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Abstract Many data sets contain temporal records which

span a long period of time; each record is associated with a

time stamp and describes some aspects of a real-world en-

tity at a particular time (e.g., author information in DBLP).

In such cases, we often wish to identify records that describe

the same entity over time and so be able to perform interest-

ing longitudinal data analysis. However, existing record link-

age techniques ignore temporal information and fall short for

temporal data.

This article studies linking temporal records. First, we ap-

ply time decay to capture the effect of elapsed time on en-

tity value evolution. Second, instead of comparing each pair

of records locally, we propose clustering methods that con-

sider time order of the records and make global decisions.

Experimental results show that our algorithms significantly

outperform traditional linkage methods on various temporal

data sets.

Keywords temporal data, record linkage, data integration

1 Introduction

Record linkage takes a set of records as input and discovers

which records refer to the same real-world entity. It plays

an important role in data integration, data aggregation, and

personal information management, and has been extensively

studied in recent years (see [1,2] for recent surveys). Exist-

ing techniques typically proceed in two steps: the first step

compares the similarity of each pair of records, deciding if
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they match or not; the second step clusters the records ac-

cordingly, with the goal that records in the same cluster refer

to the same real-world entity and records in different clusters

refer to different ones.

In practice, a data set may contain temporal records over

a long period of time; each record is associated with a time

stamp and describes some aspects of a real-world entity at

that particular time. In such cases, we often wish to identify

records that describe the same real-world entity over time

and so be able to trace the history of that entity. For exam-

ple, DBLP1) lists research papers over many decades; we

wish to identify individual authors such that we can list all

publications by each author. Other examples include med-

ical data that keep patient information over tens of years,

customer-relationship data that contains customer informa-

tion over years, and so on; identifying records that refer to

the same entity enables interesting longitudinal data analysis

over such data [3].

Although linking temporal records is important, to the best

of our knowledge, traditional techniques ignore the tempo-

ral information in linkage. Thus, they can fall short for such

data sets for two reasons. First, the same real-world entity

can evolve over time (e.g., a person can change their phone

number and address) and so records that describe the same

real-world entity at different times can contain different val-

ues; blindly requiring value consistency of the linked records

can thus cause false negatives. Second, it is more likely to

find highly similar entities over a long time period than at

the same time (e.g., having two persons with highly similar

names in the same university over the past 30 years is more

likely than at the same time) and so records that describe dif-

ferent entities at different times can share common values;

1) http://www.dblp.org/
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blindly matching records that have similar attribute values

can thus cause false positives. We illustrate the challenges

with the following example.

Example 1 Consider records that describe paper authors in

Table 1; each record is derived from a publication record at

DBLP (we skip some co-authors for brevity). These records

describe 3 real-world people: r1 describes E1: Xin Dong, who

was at R. Polytechnic in 1991; r2 − r6 describe E2: Xin Luna

Dong, who moved from Univ of Washington to AT&T Labs;

r7 − r12 describe E3: Dong Xin, who moved from Univ of

Illinois to Microsoft Research.

If we require high similarity on both name and a liation,

we may split entities E2 and E3, as records for each of them

can have different values for a liation. If we require only

high similarity of name, we may merge E1 with E2 as they

share the same name, and may even merge all three entities.

Table 1 Records from DBLP

ID name a liation co-authors year

r1 Xin Dong R. Polytechnic Institute Wozny 1991

r2 Xin Dong Univ of Washington Halevy, Tatarinov 2004

r3 Xin Dong Univ of Washington Halevy 2005

r4 Xin Luna Dong Univ of Washington Halevy, Yu 2007

r5 Xin Luna Dong AT&T Labs-Research Das Sarma, Halevy 2009

r6 Xin Luna Dong AT&T Labs-Research Naumann 2010

r7 Dong Xin Univ of Illinois Han, Wah 2004

r8 Dong Xin Univ of Illinois Wah 2007

r9 Dong Xin Microsoft Research Wu, Han 2008

r10 Dong Xin Univ of Illinois Ling, He 2009

r11 Dong Xin Microsoft Research Chaudhuri, Ganti 2009

r12 Dong Xin Microsoft Research Ganti 2010

Despite the challenges, temporal information presents ad-

ditional evidence for linkage. First, record values typically

transition smoothly. In the motivating example, person E3

moved to a new affiliation in 2008, but still had similar co-

authors from previous years. Second, record values seldom

change erratically. In our example, r2, r7, r3, r8, r10 (time or-

dered) are very unlikely to refer to the same person, as a per-

son rarely moves between two affiliations back and forth over

many years (however, this can happen around transition time;

for example, entity E3 has a paper with the old affiliation in-

formation after he moved to a new affiliation, as shown by

record r10). Third, in case we have a fairly complete data set,

such as DBLP, records that refer to the same real-world en-

tity often (but not necessarily) observe continuity; for exam-

ple, one is less confident that r1 and r2 − r6 refer to the same

person given the big time gap between them. Exploring such

evidence would require a global view of the records with the

time factor in mind.

This article studies linking temporal records and makes

three contributions. First, we apply time decay, which aims

to capture the effect of time elapse on entity value evolu-

tion (Section 3). In particular, we define disagreement decay,

with which value difference over a long time is not necessar-

ily taken as a strong indicator of referring to different real-

world entities; we define agreement decay, with which the

same value with a long time gap is not necessarily taken as a

strong indicator of referring to the same entity. We describe

how we learn decay from labeled data and how we apply it

when computing similarity between records.

Second, instead of comparing each pair of records locally

and then clustering, we describe three temporal clustering

methods that consider records in time order and accumulate

evidence over time to enable global decision making (Sec-

tion 4). Among them, early binding makes eager decisions

and merges a record with an already created cluster once it

computes a high similarity; late binding instead keeps all ev-

idence and makes decisions at the end; and adjusted binding

in addition compares a record with clusters that are created

for records with later time stamps.

Finally, we apply our methods on a European patent data

set and two subsets of the DBLP data set. Our experimen-

tal results show that applying decay in traditional methods

can improve the quality of linkage results, and applying our

clustering methods can obtain results with high precision and

recall (Section 5).

This article focuses on improving quality (precision and

recall) of linking temporal records. We can further improve

efficiency of linkage by applying previous techniques such as

canopy [4] to create small blocks of records that are candi-

dates for temporal linkage.

This article is an extended version of a previous confer-

ence paper [5]. We describe in detail more alternative so-

lutions, including two additional decay learning algorithms,

and the probabilistic adjusting algorithm for adjusted binding

and present experimental results comparing them. We also

give detailed proofs and describe more experimental results

showing the effectiveness and robustness of our results. Note

that in our work we assume the existence of temporal infor-

mation in the temporal records. Recent work [6] discussed

how to derive temporal ordering of records when time stamps

are absent; combining our techniques with techniques in [6]

would be interesting future work.

2 Overview

This section formally defines the temporal record linkage
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problem (Section 2.1) and provides an overview of our ap-

proach (Section 2.2).

2.1 Problem definition

Consider a domain D of object entities (not known a-priori)

where each entity is described by a set of attributes A =
{A1, . . . , An} and values of an attribute can change over time

(e.g., affiliation, business addresses). We distinguish single-

valued and multi-valued attributes, where the difference is

whether an attribute of an entity can have single or multiple

values at any time. Consider a set R of records, each is asso-

ciated with a time stamp and describing an entity inD at that

particular time. Given a record r ∈ R, we denote by r.t the

time stamp of r and by r.A the value of attribute A ∈ A from

r (we allow null as a value). Our goal is to decide which

records in R refer to the same entity inD.

Definition 1 (Temporal record linkage) Let R be a set of

records, each in the form of (x1, . . . , xn, t), where t is the time

stamp associated with the record, and xi, i ∈ [1, n], is the

value of attribute Ai at time t for the referred entity.

The temporal record linkage problem clusters the records

in R such that records in the same cluster refer to the same

entity over time and records in different clusters refer to dif-

ferent entities.

Example 2 Consider the records in Table 1, where each

record describes an author by name, a liation, and co-
authors (co-authors is a multi-valued attribute) and is as-

sociated with a time stamp (year). The ideal linkage solution

contains 3 clusters: {r1}, {r2, . . . , r6}, {r7, . . . , r12}.

2.2 Overview of our solution

Our record-linkage techniques leverage the temporal infor-

mation in two ways.

First, when computing record similarity, traditional link-

age techniques reward high value similarity and penalize low

value similarity. However, as time elapses, values of a partic-

ular entity may evolve; for example, a researcher may change

affiliation, email, and even name over time (see entities E2

and E3 in Example 1). Meanwhile, different entities are more

likely to share the same value(s) with a long time gap; for ex-

ample, it is more likely that we observe two persons with the

same name within 30 years than at the same time. We thus de-

fine decay (Section 3), with which we can reduce the penalty

for value disagreement and reduce the reward for value agree-

ment over a long period. Our experimental results show that

applying decay in similarity computation can improve over

traditional linkage techniques.

Second, when clustering records according to record simi-

larity, traditional techniques do not consider the time order of

the records. However, time order can often provide important

clues. In Example 1, records r2 − r4 and r5 − r6 may refer to

the same person even though the decayed similarity between

r4 and r6 is low, because the time period of r2−r4 (year 2004-

2007) and that of r5 − r6 (year 2009-2010) do not overlap; on

the other hand, records r2 − r4 and r7, r8, r10 are very likely to

refer to different persons even though the decayed similarity

between r2 and r10 is high, because the records interleave and

their occurrence periods highly overlap. We propose tempo-

ral clustering algorithms (Section 4) that consider time order

of records and can further improve linkage results.

3 Time decay

This section introduces time decay, an important concept that

aims at capturing the effect of time elapsing on value evo-

lution. Section 3.1 defines decay, Section 3.2 describes how

we learn decay, and Section 3.3 describes how we apply de-

cay in similarity computation. Experimental results show that

by applying decay in traditional linkage techniques, we can

already improve the results.

3.1 Definition

As time goes by, the value of an entity may evolve; for exam-

ple, entity E2 in Example 1 was at UW from 2004 to 2007,

and moved to AT&T Labs afterwards. Thus, different values

for a single-valued attribute over a long period of time should

not be considered as a strong indicator of referring to dif-

ferent entities. We define disagreement decay to capture this

intuition.

Definition 2 (Disagreement decay) Let Δt be a time dis-

tance and A ∈ A be a single-valued attribute. Disagreement

decay of A over time Δt, denoted by d�(A,Δt), is the proba-

bility that an entity changes its A-value within time Δt.

On the other hand, as time goes by, we are more likely to

observe two entities with the same attribute value; for exam-

ple, in Example 1 entity E1 occurred in 1991 and E2 occurred

in 2004-2010, and they share the same name. Thus, the same

value over a long period of time should not be considered

as strong indicator of referring to the same entity. We define

agreement decay accordingly.

Definition 3 (Agreement decay) Let Δt be a time distance
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and A ∈ A be an attribute. The agreement decay of A over

time Δt, denoted by d=(A,Δt), is the probability that two dif-

ferent entities share the same A-value within time Δt.

According to the definitions, decay satisfies two properties.

First, decay is in the range of [0,1]; however, d�(A, 0) and

d=(A, 0) are not necessarily 0, since even at the same time

their value-match does not necessarily correspond to record-

match and vice versa. Second, decay observes monotonicity;

that is, for any Δt < Δt′ and any attribute A, d�(A,Δt) �
d�(A,Δt′) and d=(A,Δt) � d=(A,Δt′). Whereas our definition

of decay applies to all attributes, for attributes whose values

always remain stable (e.g., birth-date), the disagreement de-

cay is always 0, and for those whose values change rapidly

(e.g., bank-account-balance), the disagreement decay is al-

ways 1.

Example 3 Figure 1 shows the curves of disagreement de-

cay and agreement decay on attribute address learned from

a European patent data set (described in detail in Section 5).

Fig. 1 Decay curves for Address

We observe that (1) the disagreement decay increases from

0 to 1 as time elapses, showing that two records differing in

affiliation over a long time is not a strong indicator of refer-

ring to different entities; (2) the agreement decay is close to

0 everywhere, showing that in this data set, sharing the same

address is a strong indicator of referring to the same entity

even over a long time; (3) even when Δt = 0, neither the

disagreement nor the agreement decay is exactly 0, meaning

that even at the same time an address match does not defi-

nitely correspond to record match or mismatch.

3.2 Learning decay

Decay can be specified by domain experts or learned from a

labeled data set, for which we know if two records refer to the

same entity and if two strings represent the same value.2) For

simplification of computation, we make three assumptions.

1. Value uniqueness: at each time point an entity has a single

value for a single-valued attribute. 2. Closed-world: for each

entity described in the labeled data set, during the time pe-

riod when records that describe this entity are present, each

of its ever-existing values is reflected by some record and the

change is reflected at the transition point. 3. Correctness: val-

ues in each record reflect the truth in real world. The data

sets in practice often violate the assumptions. In our learning

we can resolve value-uniqueness conflicts with domain ex-

perts. Our experimental results show that the learned decay

does lead to good linkage results even when the latter two as-

sumptions are violated, as various kinds of violations in the

real data often cancel out each other in affecting the learned

curves. In addition, we relax the closed-world assumption

and propose probabilistic decay, but our experiments show

that it obtains very similar results to deterministic decay.

Consider attribute A and time period Δt. We next describe

three ways to calculate decay for A and Δt according to the

labels, namely, deterministic decay, single-count decay and

probabilistic decay.

3.2.1 Disagreement decay

By definition, disagreement decay for Δt is the probability

that an entity changes its A-value within time Δt. So we need

to find the valid period of each A-value of an entity.

Consider an entity E and its records in increasing time or-

der, denoted by r1, . . . , rn, n � 1. We call a time point t a

change point if at time t there exists a record ri, i ∈ [2, n],

whose A-value is different from ri−1. Additionally r1 is al-

ways a change point. For each change point t (associated with

a new value), we can compute a life span: if t is not the final

change point of E, we call the life span of the current A-value

a full time span and denote it by [t, tnext), where tnext is the

next change point; otherwise, we call the life span a partial

time span and denote it by [t, tend + δ), where tend is the final

time stamp for this value and δ denotes one time unit (in Ex-

ample 1, a unit of time is 1 year). A life span [t, t′) has length

t′ − t, indicating that the corresponding value lasts for time

t′ − t before any change in case of a full life span, and that

the value lasts at least for time t′ − t in case of a partial life

span. L̄ f denotes the bag of lengths of full life spans, and L̄p

the bag of partial life spans.

Deterministic decay To learn d�(A,Δt), we consider all full

life spans and the partial life spans with length of at least Δt

(we cannot know for others if the value will change within

2) In case there is no label for whether two strings represent the same value, we can easily extend our techniques by considering value similarity.
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Δt). We compute the decay as

d�(A,Δt) =
|{l ∈ L̄ f |l � Δt}|

|L̄ f | + |{l ∈ L̄p|l � Δt}| . (1)

We give details of the algorithm in Algorithm LearnDis-

agreeDecay (Algorithm 1). We can prove that the decay it

learns satisfies the monotonicity property.

Proposition 1 Let A be an attribute. For any Δt < Δt′, the

decay learned by Algorithm LearnDisagreeDecay satisfies

d�(A,Δt) � d�(A,Δt′).

Algorithm 1 LearnDisagreeDecay(C̄, A)

Input: C̄ Clusters of records in the sample data set, where records in the
same cluster refer to the same entity and records in different clusters
refer to different entities.

A Attribute for learning decay.

Output: Disagreement decay d�(Δt, A).

1: L̄ f = φ; L̄p = φ;

2: for each C ∈ C̄ do

3: sort records in C in increasing time order to r1, . . . , r|C|;
4: // Find life spans

5: start = 1;

6: while start � |C| do

7: end = start + 1;

8: while rstart .A = rend .A and end � |C| do

9: end + +;

10: end while

11: if end > |C| then

12: insert r|C| .t − rstart .t + δ into L̄p; // partial life span

13: else

14: insert rend .t − rstart .t into L̄ f ; // full life span

15: end if

16: start = end;

17: end while

18: end for

19: // learn decay

20: for Δt = 1, . . . ,maxl∈L̄ f∪L̄p
{l} do

21: d�(A,Δt) =
|{l∈L̄ f |l�Δt}|

|L̄ f |+|{l∈L̄p |l�Δt}|
22: end for

Proof In LearnDisagreeDecay, as Δt increases, |{l ∈ L̄ f |l �
Δt}| is non-decreasing while |{l ∈ L̄p|l � Δt}| is non-

increasing; thus, |{l∈L̄ f |l�Δt}|
|L̄ f |+|{l∈L̄p |l�Δt}| is non-decreasing. �

Example 4 Consider learning disagreement decay for a l-
iation from the data in Example 1. For illustrative purposes,

we remove record r10 as its affiliation information is incor-

rect. Take E2 as an example. As shown in Fig. 2, it has two

change points: 2004 and 2009. So there are two life spans:

[2004, 2009) has length 5 and is full, and [2009, 2011) has

length 2 and is partial.

Fig. 2 Learning d�(a ,Δt)

After considering other entities, we have L̄ f = {4, 5} and

L̄p = {1, 2, 3}. Accordingly, d�(a ,Δt ∈ [0, 1]) = 0
2+3 = 0,

d�(a ,Δt = 2) = 0
2+2 = 0, d�(a ,Δt = 3) = 0

2+1 = 0,

d�(a ,Δt = 4) = 1
2 = 0.5, and d�(a ,Δt � 5) = 2

2 = 1.

Single-count decay We consider an entity at most once and

learn the disagreement decay d�(A,Δt) as the fraction of enti-

ties that have changed their A-value within time Δt. In partic-

ular, if an entity E has full life spans, we choose the shortest

and insert its length l to L̄ f , indicating that E has changed its

A-value in time l; otherwise, we consider E’s partial life span

and insert its length l to L̄p, indicating that E has not changed

its A-value in time l, but we do not know if it will change its

A-value after any longer time. We learn disagreement decay

using Eq. (1).

Proposition 2 Let A be an attribute. For any Δt < Δt′, the

decay learned using Single-count decay satisfies d�(A,Δt) �
d�(A,Δt′).

Proof In single-count decay, as Δt increases, |{l ∈ L̄ f |l �
Δt}| is non-decreasing while |{l ∈ L̄p|l � Δt}| is non-

increasing; thus, |{l∈L̄ f |l�Δt}|
|L̄ f |+|{l∈L̄p |l�Δt}| is non-decreasing. �

Example 5 Consider learning disagreement decay for af-
liation from the following data: entity E1 has two full life

spans, [2000, 2005), [2005, 2009), and one partial life span

[2009, 2011); entity E2 has one partial life span [2003, 2010).

For E1, we consider its shortest full life span, which has

length 4; for E2, we consider its partial life span, which has

length 7. Therefore, we have L̄ f = {4}, and L̄p = {7}. Accord-

ingly, d�(a ,Δt ∈ [0, 3]) = 0
1+1 = 0, d�(a ,Δt ∈ [4, 7]) =

1
1+1 = 0.5, d�(a ,Δt � 8) = 1

1+0 = 1.

For comparison, on the same data set LearnDisagreeDe-

cay learns the following disagreement decay: d�(a ,Δt ∈
[0, 3]) = 0, d�(a ,Δt = 4) = 1

2+1 = 0.33, d�(a ,Δt ∈
[5, 7]) = 2

2+1 = 0.67, d�(a ,Δt � 8) = 2
2+0 = 1. So the

decay learned by LearnDisagreeDecay is smoother.
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Probabilistic decay We remove the closed-world assump-

tion; that is, each value change is reflected by a record at

the change point. In particular, considering a full life span

[t, tnext) we assume the last time we see the same value is

t′, t � t′ � tnext. We assume the value can change at any time

from t′ to tnext with equal probability 1
tnext−t′+1 . Thus, for each

t0 ∈ [t′, tnext], we insert length t0 − t into L̄ f and annotate it

with probability 1
tnext−t′+1 . If we denote by p(l) the probability

for a particular length l in L̄ f , we compute the disagreement

decay as

d�(A,Δt) =

∑
l∈L̄ f ,l�Δt p(l)

∑
l∈L̄ f

p(l) + |{l ∈ L̄p|l � Δt}| . (2)

Proposition 3 Let A be an attribute. For any Δt < Δt′, the

decay learned using Probabilistic decay satisfies d�(A,Δt) �
d�(A,Δt′).

Proof In probabilistic decay, as Δt increases,
∑

l∈L̄ f ,l�Δt p(l)

is non-decreasing while |{l ∈ L̄p|l � Δt}| is non-increasing;

thus,
∑

l∈L̄ f ,l�Δt
p(l)

∑
l∈L̄ f

p(l)+|{l∈L̄p |l�Δt}| is non-decreasing. �

Example 6 Consider learning disagreement decay for af-
liation from the data set in Example 1. Again, we remove

record r10 for illustrative purpose. Take E2 as an example. Its

first affiliation has full life span [2004, 2009), and its last time

stamp is 2007. We consider the change can occur in any year

from 2007 to 2009, each with probability 1
2009−2007+1 =

1
3 . So

we insert length 3, 4, 5 into L̄ f , each with probability 1
3 . Simi-

larly, we insert length 3, 4 for entity E3, each with probability

0.5.

Eventually, we have L̄ f = {3( 1
3 ), 4( 1

3 ), 5(0.33), 3(0.5),

4(0.5)}, and L̄p = {1, 2, 3}. Accordingly, d�(a ,Δt ∈ [0, 1]) =
0

2+3 = 0, d�(a ,Δt = 2) = 0
2+2 = 0, d�(a ,Δt = 3) =

0.5+0.33
2+1 = 0.28, d�(a ,Δt = 4) = 0.33+0.33+0.5+0.5

2 = 0.84, and

d�(a ,Δt � 5) = 0.33+0.33+0.33+0.5+0.5
2 = 1.

Recall that for the same data set LearnDisagreeDecay

learns the following decay: d�(a ,Δt ∈ [0, 3]) = 0,

d�(a ,Δt = 4) = 0.5, and d�(a ,Δt � 5) = 1. Thus, the

curve learned by LearnDisagreeDecay is less smooth.

Experimental results (Section 5) show that these three

methods learn similar (but more or less smooth) decay curves,

and their results lead to similar linkage results.

3.2.2 Agreement decay

By definition, agreement decay for Δt is the probability that

two different entities share the same value within time period

Δt. Consider a value v of attribute A. Assume entity E1 has

value v with life span [t1, t2) and E2 has value v with life span

[t3, t4). Without losing generality, we assume t1 � t3. Then,

for any Δt � max{0, t3 − t2 + δ}, E1 and E2 share the same

value v within a period of Δt. We call max{0, t3 − t2 + δ} the

span distance for v between E1 and E2.3)

Algorithm 2 LearnAgreeDecay(C̄, A)

Input: C̄ Clusters of records in the sample data set, where records in the
same cluster refer to the same entity and records in different clusters
refer to different entities.

A An attribute for decay learning.

Eneure: Agreement decay d=(Δt, A).

1: //Find life spans

2: for each C ∈ C̄ do

3: sort records in C in increasing time order to r1, . . . , r|C|;
4: start = 1;

5: while start � |C| do

6: end = start + 1;

7: while rstart .A = rend .A and end � |C| do

8: end + +;

9: end while

10: if end > |C| then

11: rstart .tnext = r|C|−1 .t + δ; // partial life span

12: else

13: rstart .tnext = rend .t; // full life span

14: end if

15: start = end;

16: end while

17: end for

18: //learn agreement decay

19: L̄ = φ

20: for each C,C′ ∈ C̄ do

21: same = f alse;

22: for each r ∈ C s.t. r.tnext � null do

23: for each r′ ∈ C′ s.t. r.tnext � null do

24: if r.A = r′.A then

25: same = true;

26: if r.t � r′.t then

27: insert max{0, r′.t − r.tnext + 1} into L̄;

28: else

29: insert max{0, r.t − r′.tnext + 1} into L̄;

30: end if

31: end if

32: end for

33: end for

34: if !same then

35: insert ∞ into L̄;

36: end if

37: end for

38: for Δt = 1, . . . ,maxl∈L̄{l} do

39: d=(A,Δt) = |{l∈L̄|l�Δt}||L̄|
40: end for

3) We can easily extend to the case where v has multiple life spans for the same entity.
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For any pair of entities, we find the shared values and com-

pute the corresponding span distance for each of them. If two

entities never share any value, we use∞ as the span distance

between them. We denote by L̄ the bag of span distances and

compute the agreement decay as

d=(A,Δt) =
|{l ∈ L̄|l � Δt}|

|L̄| . (3)

Algorithm LearnAgreeDecay (Algorithm 2) describes the

details and we next show monotonicity of its results.

Proposition 4 Let A be an attribute. For any Δt < Δt′,
the decay learned by Algorithm LearnAgreeDecay satisfies

d=(A,Δt) � d=(A,Δt′).

Proof In LearnAgreeDecay, as Δt increases, |{l ∈ L̄|l �
Δt}| is non-decreasing; thus, |{l∈L̄|l�Δt}||L̄| is non-decreasing. �

Example 7 Consider learning agreement decay for name
from data in Example 1. As shown in Fig. 3, entities E1

and E2 share value Xin Dong, for which the life span for

E1 is [1991, 1992) and that for E2 is [2004, 2009). Thus, the

span distance between E1 and E2 is 2004 − 1992 + 1 = 13.

No other pair of entities shares the same value; thus, L̄ =

{13,∞,∞}. Accordingly, d=(name,Δt ∈ [0, 12]) = 0
3 = 0,

and d=(name,Δt � 13) = 1
3 = 0.33.

Fig. 3 Learning d=(name,Δt)

Similarly, we can apply single-count decay or probabilistic

decay to learn agreement decay. We omit the details here for

brevity.

3.3 Applying decay

Here we describe how we apply decay in record-similarity

computation. We first focus on single-valued attributes and

then extend our method for multi-valued attributes.

3.3.1 Single-valued attributes

When computing similarity between two records with a big

time gap, we often wish to reduce the penalty if they have

different values and reduce the reward if they share the same

value. Thus, we assign weights to the attributes according

to the decay; the lower the weight, the less important an

attribute is in the record-similarity computation, so there is

a lower penalty for value disagreement or lower reward for

value agreement. This weight is decided both by the time gap

and by the similarity between the values (to decide whether

to apply agreement or disagreement decay). We denote by

wA(s,Δt) the weight of attribute A with value similarity s and

time difference Δt. Given records r and r′, we compute their

similarity as

sim(r, r′) =
∑

A∈A wA(s(r.A, r′.A), |r.t − r′.t|) · s(r.A, r′.A)∑
A∈A wA(s(r.A, r′.A), |r.t − r′.t|) .

(4)

Next we describe how we set wA(s,Δt). With probability s,

the two values are the same and we shall use the complement

of the agreement decay; with probability 1− s, they are differ-

ent and we shall use the complement of the disagreement de-

cay. Thus, we set wA(s,Δt) = 1−s·d=(A,Δt)−(1−s)·d�(A,Δt).
In practice, we use thresholds θh and θl to indicate high sim-

ilarity and low similarity respectively, and set wA(s,Δt) =

1− d=(A,Δt) if s > θh and wA(s,Δt) = 1− d�(A,Δt) if s < θl.

Our experiments show robustness of our techniques with re-

spect to different settings of the thresholds.

Example 8 Consider records r2 and r5 in Example 1 and

we focus on single-valued attributes name and a liation.

Assume the name similarity between r2 and r5 is 0.9 and

the affiliation similarity is 0. Suppose d=(name,Δt = 5) =

0.05, d�(a ,Δt = 5) = 0.9, and θh = 0.8. Then, the weight for

name is 1−0.05 = 0.95 and that for a liation is 1−0.9 = 0.1.

So the similarity is sim(r1, r2) = 0.95×0.9+0.1×0
0.95+0.1 = 0.81. Note

that if we do not apply decay and assign the same weight

to each attribute, the similarity would become 0.5×0.9+0.5×0
0.5+0.5 =

0.45.

Thus, by applying decay, we are able to merge r2 − r6, de-

spite the affiliation change of the entity. Note however that we

will also incorrectly merge all records together because each

record has a high decayed similarity to r1.

3.3.2 Multi-valued attributes

In this subsection we consider multi-valued attributes such as

co-authors. We start by describing record-similarity compu-

tation with such attributes, and then describe how we learn

and apply decay for such attributes.

Multi-valued attributes differ from single-valued attributes

in that the same entity can have multiple values for such at-

tributes, even at the same time; therefore, (1) having different

values for such attributes does not indicate record mismatch;
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and (2) sharing the same value for such attributes is additional

evidence for record match.

Consider a multi-valued attribute A. Consider records r and

r′; r.A and r′.A each is a set of values. Then, the similarity be-

tween r.A and r′.A, denoted by s(r.A, r′.A), is computed by a

variant of Jaccard distance between the two sets.

s(r.A, r′.A) =

∑
v∈r.A,v′∈r′ .A,s(v,v′)>θh s(v, v′)

min{|r.A|, |r′.A|} . (5)

If the relationship between the entities and the A-values is

one-to-many, we add the attribute similarity (with a certain

weight) to the record similarity between r and r′. In particu-

lar, let sim′(r, r′) be the similarity between r and r′ when we

consider all attributes and wA be the weight for attribute A,

then,

sim′(r, r′)

= min{1, sim(r, r′) +
∑

multi−valued A

wA · s(r.A, r′.A)}. (6)

On the other hand, if the relationship between the entities

and the A-values are many-to-many, we apply Eq. (6) only

when sim(r, r′) > θs, where θs is a threshold for high similar-

ity on values of single-valued attributes.

Now consider decay on such multi-valued attributes. First,

we do not learn disagreement decay on multi-valued at-

tributes but we learn agreement decay in the same way as for

single-valued attributes. Second, we apply agreement decay

when we compute the similarity between values of a multi-

valued attribute, so if the time gap between two similar values

is large, we discount the similarity. In particular, we revise

Eq. (5) as follows:

s(r.A, r′.A)

=

∑
v∈r.A,v′∈r′ .A,s(v,v′)>θh(1 − d=(A, |r.t − r′.t|))s(v, v′)

min{|r.A|, |r′.A|} . (7)

Example 9 Consider records r2 and r5 and multi-valued at-

tribute co-authors (many-to-many relationship) in Example

1. Let θh = 0.8 and wco = 0.3. Record r2 and r5 share one

co-author with string similarity 1. Suppose d=(co,Δt = 5) =

0.05. Then, s(r2.co, r5.co) = (1−0.05)∗1
min{2,2} = 0.475. Recall from

Example 8 that sim(r2, r5) = 0.81 > θh; therefore, the overall

similarity is sim′(r2, r5) = min{1, 0.81 + 0.475 ∗ 0.3} = 0.95.

4 Temporal clustering

As shown in Example 8, even when we apply decay in simi-

larity computation, traditional clustering methods do not nec-

essarily lead to good results as they ignore the time order

of the records. This section proposes three clustering meth-

ods, all processing the records in increasing time order. Early

binding (Section 4.1) makes eager decisions and merges a

record with an already created cluster once it computes a high

similarity between them. Late binding (Section 4.2) com-

pares a record with each already created cluster and keeps

the probability, and makes clustering decision at the end. Ad-

justed binding (Section 4.3) is applied after early binding or

late binding, and improves over them by comparing a record

also with clusters created later and adjusting the clustering

results. Our experimental results show that adjusted binding

significantly outperforms traditional clustering methods on

temporal data.

4.1 Early binding

Algorithm: Early binding considers the records in time or-

der; for each record it eagerly creates its own cluster or

merges it with an already created cluster. In particular, con-

sider record r and already created clusters C1, . . . ,Cn. Early

proceeds in three steps.

1. Compute the similarity between r and each Ci, i ∈ [1, n].

2. Choose the cluster C with the highest similarity.

Merge r with C if sim(r,C) > θ, where θ is a threshold

indicating high similarity; create a new cluster Cn+1 for

r otherwise.

3. Update signature for the cluster with r accordingly.

Cluster signature When we merge record r with cluster C,

we need to update the signature of C accordingly (step 3). As

we consider r as the latest record of C, we take r’s values as

the latest values of C. For the purpose of similarity compu-

tation, which we describe shortly, for each latest value v we

wish to keep 1) its various representations, denoted by R̄(v),

and 2) its earliest and latest time stamps in the current period

of occurrence, denoted by te(v) and tl(v) respectively. The lat-

est occurrence of v is clearly r.t. We maintain the earliest time

stamp and various representations recursively as follows. Let

v′ be the previous value of C, and let smax be the highest sim-

ilarity between v and the values in R̄(v′). (1) If smax > θh, we

consider the two values as the same and set te(v) = te(v′) and

R̄(v) = R̄(v′)∪{v}. (2) If smax < θl, we consider the two values

as different and set te(v) = r.t and R̄(v) = {v}. (3) Otherwise,

we consider that with probability smax the two values are the

same, so we set te(v) = sim(v, v′)te(v′)+ (1− sim(v, v′))r.t and

R̄(v) = R̄(v′) ∪ {v}.

Similarity computation When we compare r with a clus-
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ter C (step 1), for each attribute A, we compare r’s A-value

r.A with the A-value in C’s signature, denoted by C.A. We

make two changes in this process: first, we compare r.A with

each value in R̄(C.A) and take the maximum similarity; sec-

ond, when we compute the weight for A, we use te(C.A) for

disagreement decay as C.A starts from time te(C.A), and use

tl(C.A) for agreement decay as tl(C.A) is the last time we see

C.A.

We describe Algorithm Early in Algorithm 3. Early runs

in time O(|R|2); the quadratic time is in the number of records

in each block after preprocessing.

Algorithm 3 Early(R)

Input: R records in increasing time order

Output: C̄ clustering of records in R

1: for each record r ∈ R do

2: for each C ∈ C̄ do

3: compute record-cluster similarity sim(r,C);

4: end for

5: if maxC∈C̄ sim(r,C) � θ then

6: C = ArgmaxC∈C̄ sim(r,C);

7: insert r into C;

8: update signature of C;

9: else

10: insert cluster {r} into C̄;

11: end if

12: end for

13: return C̄;

Example 10 Consider applying early binding to records in

Table 1. Table 2 shows the signature of a liation for each

cluster after we process each record. The change in each step

is in bold.

Table 2 Example 10: cluster signature in early binding

C1 C2 C3

r1 R.Poly, 1991-1991 - -

r2 UW, 2004-2004 - -

r7 UW, 2004-2004 UI, 2004-2004 -

r3 UW, 2004-2005 UI, 2004-2004 -

r8 UW, 2004-2005 UI, 2004-2007 -

r4 UW, 2004-2007 UI, 2004-2007 -

r9 UW, 2004-2007 MSR, 2008-2008 -

r10 UI, 2009-2009 MSR, 2008-2008 -

r11 UI, 2009-2009 MSR, 2008-2009 -

r5 UI, 2009-2009 MSR, 2008-2009 AT&T, 2009-2009

r12 UI, 2009-2009 MSR, 2008-2010 AT&T, 2009-2009

r6 UI, 2009-2009 MSR, 2008-2010 AT&T, 2009-2010

We start with creating C1 for r1. Then we merge r2 with C1

because of the high record similarity (same name and high

disagreement decay on a liation with time difference 2004-

1991=13). The new signature of C1 contains address UW
from 2004 to 2004. We then create a new cluster C2 for r7,

as r7 differs significantly from C1. Next, we merge r3 and r4

with C1 and merge r8 and r9 with C2. The signature of C1 then

contains address UW from 2004 to 2007, and the signature of

C2 contains address MSR from 2008 to 2008.

Now consider r10. It has a low similarity to C2 (r10 and r9

has a short time distance but different affiliations), but a high

similarity to C1 (fairly similar name and high disagreement

decay on a liation with time difference 2009 − 2004 = 5).

We thus wrongly merge r10 with C1. This eager decision fur-

ther prevents merging r5 and r6 with C1 and we create C3 for

them separately.

4.2 Late binding

Instead of making eager decisions and comparing a record

with a cluster based on such eager decisions, late binding

keeps all evidence, considers them in record-cluster compar-

ison, and makes a global decision at the end.

Late binding is facilitated by a bipartite graph (NR,NC , E),

where each node in NR represents a record, each node in NC

represents a cluster, and each edge (nr, nC) ∈ E is marked

with the probability that record r belongs to cluster C (see

Fig. 4 for an example). Late binding clusters the records in

two stages: first, evidence collection creates the bi-partite

graph and computes the weight for each edge; then, deci-

sion making removes edges such that each record belongs to

a single cluster.

Fig. 4 Example 11: A part of the bi-partite graph

4.2.1 Evidence collection

Late binding behaves similarly to early binding at the evi-

dence collection stage, except that it keeps all possibilities

rather than making eager decisions. For each record r and al-

ready created clusters C1, . . . ,Cn, it proceeds in three steps.

1. Compute the similarity between r and each Ci, i ∈ [1, n].

2. Create a new cluster Cn+1 and assign similarity as fol-
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lows. (1) If for each i ∈ [1, n], sim(r,Ci) � θ, we

consider that r is unlikely to belong to any Ci and set

sim(r,Cn+1) = θ. (2) If there exists i ∈ [1, n], such

that not only sim(r,Ci) > θ, but also sim′(r,Ci) > θ,

where sim′(r,Ci) is computed by ignoring decay, we

consider that r is very likely to belong to Ci and set

sim(r,Cn+1) = 0. (3) Otherwise, we set sim(r,Cn+1) =

maxi∈[1,n] sim(r,Ci).

3. Normalize the similarities such that they sum up to 1

and use the results as probabilities of r belonging to each

cluster.

Update the signature of each cluster accordingly.

In the final step, we normalize the similarities such that the

higher the similarity, the higher the result probability. Note

that in contrast to early binding, late binding is conservative

when the record similarity without decay is low (Step 2(3));

this may lead to splitting records that have different values

but refer to the same entity, and we show later how adjusted

binding can benefit from the conservativeness.

Edge deletion In practice, we may set low similarities to

0 to improve performance; we next describe several edge-

deletion strategies. Our experimental results (Section 5) show

that they obtain similar results, while they all improve over

not deleting edges in both efficiency and accuracy of the re-

sults.

• Thresholding removes all edges whose associated simi-

larity scores are less or equal to a threshold θ.

• Top-K keeps the top-k edges whose associated similar-

ity scores are above threshold θ.

• Gap orders the edges in descending order of the as-

sociated similarity scores to e1, e2, . . . , en, and selects

the edges in decreasing order until reaching an edge ei

where (1) the scores for ei and ei+1 have a gap larger

than a given threshold θgap, or (2) the score for ei+1 is

less than threshold θ.

Cluster signature For each cluster, the signature consists

of all records that may belong to the cluster along with the

probabilities. For each value of every record, we maintain the

earliest time stamp, the latest time stamp, and similar values,

as we do in early binding.

Similarity computation When we compare r with a clus-

ter C, we need to consider the probability that a record in

C’s signature belongs to C. Let r1, . . . , rm be the records of

C in increasing time order, and let P(ri), i ∈ [1,m], be the

probability that ri belongs to C. Then, with probability P(rm),

record rm is the latest record of C and we should compare r

with it; with probability (1−P(rm))P(rm−1), record rm−1 is the

latest record of C and we should compare r with it; and so

on. Note that the cluster is valid only when r1, for which we

create the cluster, belongs to the cluster, so we use P(r1) = 1

in the computation (the original P(r1) is used in the decision-

making stage). Formally, the similarity is computed as

sim(r,C) =
m∑

i=1

sim(r, ri)P(ri)Π
m
j=i+1(1 − P(ri)). (8)

Example 11 Consider applying late binding to the records

in Table 1 and let θ = 0.8. Figure 4 shows a part of the bi-

partite graph. At the beginning, we create an edge between

r1 and C1 with weight 1. We then compare r2 with C1: the

similarity with decay (0.89 > θ) is high but that without de-

cay (0.5 < θ) is low. We thus create a new cluster C2 and set

sim(r2,C2) = 0.89. After normalization, each edge from r2

has a weight of 0.5.

Now consider r7. For C1, with probability 0.5 we shall

compare r7 with r2 (suppose sim(r7, r2) = 0.4) and with prob-

ability 1 − 0.5 = 0.5 we shall compare r7 with r1 (suppose

sim(r7, r1) = 0.8). Thus, sim(r7,C1) = 0.8× 0.5+ 0.4× 0.5 =

0.6 < θ. For C2, we shall compare r7 only with r2 and the sim-

ilarity is 0.4 < θ. Because of the low similarities, we create

a new cluster C3 and set sim(r7,C3) = 0.8. After normaliza-

tion, the probabilities from r7 to C1, C2 and C3 are 0.33, 0.22

and 0.45 respectively.

4.2.2 Decision making

The second stage makes clustering decisions according to the

evidence we have collected. We consider only valid cluster-

ings, where each non-empty cluster contains the record for

which we create the cluster. Let C̄ be a clustering and we de-

note by C̄(r) the cluster to which r belongs in C̄. We can

compute the probability of C̄ as Πr∈RP(r ∈ C̄(r)), where

P(r ∈ C̄(r)) denotes the probability that r belongs to C̄(r).

We wish to choose the valid clustering with the highest prob-

ability. Enumerating all clusterings and computing the prob-

ability for each of them can take exponential time. We next

propose an algorithm that takes only polynomial time and is

guaranteed to find the optimal solution.

1. Select the edge (nr, nC) with the highest weight.

2. Remove other edges connected to nr.

3. If nr is the first selected edge to nC but C is created for

record r′ � r, select the edge (nr′ , nC) and remove all

other edges connected to nr′ (so the result clustering is
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valid).

4. Go to Step 1 until all edges are either selected or re-

moved.

We describe algorithm Late in Algorithm 4 and next state

the optimality of the decision-making stage.

Algorithm 4 Late(R)

Input: R records in increasing time order

Output: C̄ clustering of records in R

1: Initialize a bi-partite graph (NR, NC , E) where NR = NC = E = ∅;
2: //Evidence collection

3: for each record r ∈ R do

4: insert node nr into NR;

5: for each nC ∈ NC do

6: compute decayed record-cluster similarity sim(r,C);

7: end for

8: if maxnC∈NC sim(r,C) � θ then

9: insert node nCr into NC ;

10: insert edge (nr , nCr ) with weight θ into E;

11: else

12: newCluster = true;

13: for each nC ∈ NC , where sim(r,C) > θ do

14: compute no decayed similarity sim′(r,C);

15: if sim′(r,C) > θ then

16: newCluster = f alse; break;

17: end if

18: end for

19: if newCluster then

20: insert node nCr into NC ;

21: insert edge (nr , nCr ) with weight

maxnC∈NC ,sim′(r,C)>θ (sim(r,C)) into E;

22: end if

23: end if

24: delete edges with low weights;

25: normalize weights for all edges from nr ;

26: end for

27: // Decision making

28: while |E| > |NR| do

29: select edge (nr , nC ) with maximal edge weight;

30: remove edges (nr , nC′ ) for all C′ � C;

31: if cluster C is created for record r′ � r then

32: select edge (nr′ , nC );

33: remove edges (nr′ , nC′ ) for all C′ � C;

34: end if

35: end while

36: return C̄;

Proposition 5 Late algorithm runs in time O(|R|2) and

chooses the clustering with the highest probability from all

possible valid clusterings. �

Proof Our evidence collection step guarantees that if Cr is

created for record r, then the edge (Nr,NCr ) has the highest

weight among edges from Nr . Thus, the decision making step

chooses the edge with the highest weight for each record and

obtains the optimal solution. �

Example 12 Continuing from Example 11. After evidence

collection, we created 5 clusters and the weight of each

record-cluster pair is shown in Table 3. Weights of selected

edges are in bold.

Table 3 Example 12: weights on the bipartite graph

r1 r2 r7 r3 r8 r4 r9 r10 r11 r5 r12 r6

C1 1 0.5 0.33 0.37 0.27 0.38 0.16 0.13 0.18 0.24 0.12 0.22

C2 0 0.5 0.22 0.40 0.25 0.40 0.16 0.12 0.17 0.27 0.10 0.24

C3 0 0 0.45 0.23 0.48 0.22 0.24 0.26 0.20 0.17 0.23 0.18

C4 0 0 0 0 0 0 0.44 0.19 0.29 0.16 0.33 0.18

C5 0 0 0 0 0 0 0 0.30 0.16 0.16 0.22 0.18

We first select edge (nr1 , nC1 ) with weight 1. We then

choose (nr2 , nC2 ) with weight 0.5 (there is a tie between C1

and C2; even if we choose C1 at the beginning, we will

change back to C2 when we select edge (nr3 , nC2 )), and

(nr8 , nC3 ) with weight 0.48. As C3 is created for record r7,

we also select edge (nr7 , nC3 ) and remove other edges from

r7. We choose edges for the rest of the records similarly

and the final result contains five clusters: {r1}, {r2, . . . , r6},
{r7, r8}, {r9, r11, r12}, {r10}.

Note that despite the error made for r10, we are still able to

correctly merge r5 and r6 with C2 because we make the de-

cision at the end. Note however that we did not merge r9, r11

and r12 with C3, because of the conservativeness of late bind-

ing.

4.3 Adjusted binding

Neither early binding nor late binding compares a record with

a cluster created later. However, evidence from later records

may fix early errors; in Example 1, after observing r11 and

r12, we are more confident that r7 − r12 refer to the same

entity but record r10 has out-of-date affiliation information.

Adjusted binding allows comparison between a record and

clusters that are created later.

Adjusted binding can start with the results from either early

or late binding and iteratively adjust the clustering (determin-

istic adjusting), or start with the bi-partite graph created from

evidence collection of late binding, and iteratively adjust the

probabilities (probabilistic adjusting). We next describe the

two algorithms.

4.3.1 Deterministic algorithm

Deterministic adjusting proceeds in EM-style.
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1. Initialization: Set the initial assignment as the result of

early or late binding.

2. Estimation (E-step): Compute the similarity of each

record-cluster pair and normalize the similarities as in

late binding.

3. Maximization (M-step): Choose the clustering with the

maximum probability, as in late binding.

4. Termination: Repeat E-step and M-step until the results

converge or oscillate.

Similarity computation The E-step compares a record r

with a cluster C, whose signature may contain records that

occur later than r. Our similarity computation takes advan-

tage of this complete view of value evolution as follows.

First, we consider consistency of the records, including

consistency in evolution of the values, in occurrence fre-

quency, and so on. We next describe how we compute value

consistency and occurrence frequency.

Consider the value consistency between r and C =

{r1, . . . , rm} (if r ∈ C, we remove r from C), denoted by

cons(r,C) ∈ [0, 1]. Assume the records of C are in time order

and rk.t < r.t < rk+1.t.4) Inserting r into C can affect the con-

sistency ofC in two ways: 1) r may be inconsistent with rk, so

the similarity between r and the sub-cluster C1 = {r1, . . . , rk}
is low; 2) rk+1 may be inconsistent with r, so the similarity

between rk+1 and the sub-cluster C2 = {r1, . . . , rk, r} is low.

We take the minimum as cons(r,C),

cons(r,C) = min(sim(r,C1), sim(rk+1,C2)). (9)

Occurrence consistency considers a cluster C. The occur-

rence frequency of C, denoted by f req(C), is computed by

f req(C) =
Clate −Cearly

|C| . (10)

Let C′ be the cluster after inserting record r into C.

The occurrence consistency between r and C, denoted by

cons f (r,C) is computed by

cons f (r,C) = 1 − | f req(C) − f req(C′)|
max{ f req(C), f req(C′)} . (11)

Second, we consider continuity of r and C’s other records

in time, denoted by cont(r,C) ∈ [0, 1]. Consider the five cases

in Fig. 5 and assume the same consistency between r and C.

Record r is farther away in time from C’s records in cases 1

and 5 than in cases 2—4, so it is less likely to belong to C in

cases 1 and 5. Let C.early denote the earliest time stamp of

records in C and C.late denote the latest one. We compute the

continuity as follows.

cont(r,C) = e−λy; (12)

y =
|r.t −C.early| + α

C.late −C.early + α
. (13)

Fig. 5 Continuity between record r and cluster C

Here, λ > 0 is a parameter that controls the level of con-

tinuity we require; α > 0 is a small number such that when

the denominator (resp. numerator) is 0, the numerator (resp.,

denominator) can still affect the result5) . Under this defini-

tion, the higher the time difference between r and the earliest

record in C compared with the length of C, the lower the con-

tinuity. In Fig. 5, cont(r,C) is close to 0 in cases 1, 5, close to

1 in cases 2, 3, and close to e−λ in case 4. Note that we favor

time points close to C.early more than those close to C.late;

thus, when we merge two clusters that are close in time, we

will gradually move the latest record of the early cluster into

the late cluster, as it has a higher continuity with the late clus-

ter.

Finally, the similarity of r and C considers both consis-

tency and continuity, and is computed by

sim(r,C) = cons(r,C) · cont(r,C). (14)

Recall that late binding is conservative for records whose

similarity without decay is low and may split them. Adjusted

binding re-examines them and merges them only when they

have both high consistency and high continuity, and thus

avoids aggressive merging of records with big time gap.

We describe the detailed algorithm, Adjust, in Algorithm

5. Our experiments show that Adjust does not necessarily

converge, but the quality measures of the results at the oscil-

lating rounds are very similar.

4) We can extend our techniques to the case when r has the same time stamp as some record in C.
5) In practice, we set α to one time unit, and set λ = − ln cons where cons is the minimum consistency we require for merging a record with a cluster. When
we merge two clusters C1 and C2 where C1.late = C2 .early, with such λ the latest record r1 of C1 has continuity cons with C1 and continuity 1 with C2, so
can be merged with C2 if cons(r1 ,C2) > cons.
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Example 13 Consider r10 and C4 = {r9, r11, r12} in the re-

sults of Example 12. For value consistency, inserting r10

into C4 results in {r9, . . . , r12}. Assume sim(r10, {r9}) =
sim(r11, {r9,

r10}) = 0.6. Then, cons(r10,C4) = 0.6. For continuity, if we

set λ = 2 and α = 1, we obtain l(r10,C4) = e−2·
1+1
2+1 = 0.26.

Thus, the similarity is 0.26 × 0.6 = 0.16. On the other hand,

the similarity between r10 and C5 is 1 · e−2· 11 = 0.14. We thus

merge r10 with C4.

Similarly, we then merge r8 with C4 and in turn r7 with

C4, leading to the correct result. Note that we do not merge

r1 with C2, because of the long time gap and thus a low con-

tinuity.

4.3.2 Probabilistic adjusting

Probabilistic adjusted binding proceeds in three steps.

• The algorithm starts with the bi-partite graph created

from evidence collection in late binding.

• It iteratively adjusts the weight of each edge and keeps

all edges, until the weights converge or oscillate.

In each iteration, it (1) re-computes the similarity be-

tween each record and each cluster, (2) normalizes the

weights of edges from the same record node, and (3)

re-computes the signature of each cluster.

• It selects the possible world with the highest probability

as in late binding.

Algorithm 5 Adjust(R, C̄)

Input: R records in increasing time order.

C̄ pre-clustering of records in R.

Output: C̄ new clustering of records in R.

1: repeat

2: //E-step

3: for each record r ∈ R do

4: for each cluster C ∈ C̄ do

5: compute sim(r,C) = cons(r,C) ∗ cont(r,C);

6: end for

7: end for

8: //M-step

9: Choose the possible world with the highest probability as in Ln.28–

25 of Late;

10: untilC̄ is not changed

11: return C̄;

In the second step, when we compute the similarity

between a record and a cluster, we compute consistency

cons(r,C) and continuity cont(r,C) similarly as in determin-

istic adjusted binding, except that we also need to consider

the probability of a record belonging to a cluster. For value

consistency, we consider probability in the same way as in

late binding. For continuity, we compute the probabilistic

earliest and latest time stamps of a cluster as follows. Sup-

pose cluster C is connected to m records r1, . . . , rm where

r1.t � r2.t � · · · � rm.t, each with probability pi, i ∈ [1,m].

We compute Cearly and Clate as follows:

Cearly =

m∑

i=1

ri.t · (piΠ
i−1
k=1(1 − pk)). (15)

Clate =

m∑

i=1

ri.t · (piΠ
m
k=i+1(1 − pk)). (16)

Our experiments (Section 5) shows that probabilistic ad-

justing takes much longer than deterministic adjusting, but

does not have an obvious performance gain.

5 Experimental evaluation

This section describes the results of experiments on two real

data sets. We show that (1) our technique significantly im-

proves on traditional methods on various data sets; (2) the two

key components of our strategy, namely, decay and temporal

clustering, are both important for obtaining good results; (3)

our technique is robust with respect to various data sets and

reasonable parameter settings; (4) our techniques are efficient

and scalable.

5.1 Experiment settings

Data and golden standard We experimented on two real-

world data sets: a benchmark of European patent data set6)

and the DBLP data set. From the patent data we extracted In-
ventor records with attributes name and address; the time

stamp of each record is the patent filing date. The benchmark

involves 359 inventors from French patents, where different

inventors rarely share similar names; we thus increased the

hardness by deriving a data set with only first name and last

name initial for each inventor. We call the original data set

the full set and the derived one the partial set.

From the DBLP data we considered two subsets: the XD

data set contains 72 records for authors named Xin Dong,

Luna Dong, Xin Luna Dong, or Dong Xin, for which we

manually identified 8 authors; the WW data set contains 738

records for authors named Wei Wang, for 302 of which DBLP

has manually identified 18 authors (the rest is left in a pot-

6) http://www.esf-ape-inv.eu/
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pourri). For each subset we extracted Author records with

attributes name, a liation, and co-author (we extracted af-
liation information from the papers) on 2/1/2011; the time

stamp of each record is the paper publication year. Table 4

shows statistics of the data sets.

Table 4 Statistics of the experimental data sets

#Records #Entities Years

Patent (full or partial) 1871 359 1978—2003

DBLP-XD 72 8 1991—2010

DBLP-WW 738 18+potpourri 1992—-2011

Implementation We learned decay from both patent data

sets. The decay we learned for the address attribute is shown

in Fig. 1 (Section 3); for name, both agreement and disagree-

ment decay are close to 0 on both data sets. We observed sim-

ilar linkage results when we learned the decays from half of

the data and applied them to the other half. We also applied

the decay learned from the partial data set on linking DBLP

records.

We pre-partitioned the records by the initial of the last

name, and implemented the following methods on each par-

tition.

• Baseline methods include Partition, Center, and

Merge [7]. They all compute pairwise record similar-

ity but apply different clustering strategies. We give the

details as follows.

– Partition starts with single-record clusters and

merges two clusters if they contain similar records

(i.e., applying the transitive rule).

– Center scans the records, merging a record r with

a cluster if it is similar to the center of the clus-

ter; otherwise, creates a new cluster with r as its

center.

– Merge starts from the result of Center and merges

two clusters if a record from one cluster is similar

to the center of the other cluster.

Since Center and Merge are order sensitive, we run

each of them 5 times and report the best results.

Decayed baseline methods include DecayedPartition,

DecayedCenter, and DecayedMerge, each modifying

the corresponding baseline method by applying decays

in record-similarity computation.

• Temporal clustering methods include NoDecayAdjust,

applying Adjust without using decay.

• Full methods include Early, Late, and Adjust, each ap-

plying both decay and the corresponding clustering al-

gorithm.

Similarity computation We compute similarity between a

pair of attribute values as follows.

• name: We used Levenshtein metric except that if the

Levenshtein similarity is above 0.5 and the Soundex

similarity is 1, we set similarity to 1.

• address: We used TF/IDF metric, where token similar-

ity is measured by Jaro-Winker distance with threshold

0.9.

If the TF/IDF similarity is above 0.5 and the Soundex

similarity is 1, we set similarity to 1.

• co-author: We use a variant of Jaccard metric (see Eq.

(7)), where name similarity is measured by Levenshtein

distance and θh = 0.8. We apply this similarity only

when the record similarity w.r.t single-valued attributes

is above θs = 0.5.

By default, when we compute the record similarity without

applying decay, we use weight 0.5 for both name and ad-
dress (or a liation). Whether or not we apply decay, we use

weight 0.3 for co-author. We apply threshold 0.8 for decid-

ing if a similarity is high in various contexts. In addition, we

set θh = 0.8, θl = 0.6, λ = 0.5, α = 1 in our methods. We vary

these parameters to demonstrate robustness.

We implemented the algorithms in Java, using a Win-

dowsXP machine with 2.66 GHz Intel CPU and 1 GB of

RAM.

Measure We compare pairwise linking decisions with the

golden standard and measure the quality of the results by

precision (P), recall (R), and F-measure (F). We denote the

set of false positive pairs by FP, the set of false negative

pairs by FN, and the set of true positive pairs by TP. Then,

P = |TP|
|TP|+|FP| , R = |TP|

|TP|+|FN| , F = 2PR
P+R .

5.2 Results on patent data

Figure 6 compares Adjust with the baseline methods. Ad-

just obtains slightly lower precision (but still above .9) but

much higher recall (above .8) on both data sets; it improves

the F-measure over baseline methods by 15%—27% on the

full data set, and by 11%—22% on the partial data set. The

full data set is simpler as very few inventors share similar full

names; as a result, Adjust obtains higher precision and recall

on this data set. The slightly lower recall on the partial data

set is because early false matching can prevent correct later

matching. We next give a detailed comparison of the partial
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data set, which is harder. Of the baseline methods, Partition

obtains the best results on the patent data set and we next

show results only on it. Results for the other two baseline

methods follow the same pattern.

Fig. 6 Results on the patent data set

Figure 7 shows the contribution of applying decay and ap-

plying temporal clustering. We observe that DecayedParti-

tion and NoDecayAdjust both improve over Partition, and

Adjust obtains the best result. Applying decay on baseline

methods greatly increases the recall, but it is at the price of a

big drop in precision. Temporal clustering, on the other hand,

considers the time information in clustering and in continuity

computation, so it significantly increases the recall without

much reduction in precision.

Fig. 7 Different components on patent partial data

Fig. 8 Different decays on patent partial data

5.2.1 Applying decay

Disagreement vs agreement decay Figure 8 compares the

results of applying no decay, applying only agreement de-

cay, applying only disagreement decay, and applying both

decays. We observe that while applying disagreement signif-

icantly improve the results, applying agreement decay does

not change the results much, since the agreement decays of

both attributes are close to 0.

Decay learning methods We learned the decay in three

ways: Deterministic, SingleCount, and Probabilistic, as de-

scribed in Section 3. We observe that (1) these three methods

learn similar curves, and (2) as shown in Fig. 9, applying the

three different curves lead to very similar results for Adjust,

while Deterministic obtains slightly higher F-measure than

the other two.

Fig. 9 Comparing different decay learning methods

5.3.2 Temporal clustering

Different clustering methods Figure 10 compares early,

late, and adjusted binding. We observe that all bindings im-

prove the recall over Partition, and reduce the precision

only slightly. Between Early and Late, Early has a lower

precision as it makes local decisions, while Late has a lower

Fig. 10 Different clustering methods on patent partial data
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recall as it is conservative in merging records with similar

names but different addresses (high decayed similarity but

low non-decayed similarity). Adjust significantly improves

the recall over both methods by comparing early records with

clusters formed later, without sacrificing much precision.

Edge deletion strategies We tried various edge-deletion

strategies for late binding: NoDelete keeps all edges;

Thresholding keeps edges with similarity over 0.8; TopK

keeps only the top-k edges with similarity over 0.8; Gap keeps

the top edges with weights above 0.8 and gap within 0.1. Fig-

ure 11 shows that (1) NoDelete keeps all edges, which of-

ten have low weights after normalization, and can thus split

many clusters and obtain a very low recall; and (2) different

edge-deletion strategies lead to very similar F-measures and

improve both efficiency and result quality over NoDelete.

Fig. 11 Comparing different edge deletion strategies

Cluster adjusting strategies We implemented three ver-

sions of adjusted binding: LateAdjust applies deterministic

binding on the results of late binding; EarlyAdjust applies

deterministic binding on the results of early binding; and

ProbAdjust applies probabilistic binding on the bi-partite

graph created in late binding. Figure 12 shows their results.

First, we observe that ProbAdjust obtains similar results

to LateAdjust while the running time is 50% longer (not

shown in the figure); showing that it does not have obvious

Fig. 12 Different adjusted binding methods on patent partial data

advantage. Second, we observe that EarlyAdjust and

LateAdjust obtain similar results on the patent data set;

however, as shown in Fig. 17(c), LateAdjust improves over

EarlyAdjust by 26% on another data set, the DBLP WW data

set.

5.2.3 Robustness

We ran two experiments to test robustness against parameter

settings. We first changed thresholds θh and θl for string simi-

larity and observed very similar results (varying within 0.4%)

when θh ∈ [0.7, 0.9] and θl ∈ [0.5, 0.7] (see Fig. 13).

Fig. 13 Different thresholds on patent partial data

Second, we applied different attribute weights (wname ∈
[0.4, 1],waddr. = 1 − wname) to compute no-decayed similar-

ity. Figure 14 shows that (1) Adjust is robust against attribute

weights; and (2) Adjust always outperforms Partition in F-

measure.

5.2.4 Scalability

To test scalability of our techniques, we randomly divided the

partial patent data set into 10 subsets with similar sizes with-

out splitting entities. We started with one subset and gradu-

ally added more, and reported the execution time in Fig. 15.

We observe that (1) Adjust terminated in 10.3 minutes on all

1871 records and is reasonably fast given that this is an off-

line process; and (2) the execution time grows nearly linearly

in the size of the data (though can be quadratic in the size of

a partition after pre-processing), showing scalability of our

techniques.

5.3 Results on DBLP data

5.3.1 XD data set

The golden standard contains eighi clusters: the Xin cluster

has 36 records in years 2003—2010, including name Dong

Xin and two affiliations (UIUC, MSR); the Dong cluster has

29 records in years 2003—2010, including three names (Xin
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Fig. 14 Comparison of applying different attribute weights. (a) F-measure of varying name weights, (b) Precision of varying name weights, (c)
Recall of varying name weights

Fig. 15 Scalability of Adjust

Dong, Luna Dong, Xin Luna Dong) and three affiliations

(UW, Google, AT&T); the rest each have one or two records,

including one name Xin Dong and one affiliation.

Adjust results in 9 clusters and makes only one mistake:

it splits the Xin records in 2009 with affiliation UIUC from

the rest of Xin records. This is because Xin moved to MSR

in 2008, so Adjust considers the two affiliations as conflict-

ing. We highlight that (1) Adjust fixes an error in DBLP: it

(correctly) separates the records with affiliation UNL from the

Dong cluster; and (2) Adjust is able to distinguish the various

people, even though their names are exactly the same or very

similar (the similarity between Xin Dong and Dong Xin is set

to 0.8).

Figure 16(a) shows the results of various methods on this

data set. Adjust improves over baseline methods by 37%—

43%. Other observations are similar to those on the Patent

data set (see Fig. 16(b)—(c)), except that applying decay to

some baseline methods (Partition and Center) can consider-

ably reduce the precision and result in a low F-measure, as

this data set is small and extremely difficult.

5.3.2 WW data set

We first report results on the 302 records for which DBLP

has identified 18 clusters, of which (1) three involve two af-

filiations, two involve three affiliations, and one involves tour

affiliations, so in total 10 affiliation transitions; (2) two au-

thors share the same affiliation Fudan; (3) the largest cluster

contains 92 records, the smallest contains one record, and six

clusters contain more than ten records.

Adjust obtains both high precision (0.98) and high recall

(0.97). We highlight that (1) Adjust is able to distinguish

the different authors in most cases; (2) of the ten transitions,

Adjust identifies tive of them. Adjust makes four types of

mistakes: (1) it merges the two Fudan clusters, as one of

them contains a single record with the year in the middle

of the time period of the other cluster; (2) it merges the big

Fudan cluster with another record, whose affiliation appears

different from the rest in its own cluster, and time stamp is one

Fig. 16 Results of XD data set. (a) Overall results of XD data set, (b) Different components on XD data set, (c) Clustering results of XD data set
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Fig. 17 Results of WW data set. (a) Overall results of WW data set, (b) Different components on WW data set, (c) Clustering results of WW data set

year before the earliest record in the big Fudan cluster, and

so makes a strong case for the adjusting step; (3) it does not

identify one of the transitions for the same reason as in the

XD data set; and (4) it does not identify the other tour tran-

sitions because there are very few records for one of the af-

filiations and so not enough evidence for merging. Finally,

Fig. 17 shows that Adjust is significantly better than all other

methods.

In the complete DBLP WW data set, 124 other WW

records are merged with these 18 clusters and we manu-

ally verified the correctness. Among them, 63 are correctly

merged, fixing errors from DBLP; 26 are wrongly merged but

can be correctly separated if we have department information

for a liation; and 35 are wrongly merged mainly because

of the high similarity of affiliations (e.g., many records with

“technology” in a liation are wrongly merged because the

IDF of “technology” is not so low on this small data set). If

we count these additional records, we are still able to obtain

a precision of 0.94 and a recall of 0.94.

6 Related work

There are two bodies of work similar to ours: linkage tech-

niques, and works regarding temporal information.

Record linkage Record linkage has been extensively stud-

ied in recent years [1,2]. To the best of our knowledge, exist-

ing techniques do not consider evolution of entities over time

and treat the data as snapshot data. Our techniques differ from

them in two aspects: the way we compute record similarity

and the way we cluster records.

For record-similarity computation, existing works can

be divided into three categories: classification-based ap-

proaches [8], classify a pair of records as match, unmatch

and maybe; distance-based approaches [9], apply distance

metrics to compute similarity of each attribute, and take the

weighted sum as the record similarity; rule-based approaches

[10], apply domain knowledge to match records. Our work

falls in the distance-based category; however, we apply decay

such that the weights we use for combining attribute similar-

ities are functions of the time difference between the records,

so we are tolerant of value evolution over time.

Many record linkage techniques, especially classification-

based approaches, require learning parameters or classifica-

tion models from learning data [8,11,12]. Their learning tech-

niques all assume that record values do not change over time

and value differences are due to different representations of

the same value (e.g., “Google" and “Google, Inc."). We also

learn parameters from learning data, but we are different in

that we take into account possible value change over time;

the decay curves we learn can be considered as consisting of

parameters learned for different time gaps.

Relational entity resolution techniques take entity relation-

ships (e.g., co-author, co-citation) into account when comput-

ing record similarity [13–15]. Our techniques also consider

such multi-valued attributes, but we apply agreement decay

and give less reward to similar values of such attributes in

case of a big time gap.

For record clustering, there exists a wealth of literature on

clustering algorithms for record linkage [7]. Among them,

unconstrained and unsupervised algorithms that result in dis-

joint clusters are closest to ours. These algorithms may ap-

ply the transitive rule and efficiently perform clustering by

a single scan of record pairs (e.g., Partition algorithm [10]),

may iteratively specify seeds of clusters and assign vertexes

to the seeds (e.g., Ricochet algorithm [16]), and may perform

clustering by solving an optimization problem (e.g., Cut clus-

tering [17]). These methods typically consider the records in

decreasing order of record similarity while we consider the

records in time order and collect evidence globally. Thus, our

techniques do not necessarily merge records with high value

similarity if the resulting entity shows erratic changes in a

time period, and do not necessarily split records with low

value similarity if value evolution over time is likely.

The techniques closest to ours can be found in [18] and
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[19]. In [18] the authors study behavior based linkage where

it leverages the periodical behavior patterns of each entity in

linking pairs of records and learns such patterns from trans-

action logs. Their behavior pattern is different from the de-

cay in our techniques in that decay learns the probability of

value changes over time for all entities. In addition, we do

not require a fixed and repeated value change pattern of par-

ticular entities, and we apply decay in a global fashion (rather

than just between pairs of records) such that we can handle

value evolution over time. Burdick et al. [19] applies domain-

dependent rules to leverage temporal information in linking

records, while we are the first to present a theoretical model

that can be applied generally.

Temporal data A suite of temporal data models [20], tem-

poral knowledge discovery paradigms [21] and data currency

models [6] have been proposed in the past; however, we are

not aware of any work focusing on linking temporal records.

The notion of decay has recently been proposed in the con-

text of data warehouses and streaming data [22,23]. They use

decay to reduce the effect of older tuples on data analysis. Of

them, backward decay [22] measures time difference back-

ward from the latest time and forward decay [23] measures

time difference forward from a fixed landmark. Their decay

function is either binary or a fixed (exponential or polyno-

mial) function. We differ in that 1) we consider time differ-

ence between two records rather than from a fixed point, and

2) we learn the decay curves purely from the data rather than

using a fixed function.

7 Conclusions and future work

This article studied linking records with temporal informa-

tion. We apply decay in record-similarity computation and

consider the time order of records in clustering; thus, our

linkage technique is tolerant of entity evolution over time and

can glean evidence globally for decision making. Future work

includes combining temporal information with other dimen-

sions of information such as spatial information to achieve

better results, considering erroneous data especially erro-

neous time stamps, and combining our work with recent work

on inferring temporal ordering of records [6] for linkage.
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