaries and

their base graphs. ✷

In a nutshell, the anytime algorithm maintains a top-k set

SG, and keeps track of a bounded number of summaries that

can potentially improve the summarization quality F (SG).
Instead of waiting for all the summaries to be generated by

sumGen, it operates on a summary stream. It updates SG

whenever a new summary that can improve F (SG) is identified

in the stream, by referring to a set of cached summaries. When

interrupted, it returns the up-to-date summarization SG.

Below we first introduce the auxiliary structure used by the

algorithm, followed by the actual algorithm.

Auxiliary structure. Our anytime algorithm maintains the

following: 1) a set CP of the maximal summaries verified

by sumGen; and 2) a set L of ranked lists, one list Li for

each maximal summary Pi ∈ CP . Each list Li caches the top-

lp (n ∈ [1, k − 1]) summary pairs (Pi, Pj) in CP that have

the highest F ′(Pi, Pj) score, where F ′(·) refers to the revised

quality function (see Section IV-A). It bounds the size of the

list Li based on a tunable parameter lp, which can be adjusted

as per the available memory.

Algorithm. Given G, integer k, and two threshold bp and lp,

the algorithm, denoted as streamDis, computes a summeriza-

tion SG as follows (see Fig. 2). It first initializes SG, CP ,

L, and a flag termination (set as false) for the termination

condition (line 1). It then iteratively conducts the following

steps.

1) Invokes sumGen to fetch a newly generated summary Pt.

Note that the procedure sumGen can be easily modified to

return a single summary after evaluation, instead of returning

a set of summaries in a batch.

2) Updates CP and the list L (lines 5-7) based on the newly

fetched summary Pt. For each summary Pi ∈ CP , it computes

the quality score F ′(Pi, Pt), and updates the top-lp list Li of

Pi by replacing the lowest scoring pair (Pi, P
′) with (Pi, Pt),

if F ′(Pi, P
′)<F ′(Pi, Pt).

3) Incrementally updates the top-k summaries SG (lines 5-6).

Greedily selects top ⌊k
2 ⌋ pairs of summaries with maximum

quality F ′(·) from the list set L, and adds the summaries to

SG. If |SG| < k, a summary P ∈ CP \SG that maximizes the

quality F (SG ∪ {P}) is added to SG.

The above process is repeated until the termination con-

dition is satisfied (lines 8-9): a) no new summary can be

discovered in sumGen; or b) running time reaches the time-

bound tmax. The up-to-date SG is then returned.

Example 6: Consider the sample graph G in Fig. 1. Let bq=8,

k=2, d=2 and α=0.1. streamDis computes a summarization SG

as follows. In the first round, it invokes sumGen to discover a

maximal 2-summary, e.g., P3, and initializes CP and SG with

P3. In round 2, it discovers a new 2-summary P2, verifies

F ′(P2, P3) as 0.9 ∗ (0.20 + 0.18) + 0.1 ∗ 0.90 = 0.43, and

updates L2, L3 and SG as shown below.

round L CP SG

2
L2={<(P2, P3),0.43}
L3={<(P3, P2),0.43}

{P2, P3} {P2, P3}

3

L1={<(P1, P2),0.62}
L2={<(P2, P1),0.62}
L3={<(P3, P1),0.61}

{P1, P2, P3} {P1, P2}

In round 3, it discovers summary P1, and updates the top-1
entries in each list of L. It verifies the pairwise quality scores

as F ′(P1, P2)= 0.62 (see Example 5) and F ′(P1, P3)=0.9 ∗
(0.39+0.18)+0.1∗1.00 = 0.61. The new top elements in the

lists L1, L2, and L3 are hence updated to (P1, P2), (P2, P1)
and (P3, P1) respectively. Hence, it replaces {P2, P3} ∈ SG

with {P1, P2}, and updates the auxiliary structures as follows.

As all the maximal summaries within size 8 are discovered,

streamDis terminates and returns SG={P1, P2}. ✷

Analysis. The algorithm streamDis is an anytime 2-

approximation algorithm. (1) It can be interrupted at any time-

bound tmax to return SG; and 2) the set SG is incrementally

updated such that the overall quality F (SG) monotonically

increases (line 5). Let CPt
be the set of summaries generated

upto time t, and S∗
Gt

be the optimal summarization over the

cached summaries CPt
. When lp=k-1, streamDis simulates

its 2-approximation counterpart approxDis by accessing all

cached summaries CPt
, and produces a summarization SGt

where F (SGt
) ≥

F (S∗
Gt

)

2 for a given time t (see Appendix).

V. KNOWLEDGE GRAPH SEARCH WITH SUMMARIES

Knowledge graph search is the cornerstone for advanced

knowledge mining tasks. A query Q is typically represented as

a graph (Vq, Eq, Lq) [11], [15], [19], [27]. Given a knowledge



graph G=(V,E,L), the answer Q(G) of Q in G refers to the

set of all the subgraphs of G that are isomorphic to Q.

We show that d-summaries can support fast knowledge

graph search under resource bounds (e.g., number of entities to

be accessed). This is especially desirable in large-scale graph

mining with limited computational resources [8].

“Summaries+∆” Scheme. Given a query Q, a knowledge

graph G and a summarization SG of d-summaries, our query

evaluation algorithm, denoted as evalSum, only refers to select

d-summaries in SG and their base graphs as “materialized

views” [7], and fetches additional data in G only when

necessary. The algorithm has the following two steps.

◦ It selects a set of summaries from SG with “materialized”

base graphs that contains the potential answers of Q as

much as possible, and

◦ It refers to the base graphs to compute the (partial) answer

Q(G), and fetches bounded amount (∆) of data from G to

complete the computation of Q(G), only when necessary.

We next introduce the summary selection strategy in our

“summaries+∆” scheme.

Summary Selection. Ideally, a query Q can be evaluated by

only accessing the base graphs of the summaries in SG as

materialized views. We say a query Q is covered by SG, if

every edge in Q(G) is contained in one or more base graphs of

the summaries in SG. Given a query Q and a summarization

SG, the summary selection problem is to find a set P of n
summaries in SG, such that the maximum fraction of Q is

covered by P , with a bounded total size of base graphs B.

The result below connects d-similarity with query coverage.

Lemma 3: A query Q is covered by a set of d-summaries

SG, if and only if
⋃

Pi∈SG

QPi
= Q, where QPi

refers to the

maximum base graph induced by the d-similarity between each

summary Pi ∈ SG and Q. ✷

We defer the detailed proof of Lemma 3 in Appendix.

Based on Lemma 3, the selection procedure, denoted

as Select-Sum, uses a greedy strategy to add the summaries

P that maximally covers Q, and have small base graphs in G.

To this end, it dynamically updates a rank r(P ) =
|EQP

\Ec|

|GP |
for the summaries in SG, where (1) EQP

refers to the edge

set of the base graph QP , induced by the d-similarity between

the summary P and query Q (as a graph) (Lemma 3); (2) Ec

refers to the edges of Q that has been “covered”, i.e., already

in a base graph of a selected summary P ′ ∈ P . In each round

of selection, a summary with highest r(P ) is added to P , and

the ranks of the remaining summaries in SG are dynamically

updated. The process repeats until n patterns are selected, or

the total size of the base graphs reaches B.

The selection procedure Select-Sum is efficient: it takes

O(card(SG)bq(bq + |Vp|)(bq + |Ep|)) time, where bq and

|Vq|, |Eq| are typically small. Better still, it guarantees the

approximation ratio (1 − 1
e

) for optimal summaries under

budget B, by reducing the summary selection to the budgeted

maximum coverage problem.

∆-Validation. Once the summaries P are selected, the al-

gorithm evalSum (1) identifies Q1 in Q covered by P , (2)

evaluates Q1 by only accessing the base graphs of the sum-

maries in P , using existing query evaluation algorithm based

on subgraph isomorphism (e.g., [20]); and 3) If necessary,

refines the matches for Q by visiting additional nodes and

edges in G, up to a bound ∆. Note that evalSum never visits

more than B+∆ nodes and edges in G. In practice, both B
and ∆ can be tuned to adapt to the actual resource bounds.

Remarks. View-based query evaluation [7] studies interac-

tions between queries and views in the same language. In con-

trast, we verify that d-summaries can be mined and selected

efficiently for query evaluation even with different semantics

(e.g., subgraph isomorphism), as verified by our experimental

study (Section VI). The summaries can be used to support fast

graph mining under other matching semantics that are more

“strict” than d-similarity. We defer this study in future work.

VI. EXPERIMENTAL EVALUATION

Using real-world and synthetic knowledge graphs, we con-

ducted three sets of experiments to evaluate 1) Performance of

the summary mining algorithms approxDis and streamDis; 2)

Effectiveness of the algorithm evalSum for query evaluation;

and 3) Effectiveness of summaries, using a case study.

Experimental Setting. We used the following setting.

Datasets. We use three real-life knowledge graphs: 1) DB-

pedia1 consists of 4.86M nodes and 15M edges, where each

entity carries one of the 676 labels (e.g.,’Settlement’, ’Person’,

’Building’); 2) YAGO2, a sparser graph compared to DBpedia

with 1.54M nodes and 2.37M edges, but contains more diver-

sified (324343) labels; and 3) Freebase (version 14-04-14)3,

with 40.32M entities, 63.2M relationships, and 9630 labels.

We employ BSBM4 e-commerce benchmark to generate syn-

thetic knowledge graphs over a set of products with different

types, related vendors, consumers, and views. The generator is

controlled by the number of nodes (up to 60M ), edges (up to

152M ), and labels drawn from an alphabet Σ of 3080 labels.

Queries. To evaluate evalSum algorithm, we generated 50 sub-

graph queries Q=(Vq, Eq, Lq) over real-world graphs with size

controlled by (|Vp|, |Ep|). We inspected meaningful queries

posed on the real-world knowledge graphs, and generated

queries with labels drawn from their data (domain, type,

and attribute values). For synthetic graphs, we generated 500

queries with labels drawn from BSBM alphabet. We generate

queries with different topologies (star, trees, and cyclic pat-

terns) and sizes (ranging from (4,6) to (8,14)).

Algorithm. We implemented all the algorithms in Java:

1) Summarization algorithms approxDis and streamDis, are

1http://dbpedia.org
2http://www.mpi-inf.mpg.de/yago
3http://freebase-easy.cs.uni-freiburg.de/dump/
4http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

A
cc

u
ra

cy

Time (Seconds)

lp=63
lp=32
lp=16
lp=8
lp=4

heuDis

(a) streamDis: quality vs. time

10
0

10
1

10
2

10
3

10
4

10
5

Yago DBpedia Freebase

T
im

e(
Se

co
nd

s)

approxDis
streamDis

heuDis
GRAMI

(b) Real-world datasets

Fig. 3: Anytime Performance

compared with: a) heuDis, an anytime heuristic counterpart

of streamDis that incrementally maintains a diversified sum-

marization SG over the stream of maximal summries follow-

ing [17]. Each time a new summary P is seen by sumGen,

it swaps out a summary P ′ in SG if F (SG \ {P ′} ∪ {P})
> F (SG); and b) GRAMI, an open-source graph pattern

mining tool [6] to discover frequent subgraph patterns as

summaries. Here the base graph is computed as the union

of all the subgraphs isomorphic to the summary in G.

2) Query evaluation algorithm evalSum, compared with the

following variants: a) evalRnd, that performs random selection

instead of using Select-Sum; b) evalGRAMI,that employs

frequent graph patterns mined by GRAMI; and c) evalNo that

evaluates Q by directly employing an optimized subgraph

isomorphism algorithm in [20]. We also allow a resource

bound ∆ to be posed on evalRnd and evalGRAMI as in our

“summary+∆” scheme, to allow them to return approximate

answers by fetching at most ∆ additional data from G.

We ran all our experiments on a linux machine powered by

an Intel 2.4 GHz CPU with 128 GB of memory. We ran each

experiment 5 times and report the averaged results.

Overview of Results. We summarize our findings below.

1) It is feasible to summarize large real-world graphs with d-

summaries (Exp-1). Our algorithm streamDis produces high-

quality summarization (e.g., at least 99% accurate with respect

to its 2-approximation counterpart approxDis) within a smaller

time budget (90 seconds), on YAGO with 3.91 million enti-

ties and relationships. It is orders of magnitude faster than

summarizing by mining frequent subgraph patterns (GRAMI).

2) The d-summaries significantly improves the efficiency of

query evaluation (Exp-2). For example, evalSum is 40 times

faster than evalNo (without using summarization) over YAGO.

It is 2.5 times faster than its counterpart using frequent

subgraph patterns as views. Moreover, the summary selection

is effective: evalSum outperforms evalRnd (that randomly

select summaries) by 2 times, using at most 64 summaries.

Finally, it does not take much additional cost (∆ ≤ 5% of

graph size) to find exact answers.

3) Our case study shows that summarization captured by

d-summaries is concise, and provides a good coverage for

diversified entities (Exp-3).

We next report the details of our findings.

Exp-1: Effectiveness of summary discovery. We fixed pa-

rameter α=0.5 for diversification, k=64, the summary size

 0

 200

 400
 600

 800

 1000

 1200
 1400

 1600

6 8 10 12 14

T
im

e 
(s

ec
o

n
d

s)

bp

approxDis
streamDis

heuDis

(a) Summarization: Varying bp

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3

T
im

e 
(s

ec
o

n
d

s)

d

approxDis
streamDis

heuDis

(b) Summarization: Varying d

Fig. 4: The impact of bound bp and d

bound bp=6, number of hops d = 1 and lp=k-1 for this

experiment, unless otherwise specified. In addition, we set a

support threshold θ=0.005 to find frequent maximal patterns

in the summary mining procedure sumGen used by approxDis,

streamDis, and heuDis. For the real-life datasets, we also

excluded “overly general” (top 2% frequent) labels such as

“thing”, “place”, and “person”.

Anytime performance. We evaluate the impact of time con-

straint t and size constraint lp (the number of summary

pairs stored for each summary in streamDis), on the anytime

performance of streamDis and heuDis. We define the anytime

accuracy of streamDis as
F (SGt

)

F (SG) , where SGt
refers to the

summaries returned by streamDis at time t, and SG refers

to the one returned by approxDis. The accuracy of heuDis

is defined similarly. Specifically, we report the “convergence”

time of streamDis and heuDis when the accuracy reaches 99%,

for a fair comparison with approxDis and GRAMI.

Fig. 3(a) shows the anytime accuracy of streamDis

and heuDis over YAGO. 1) The quality of summarization

returned by streamDis increases monotonically as t and

lp increases; 2) Convergence speed of streamDis to near-

optimal summarization improves with increasing lp values as

more summary pairs are stored and compared. Remarkably,

streamDis converges in less than 100 seconds when lp=63;

and 3) heuDis converges faster than streamDis, but stops at

accuracy 0.9 on average. These results verify that streamDis

provides a principled way to trade-off accuracy and time, and

converges early by processing a small number of summaries.

Remarkably, streamDis converges after processing 50 patterns

instead of 280 patterns in total when lp=63.

Efficiency of Summarization. We evaluate the efficiency of

approxDis, streamDis, heuDis, and GRAMI over the

real-world knowledge graphs. For the two anytime algo-

rithms streamDis and heuDis, we report their convergence

time. For GRAMI, we carefully adjusted a support threshold

to allow the generation of patterns with similar label set

and size to those from approxDis. As shown in Fig.3(b), 1)

streamDis and approxDis are both orders of magnitude faster

than GRAMI. The latter does not run to completion within 10
hours over both DBpedia and Freebase; 2) Performance of

streamDis is comparable to that of heuDis, and streamDis is

3-6 times faster than approxDis with comparable accuracy;

3) streamDis is feasible over large knowledge graphs. For

example, it takes less than 100 seconds to produce high-quality

summaries by verifying only 64 summaries for YAGO.



10
1

10
2

10
3

(4,6) (5,8) (6,10) (7,12) (8,14)

T
im

e(
se

co
n

d
s)

|Q|

evalNo
evalGRAMI

evalRnd
evalSum(∆=1.5%)

evalSum(∆=0)

(a) evalSum: Varying |Q|

10
1

10
2

10
3

10
4

10
5

(37M) (72M) (107M) (142M) (176M)

T
im

e(
se

co
n

d
s)

evalNo
evalGRAMI

evalRnd
evalSum(∆=1.5%)

evalSum(∆=0)

(b) evalSum: Varying |G|

Fig. 5: Efficiency of evalSum

We also evaluated the scalability of our mining al-

gorithms using larger synthetic graphs, by varying |G|
from (10M, 27M) to (60M, 152M) (not shown). The algo-

rithms streamDis and heuDis scale well with larger |G|, and

are less sensitive to increasing |G| due to their speed of cover-

gence. streamDis is feasible over large graphs. Remarkably, it

summarizes a knowledge graph of size (60M, 152M) within

1 hours. In contrast, GRAMI does not run to completion in 10

hours even with graphs of size (10M, 27M).

Varying bp. Using the settings in Fig. 3(a) over YAGO, we

varied the summary size threshold bp from 6 to 14 (node #

+ edge#). As shown in Fig.4(a), all the algorithms take more

time with larger values of bp, as more candidate patterns are

examined and verified. Remarkably, on average streamDis is

4 times faster than approxDis with 90% accuracy.

Varying d. Using the same setting over YAGO, we varied d
from 1 to 3. Fig. 4(b) shows that all the algorithms take more

time with larger d, as expected. Additionally, the convergence

time of streamDis and heuDis are less sensitive to increasing

of d when compared with approxDis.

Exp-2: Effectiveness of evalSum. We evaluate the ef-

ficiency of evalSum, and compare it with evalSum

(∆=0), evalRnd, evalGRAMI, and evalNo.

Varying |Q|. We set n = 64 and card (SG)=500, and varied

the query size |Q| from (4, 6) to (8, 14) over YAGO. Fig. 5(a)

tells us the following: 1) By leveraging 2-summaries, evalSum

and evalSum (∆=0) find answers in less than 60 seconds,

and improves the efficiency of evalNo by 40 and 50 times

respectively; evalNo does not terminate within 104 seconds

for queries with 6 nodes. 2) On average, evalSum and evalSum

(∆=0) are 2.5 and 4 times faster than evalGRAMI. This

demonstrates that the d-summaries are more effective than

using frequent subgraph patterns as “views”; 3) Our summary

selection strategy is effective: evalSum is 2 times faster than

evalRnd that employs random selection. In all cases, it takes

less than 10 seconds to select the summaries.

Varying |G|. We evaluate the scalability of evalSum with

large synthetic graphs. We set |Q|=(6,10), card (SG)=500,

and varied the size of synthetic graph |G| from (10M,27M)

to (50M,126M). We make the following observations from

Fig. 5(b): 1) all algorithms take longer time for large |G| as

expeceted; (2) evalSum and evalSum (∆=0) scale better than

all the other algorithms. evalSum is reasonably efficient: when

|G|=(10M,27M), evalSum takes 35 seconds.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8 16 32 64 128

A
cc

u
ra

cy

n

evalGRAMI
evalRnd

evalSum(∆=1.5%)
evalSum(∆=0)

(a) Accuracy w.r.t. n

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.5% 4.5% 7.5% 10.5%

A
cc

u
ra

cy

∆

evalGRAMI
evalRnd
evalSum

evalSum(∆=0)

(b) Accuracy w.r.t. ∆

Fig. 6: Accuracy of evalSum

Settlement

P4 MilitaryUnit

battle

Fig. 7: Real-life Summaries: DBpedia.

Accuracy. We evaluated the accuracy of the query answers

produced by evalSum (∆=0), evalRnd, and evalGRAMI. Let

Q(G)A be the set of node and edge matches returned by

a query evaluation algorithm A, and Q(G) the exact match

set. We define the accuracy of algorithm A as the Jaccard

similarity
Q(G)A∩Q(G)
Q(G)A∪Q(G) . For evalNo, the accuracy is 1. As

shown in Fig 6(a) and 6(b), all algorithms perform better

with larger n, and evalSum achieves highest accuracy with

∆ = 1.5%. Remarkably, evalSum can get 100% accuracy with

7.5% of original graph, however, evalGRAMI needs more data

compared to evalSum.

Query diversity. We also compared the performance

of evalSum (∆=1.5%) with evalNo over three categories of

queries over YAGO: 1) Frequent, which carries most frequent

labels in G; 2) Diversified, where the query node labels range

over a diversified set of labels; and 3) Mixed that combines

queries uniformly sampled from the two categories. The table

below shows the results, where C (resp. CISO) refers to

the total number of nodes and edges (including summaries)

visited by evalSum (resp. evalNo).

Time(seconds) Accuracy C
CISO

C
|G|

Diversified 31.63 0.9341 0.2761 0.0395

Frequent 39.87 0.9443 0.1768 0.0762

Mixed 33.09 0.9319 0.2098 0.0514

evalSum takes more time for Frequent queries due to large

candidates for frequent labels and visits more entities with

different labels for Diversified queries. In general, it visits no

more than 27% (resp. 8%) data visited by evalNo (resp. |G|)
to achieve accuracies not less than 93%.

Exp-3: Case study. We performed case studies to test the

number of summaries needed to “cover” all the entity types

for 50 sampled ambiguous keywords from DBpedia (e.g.,

“waterloo”, “Tesla”, “Avatar”). Each keyword has on average

4 different types. We observed that for highly diverse sum-



marization (e.g., α = 0.9), less number of summaries (e.g.,

k = 9) are needed to cover all the entity types. For all cases,

it takes at most 15 summaries to cover all the types for each

keyword. In contrast, most of the summaries from GRAMI are

redundant small patterns, and cannot cover the entity types of

keywords even when k=64.

Three real-life 2-summaries for keyword “waterloo” discov-

ered from DBpedia are shown in Fig. 7, which distinguish

“waterloo” as Battle entities (P1), University (P2), and Films

(P3). These summaries suggest intermediate keywords as

enhanced queries (e.g.,Military Person); and can also suggest

answers for e.g., Précis queries [22] that find diversified facts

of a single entity.

VII. CONCLUSIONS

We proposed a class of d-summaries, and developed feasible

summary mining algorithms that summarize large, schema-

less knowledge graphs. We also developed efficient query

evaluation algorithm by selecting and accessing a small num-

ber of summaries and their base graphs. Our experimental

results verified that our algorithms efficiently generate concise

summaries that significantly reduces query evaluation cost in

schema-less knowledge graphs. Our future work is to enable

query suggestion and resource-bounded query evaluation by

referring to summaries, for more types of query classes.

ACKNOWLEDGMENT

This research is supported by the National Science Foun-

dation under grant BIGDATA-1633629 and Google Faculty

Research Award.

REFERENCES

[1] C. C. Aggarwal and H. Wang. A survey of clustering algorithms for
graph data. In Managing and Mining Graph Data, pages 275–301. 2010.

[2] B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime measures for
top-k algorithms. In VLDB, pages 914–925, 2007.

[3] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to
Web graph compression with communities. In WSDM, 2008.

[4] Q. Chen, A. Lim, and K. W. Ong. D (k)-index: An adaptive structural
summary for graph-structured data. In SIGMOD, pages 134–144, 2003.

[5] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In KDD, 2014.

[6] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. Grami: Fre-
quent subgraph and pattern mining in a single large graph. Proceedings
of the VLDB Endowment, 7(7):517–528, 2014.

[7] W. Fan, X. Wang, and Y. Wu. Answering graph pattern queries using
views. In ICDE, 2014.

[8] W. Fan, X. Wang, and Y. Wu. Querying big graphs within bounded
resources. In SIGMOD, 2014.

[9] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph
patterns. Proceedings of the VLDB Endowment, 8(12):1502–1513, 2015.

[10] S. Gollapudi and A. Sharma. An axiomatic approach for result
diversification. In WWW, 2009.

[11] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum.
Naga: Searching and ranking knowledge. In ICDE, pages 953–962,
2008.

[12] N. S. Ketkar, L. B. Holder, and D. J. Cook. Subdue: Compression-
based frequent pattern discovery in graph data. In Proceedings of the
1st international workshop on open source data mining: frequent pattern
mining implementations, pages 71–76. ACM, 2005.

[13] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. Vog: Summarizing
and understanding large graphs. In SDM, 2014.

[14] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang. Rewriting
queries on SPARQL views. In WWW, 2011.

[15] W. Le, F. Li, A. Kementsietsidis, and S. Duan. Scalable keyword search
on large rdf data. TKDE, 26(11):2774–2788, 2014.

[16] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing topology in graph
pattern matching. Proceedings of the VLDB Endowment, 5(4):310–321,
2011.

[17] E. Minack, W. Siberski, and W. Nejdl. Incremental diversification for
very large sets: a streaming-based approach. In SIGIR, 2011.

[18] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with
bounded error. In SIGMOD, 2008.

[19] B. Quilitz and U. Leser. Querying distributed RDF data sources with
sparql. In ESWC, pages 524–538, 2008.

[20] X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. Proceedings of the VLDB
Endowment, 8(5):617–628, 2015.

[21] M. Riondato, D. Garcia-Soriano, and F. Bonchi. Graph summarization
with quality guarantees. In ICDM, pages 947–952, 2014.

[22] M. Sydow, M. Pikuła, and R. Schenkel. To diversify or not to diversify
entity summaries on rdf knowledge graphs? In Foundations of Intelligent
Systems. 2011.

[23] Y. Tian, R. Hankins, and J. Patel. Efficient aggregation for graph
summarization. In SIGMOD, 2008.

[24] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, and X. Yan. Summarizing
answer graphs induced by keyword queries. Proceedings of the VLDB
Endowment, 6(14):1774–1785, 2013.

[25] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy-aware
top-k patterns. In SIGKDD, 2006.

[26] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns.
In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 286–295, 2003.

[27] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and structureless graph
querying. PVLDB, 7(7):565–576, 2014.

APPENDIX: PROOFS

Cost Analysis of streamDis. It takes O(Nt(bp + |V |)(bp +
|E|)) time for the procedure sumGen to generate and verify

a total of Nt d-summaries with size bounded by bq at time t;
and O(k2 |CP |

2) time to compute SG using the greedy strategy,

where CP refers to the candidate set of maximal d-summaries,

also bounded by Nt. Hence, the time complexity of streamDis

is in O(Nt(b+ |V |)(b+ |E|) + k
2N

2
t ).

It suffice for streamDis to store the top k−1 pattern pairs in

each list Li ∈ L that maximizes F ′(Pi, Pj) to achieve anytime

2-approximation. Indeed, a) streamDis identifies at most ⌊k
2 ⌋

pairwise disjoint summaries each time a new summary is

returned by sumGen; and b) for each new summary, at most

2(⌊k
2 ⌋ − 1) summary pairs are replaced in L. Putting (a) and

(b) together, a top k summaries can be derived by aggregating

all summaries cached in the lists, which guarantees the 2-

approximation ratio over “seen” summaries. Hence, the space

cost is at most O(k ∗ Nt + |SG|). Here |SG| is required for

“bookkeeping” the summaries and base graphs.

Proof of Lemma 3. 1) If. Assume
⋃

Pi∈SG

QPi
= Q. For each

edge e=(u, v) in Q, there exists a summary Pi ∈ SG such

that e is in QP . Hence there exists an edge ep=(up, vp) in

Pi such that (up, u) ∈ Rd and (vp, v) ∈ Rd, where Rd is

the d-similarity between Q and P . For any edge e′=(u′, v′) in

the answer Q(G) where e is mapped to, one can verify that

(up, u
′) ∈ R′

d and (vp, v
′) ∈ R′

d, where R′
d is the d-similarity

between Pi and G. Hence Q is covered by SG by definition.

2) Only If. We prove the Only If condition by contradiction.

Assume Q is covered but there exists an edge e in Q not

covered by any d-summary. Then there exists at least one

match of e not included in any base graph, contradicting to

the assumption that Q is covered.

The above analysis completes the proof of Lemma 3.


