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ABSTRACT
The amount of useful information available on the Web has been growing at
a dramatic pace in recent years and people rely more and more on the Web to
fulfill their information needs. In this paper, we study truthfulness of Deep
Web data in two domains where we believed data are fairly clean and data
quality is important to people’s lives: Stock and Flight. To our surprise, we
observed a large amount of inconsistency on data from different sources and
also some sources with quite low accuracy. We further applied on these two
data sets state-of-the-art data fusion methods that aim at resolving conflicts
and finding the truths, analyzed their promise and limitations, and suggested
possible improvements. We wish our study can increase awareness of the
seriousness of conflicting data on the Web and in turn inspire more research
in our community to tackle this problem.

1. INTRODUCTION
The Web has been changing our lives enormously. The amount

of useful information available on the Web has been growing at a
dramatic pace in recent years. In a variety of domains, such as sci-
ence, business, technology, arts, entertainment, government, sports,
tourism, people rely on the Web to fulfill their information needs.
Compared with traditional media, information on the Web can be
published fast, but with fewer guarantees on quality and credibility.
While conflicting information is observed frequently on the Web,
typical users still trust Web data. In this paper we try to understand
the truthfulness of Web data and how well existing techniques can
resolve conflicts from multiple Web sources.

This paper focuses on Deep Web data, where data are stored in
underlying databases and queried using Web forms. We considered
two domains, Stock and Flight, where we believed data are fairly
clean and we consider incorrect values can have big (unpleasant)
effect on people’s lives. As we shall show soon, data for these two
domains also show many different features.

We first answer the following questions. Are the data consistent?
Are correct data provided by the majority of the sources? Are the
sources highly accurate? Is there an authoritative source that we
can trust and ignore all other sources? Are sources sharing data
with or copying from each other?

Our observations are quite surprising. Even for these domains
that most people consider as highly reliable, we observed a large
amount of inconsistency: for 70% data items more than one value is
provided. Among them, nearly 50% are caused by various kinds of
ambiguity, although we have tried our best to resolve heterogeneity
over attributes and instances, 20% are caused by out-of-date data,
and 30% seem to be caused purely by mistakes. Only 70% cor-
rect values are provided by the majority of the sources (over half of
the sources); and over 10% of them are not even provided by more
sources than their alternative values are. Although well-known au-
thoritative sources, such as Google Finance for stock and Orbitz for
flight, often have fairly high accuracy, they are not perfect and of-
ten do not have full coverage, so it is hard to recommend one as the
“only” source that users need to care. Meanwhile, there are many
sources with low and unstable quality. Finally, we do observe data
sharing between sources, and often on low-quality data, making it
even harder to find the truths on the Web.

Recently, many data fusion techniques have been proposed to
resolve conflicts and find the truth [1, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15,
16, 17]. We next investigate how they perform on our data sets and
answer the following questions. Are these techniques effective?
Which technique among the many performs the best? How much
do the best achievable results improve over trusting data from a
single source? Are there needs and is there space for improvement?

Our investigation shows both the promise and limitations of the
current state-of-the-art fusion techniques. On the one hand, these
techniques perform quite well in general, finding correct values for
96% data items on average. On the other hand, we observed a lot
of instability among the methods and we did not find one method
that is consistently better than others. While it appears that consid-
ering trustworthiness of sources, copying or data sharing between
sources, similarity and formatting of data is helpful in improving
accuracy, it is essential that accurate information about source trust-
worthiness and copying between sources is used; otherwise, fusion
accuracy can even be harmed. According to our observations, we
identify the problem areas that need further improvement.

Related work: There have been a lot of works on data fusion (see
[2, 6] for surveys and [7, 10, 11, 14, 16, 17] for recent works) and
they have experimented on data collected from the Web in domains
such as book, restaurant and sports. Our work is different in three
aspects. First, we are the first to quantify and study inconsistency
of Deep Web data. Second, we are the first to compare all fusion
methods proposed so far empirically. Finally, we focus on two do-
mains where we believed data should be quite clean and correct
values are more critical. We wish our study on these two domains
can increase awareness of the seriousness of conflicting data on
the Web and inspire more research in our community to tackle this
problem.



Table 1: Overview of data collections
Srcs Period Objects Local Global Considered

attrs attrs items
Stock 55 July 2011 1000*20 333 153 16000*21
Flight 38 Dec 2011 1200*31 43 15 7200*31

In the rest of the paper, Section 2 describes the data we consid-
ered, Section 3 describes our observations on data quality, Section 4
describes results of various fusion methods, Section 5 discusses
possible improvement for fusion methods, and Section 6 concludes.

2. PROBLEM DEFINITION AND DATA SETS
We start with defining how we model data from the Deep Web

and describing our data collections.

2.1 Data model
We consider Deep Web sources in a particular domain, such as

books, movies, and flights. For each domain, we consider objects
of the same type, each corresponding to a real-world entity. For
example, an object in the flight domain can be a flight with a par-
ticular flight number from a particular city on a particular day. Each
object can be described by a set of attributes. For example, a par-
ticular flight can be described by scheduled departure time, actual
departure time, scheduled arrival time, actual arrival time, etc. We
call a particular attribute of a particular object a data item. We as-
sume that each data item is associated with a single true value that
reflects the real world. For example, the true value for the actual
departure time of a flight is the minute that the airplane leaves the
gate on the specific day.

Each data source can provide a subset of objects in a particular
domain and can provide values of a subset of attributes for each
object. Data sources have heterogeneity at three levels. First, at
the schema level, they may structure the data differently and name
an attribute differently. Second, at the instance level, they may
represent an object differently. This is less of a problem for some
domains where each object has a unique ID, such as stock ticker
symbol, but more of a problem for other domains such as business
listings, where a business is identified by its name, address, phone
number, business category, etc. Third, at the value level, some of
the provided values might be exactly the true values, some might
be very close to (or different representations of) the true values, but
some might be very different from the true values. In this paper, we
manually resolve heterogeneity at the schema level and instance
level whenever possible, and focus on heterogeneity at the value
level, such as variety and correctness of provided values.

2.2 Data collections
We consider two data collections from stock and flight domains

where we believed data are fairly clean and we deem data quality
quite important. Table 1 shows some statistics of the data.
Stock data: The first data set contains 55 sources in the Stock do-
main. We chose these sources as follows. We searched “stock price
quotes” and “AAPL quotes” on Google and Yahoo, and collected
the deep-web sources from the top 200 returned results. There are
89 such sources in total. Among them, 76 use GET methods (i.e.,
the form data is encoded in the URL) and 13 use POST methods
(i.e., the form data appears in a message body). We focus on the
first 76 sources, for which data extraction poses fewer problems.
Among them, 17 use Javascript to dynamically generate data and 4
rejected our crawling queries. So we focus on the remaining 55 of
the sources. These sources include some popular financial aggrega-
tors such as Yahoo! Finance, Google Finance, and MSN Money, of-
ficial stock-market websites such as NASDAQ, and financial-news
websites such as Bloomberg and MarketWatch.

Table 2: Examined attributes for Stock.
Last price Open price Today’s change (%) Today’s change($)

Market cap Volume Today’s high price Today’s low price
Dividend Yield 52-week high price 52-week low price

EPS P/E Shares outstanding Previous close

We focus on 1000 stocks, including the 30 symbols from Dow
Jones Index, the 100 symbols from NASDAQ Index (3 symbols
appear in both Dow Jones and NASDAQ), and a randomly chosen
873 symbols from the other symbols in Russell 3000. We collected
data one hour after the stock market closes every day to minimize
the difference caused by different crawling time. Thus, each object
is a stock with a particular symbol on a particular day. We have
data for July 2011 on weekdays.

We observe very different attributes from different sources about
the stocks: the number of attributes provided by a source ranges
from 3 to 71, and there are in total 333 attributes. Some of the
attributes have the same semantics but are named differently. Af-
ter we match them manually, there are 153 attributes. We call at-
tributes before the manual matching local attributes and those af-
ter the matching global attributes. Figure 1 shows the number of
providers for each global attribute. We observe that the distribution
observes Zipf’s law; that is, only a small portion of attributes have
a high coverage and most of the “tail” attributes have a low cov-
erage. In fact, 21 attributes (13.7%) are provided by at least one
third of the sources and over 86% are provided by less than 25% of
the sources. Among the 21 attributes, the values of 5 attributes can
keep changing after market close due to after-hour trading. In our
analysis we focus on the remaining 16 attributes, listed in Table 2.

For purposes of evaluation we consider three gold standards. The
NASDAQ gold standard contains data provided by Nasdaq.com on
the 100 symbols in the NASDAQ index. The Majority100 gold
standard contains the voting results from 5 popular financial web-
sites, including NASDAQ, Yahoo! Finance, Google Finance, MSN
Money, and Bloomberg on the 100 NASDAQ symbols; we vote
only on data items provided by at least three sources. The Ma-
jority200 gold standard includes in addition the voting results for
another 100 randomly selected symbols on top of those in Major-
ity100 gold standard to increase variety of data items in the stan-
dard.

Flight data: The second data set contains 38 sources from the
flight domain. We chose the sources in a similar way as in the
stock domain and the keyword query we used is “flight status”.
The sources we selected include 3 airline websites (AA, UA, Conti-
nental), 8 airport websites (such as SFO, DEN), and 27 third-party
websites, including Orbitz, Travelocity, etc.

We focus on 1200 flights departing from or arriving at the hub
airports of the three airlines (AA, UA, and Continental). We group
the flights into batches according to their scheduled arrival time,
collected data for each batch one hour after the latest scheduled
arrival time every day in Dec 2011. Thus, each object is a flight
with a particular flight number on a particular day from a particular
departure city (different flights departing from different cities may
have the same flight number).

We observe a total of 43 local attributes and 15 global attributes
in this domain (distribution shown in Figure 1). Each source cov-
ers 4 to 15 attributes. The distribution of the attributes also ob-
serves Zipf’s law: 6 global attributes (40%) are provided by more
than half of the sources while 53% of the attributes are provided
by less than 25% sources. We focus on the 6 popular attributes in
our analysis, including scheduled departure/arrival time, actual de-
parture/arrival time, and departure/arrival gate. We take the data
provided by the three airlines’ official websites as the gold stan-
dard.
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Figure 1: Attribute coverage.
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Figure 2: Object redundancy.
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Figure 3: Data-item redundancy.

Summary and comparison: In both data collections objects are
easily distinguishable from each other but we observe a lot of het-
erogeneity for attributes. In both domains we observe that the dis-
tributions of the attributes observe Zipf’s Law and only a small per-
centage of attributes are popular among all sources. The Stock data
set is larger than the Flight data set with respect to both the number
of sources and the number of data items we consider.

Note that generating gold standards is challenging. We have to
generate gold standards by trusting some particular sources in the
Flight and Stock domains. As we show later, this way of generating
gold standards has inherent limitations.

3. WEB DATA QUALITY
We first ask ourselves the following four questions about Deep

Web data and answer them in this section.

1. Are there a lot of redundant data on the Web? In other words,
are there many different sources providing data on the same
data item?

2. Are the data consistent? In other words, are the data provided
by different sources on the same data item the same and if
not, are the values provided by the majority of the sources
the true values?

3. Does each source provide data of high quality in terms of
correctness and is the quality consistent over time? In other
words, how consistent are the data of a source compared with
a gold standard? And how does this change over time?

4. Is there any copying? In other words, is there any copying
among the sources and if we remove them, are the majority
values from the remaining sources true?

We report detailed results on a randomly chosen data set for each
domain: the data of July 7th for Stock and the data of Dec 8th
for Flight. In addition, we report the trend on all collected data
(collected on different days).

3.1 Data redundancy
We first examine redundancy of the data. In particular, we exam-

ine the following two measures.

• Redundancy on objects: The percentage of sources that pro-
vide a particular object.

• Redundancy on data items: The percentage of sources that
provide a particular data item.

Figure 2 shows the object-level redundancy and Figure 3 shows
the item-level redundancy. Note that we report only on the ob-
jects and attributes that we examined; the overall redundancy can
be much lower.

For the Stock domain, we observe a very high redundancy at the
object level: about 16% of the sources provide all 1000 stocks and
all sources provide over 90% of the stocks; on the other hand, al-
most all stocks have a redundancy over 50% (i.e., all stocks are

provided by more than 50% of the sources), and 83% of the stocks
have a full redundancy (i.e., provided by all sources). The redun-
dancy at the data-item level is much lower because different sources
can provide different sets of attributes. We observe that 80% of the
sources cover over half of the data items, while 64% of the data
items have a redundancy of over 50%.

For the Flight domain, we observe a lower redundancy. At the
object level, 36% of the sources cover 90% of the flights and 60%
of the sources cover more than half of the flights; on the other hand,
87% of the flights have a redundancy of over 50%, and each flight
has a redundancy of over 30%. At the data-item level, only 28% of
the sources provide more than half of the data items, and only 29%
of the data items have a redundancy of over 50%. This low redun-
dancy is because an airline or airport web site provides information
only on flights related to the particular airline or airport.
Summary and comparison: Overall we observe a large redun-
dancy over various domains: on average each data item has a re-
dundancy of 66% for Stock and 32% for Flight. The redundancy
neither is uniform across different data items, nor observes Zipf’s
Law: very small portions of data items have very high redundancy,
very small portions have very low redundancy, and most fall in be-
tween (for different domains, “high” and “low” can mean slightly
different numbers).

3.2 Data consistency
We next examine consistency of the data. We start with mea-

suring inconsistency of the values provided on each data item and
consider the following three measures. Specifically, we consider
data item d and we denote by V̄ (d) the set of values provided by
various sources on d.

• Number of values: We report the number of different values
provided on d; that is, we report |V̄ (d)|, the size of V̄ (d).

• Entropy: We quantify the distribution of the various values
by entropy [12]; intuitively, the higher the inconsistency, the
higher the entropy. Specifically, if we denote by S̄(d) the set
of sources that provide data on item d, and by S̄(d, v) the set
of sources that provide value v on d, we compute the entropy
on d as

E(d) = −
X

v∈V̄ (d)

|S̄(d, v)|
|S̄(d)|

log
|S̄(d, v)|
|S̄(d)|

. (1)

• Deviation: For data items with numerical values we measure
in addition difference of the values by deviation. Among
different values for d, we choose the dominant value v0 as
the one with the largest number of providers; that is, v0 =
arg maxv∈V̄ (d) |S̄(d, v)|. We compute the deviation for d as
the relative deviation w.r.t. v0:

D(d) =

vuut 1

|V̄ (d)|
X

v∈V̄ (d)

(
v − v0

v0
)2. (2)



Table 3: Default tolerance setting.
Date type Default tolerance
Number Eq.(3) with α = 0.01

Time 10-minute difference
Text Exactly the same ignoring case

We measure deviation for time (difference measured by minute)
similarly but use absolute deviation since the scale is not a
concern there.

We have just defined dominant values, denoted by v0. Regarding
them, we also consider the following two measures.

• Dominance factor: The percentage of the sources that pro-
vide v0 among all providers of d; that is, F (d) = |S̄(d,v0)|

|S̄(d)| .
• Precision of dominant values: The percentage of data items

on which the dominant value is the same as the value in the
gold standard.

Before describing our results, we first clarify two issues regard-
ing data processing.

• Tolerance: Different sources may present the same value
slightly differently and we wish to be fairly tolerant to such
differences. Table 3 lists our tolerance setting. Especially, for
numerical values, we consider all values that are provided
for each particular attribute A, denoted by V̄ (A), and take
the median. We compute the tolerance for A as the product
of the median and a predefined tolerance factor α, which by
default is set to .01.

τ(A) = α ∗ Median(V̄ (A)). (3)

• Bucketing: When we measure value distribution for numeri-
cal values, we group values that have very small difference.
Given data item d of attribute A, we start with the domi-
nant value v0, and have the following buckets: . . . , (v0 −
3τ(A)

2
, v0− τ(A)

2
], (v0− τ(A)

2
, v0 + τ(A)

2
], (v0 + τ(A)

2
, v0 +

3τ(A)
2

], . . . .

We are now ready to describe our results.
Inconsistency of values: Figure 4 shows the distributions of incon-
sistency by different measures for different domains and Table 4
lists the attributes with the highest or lowest inconsistency.
Stock: For the Stock domain, even with bucketing, the number of
different values for a data item ranges from 1 to 13, where the aver-
age is 3.7. There are only 17% of the data items that have a single
value, the largest percentage of items (30%) have two values, and
39% have more than three values. However, we observe one source
(StockSmart) that stopped refreshing data after June 1st, 2011; if
we exclude its data, 37% data items have a single value, 16% have
two, and 36% have more than three. The entropy shows that even
though there are often multiple values, very often one of them is
dominant among others. In fact, the maximum entropy for two val-
ues (under uniform distribution) is 1 and there are only 17% of the
items that have a single value, but there are 42% items whose en-
tropy is less than .2 and 76% items whose entropy is less than 1.
After we exclude StockSmart, entropy on some attributes is even
lower. Finally, we observe that for 64% of the numerical data items
the deviation is within .1; however, for 14% of the items the devia-
tion is above .5, indicating a big discrepancy.

The lists of highest-inconsistency attributes and lowest-inconsistency
attributes are consistent w.r.t. number-of-values and entropy, with
slight changes on the ordering. The lists w.r.t. deviation are less
consistent with the other lists. For some attributes such as Dividend

Table 4: Value inconsistency on attributes. The numbers in
parentheses are those when we exclude StockSmart.

Attribute w. Number Attribute w. Numberlow incons. high incons.

Stock

Previous close 1.14 (1.14) Volume 7.42 (6.55)
Today’s high 1.98 (1.18) P/E 6.89 (6.89)
Today’s low 1.98 (1.18) Market cap 6.39 (6.39)
Last price 2.21 (1.33) EPS 5.43 (5.43)
Open price 2.29 (1.29) Yield 4.85 (4.12)

Flight
Scheduled depart 1.1 Actual depart 1.98

Arrival gate 1.18 Scheduled arrival 1.65
Depart gate 1.19 Actual arrival 1.6
Low-var attr Entropy High-var attr Entropy

Stock

Previous close 0.04 (0.04) P/E 1.49 (1.49)
Today’s high 0.13 (0.05) Market cap 1.39 (1.39)
Today’s low 0.13 (0.05) EPS 1.17 (1.17)
Last price 0.15 (0.07) Volume 1.02 (0.94)
Open price 0.19 (0.09) Yield 0.90 (0.90)

Flight
Scheduled depart 0.05 Actual depart 0.60

Depart gate 0.10 Actual arrival 0.31
Arrival gate 0.11 Scheduled arrival 0.26
Low-var attr Deviation High-var attr Deviation

Stock

Last Price 0.03 (0.02) Volume 2.96(2.96)
Yield 0.18 (0.18) 52wk low 1.88 (1.88)

Change % 0.19 (0.19) Dividend 1.22(1.22)
Today’s high 0.33 (0.32) EPS 0.81 (0.81)
Today’s low 0.35 (0.33) P/E 0.73 (0.73)

Flight Schedule depart 9.35 Actual depart 15.14
Schedule arrival 12.76 Actual arrival 14.96

and 52-week low price, although there are not that many differ-
ent values, the provided values can differ a lot in the magnitude.
Indeed, different sources can apply different semantics for these
two attributes: Dividend can be computed for different periods–
year, half-year, quarter, etc; 52-week low price may or may not
include the price of the current day. For Volume, the high devi-
ation is caused by 10 symbols that have terminated–some sources
map these symbols to other symbols; for examples, after termina-
tion of “SYBASE”, symbol “SY” is mapped to “SALVEPAR” by
a few sources. When we remove these 10 symbols, the deviation
drops to only .28. Interestingly, Yield has high entropy but low
deviation, because its values are typically quite small and the dif-
ference is also very small. We observe that real-time values often
have a lower inconsistency than statistical values, because there is
often more semantics ambiguity for statistical values.
Flight: Value inconsistency is much lower for the Flight domain.
The number of different values ranges from 1 to 5 and the aver-
age is 1.45. For 61% of the data items there is a single value after
bucketing and for 93% of the data items there are at most two val-
ues. There are 96% of the items whose entropy is less than 1.0.
However, when different times are provided for departure or ar-
rival, they can differ a lot: 46% of the data items have a deviation
above 5 minutes, while 20% have a deviation above 10 minutes.

Among different attributes, the scheduled departure time and
gate information have the lowest inconsistency, and as expected,
the actual departure/arrival time has the highest inconsistency. The
average deviation for actual departure and arrival time is as large as
15 minutes.
Reasons for inconsistency: To understand inconsistency of values,
for each domain we randomly chose 20 data items and in addition
considered the 5 data items with the largest number-of-values, and
manually checked each of them to find the possible reasons. Fig-
ure 6 shows the various reasons for different domains.

For the Stock domain, we observe five reasons. (1) In many cases
(46%) the inconsistency is due to semantics ambiguity. In general,
we consider semantics ambiguity is the reason if there is possible
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Figure 4: Value inconsistency: distribution of number of values, entropy of values, and deviation of numerical values.
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Figure 5: Screenshots of three flight sources.

ambiguity for the particular attribute and we observe inconsistency
on a large fraction of items of that attribute between values pro-
vided by the source and the dominant values; we have given exam-
ples of ambiguity for Dividend and 52-week low price earlier. (2)
The reason can also be ambiguity at the instance level (6%), where
a source interprets one stock symbol differently from the majority
of sources; this happens mainly for stock symbols that terminated
at some point. Recall that instance ambiguity results in the high
deviation on Volume. (3) Another major reason is out-of-date data
(34%): at the point when we collected data, the data were not up-
to-date; for two thirds of the cases the data were updated hours ago,
and for one third of the cases the data had not been refreshed for
days. (4) There is one error on data unit: the majority reported 76M
while one source reported 76B. (5) Finally, there are four cases
(11%) where we could not understand the reason and it seems to be
purely erroneous data.

For the Flight domain, we observe only three reasons. (1) For
33% of the cases the inconsistency is due to semantics ambiguity–
some source may report takeoff time as departure time and landing
time as arrival time, while most sources report the time of leav-
ing the gate or arriving at the gate. (2) For 11% of the cases
the inconsistency is due to out-of-date data; for example, while
one flight has already been canceled, a source might still report
its actual departure and arrival time (the latter is marked as “esti-
mated”). (3) For most cases (56%) the differences seem to be due to
purely erroneous data. For example, Figure 5 shows three sources
providing different scheduled departure time and arrival time for
Flight AA119 on 12/8/2011; according to the airline website, the
real scheduled time is 6:15pm for departure and 9:40pm for ar-
rival. For scheduled departure time, FlightView and FlightAware
provide the correct time while Orbitz provides a wrong one. For
scheduled arrival time, all three sources provide different times;
FlightView again provides the correct one, while the time provided
by FlightAware is unreasonable (it typically takes around 6 hours
to fly from the east coast to the west coast in the US). Indeed, we

found that FlightAware often gives wrong scheduled arrival time; if
we remove it, the average number of values for Scheduled arrival
drops from 1.65 to 1.31.

Dominant values: We now focus on the dominant values, those
with the largest number of providers among different values for
the same data item. Similarly, we can define the second dominant
value, etc. Figure 7 plots the distribution of the dominance factors
and the precision of the dominant values with respect to different
dominance factors.

For the Stock domain, we observe that on 42% of the data items
the dominant values are supported by over 90% of the sources, and
on 73% of the data items the dominant values are supported by over
half of the sources. For these 73% data items, 98% of the dominant
values are consistent with the various gold standards. However,
when the dominance factor drops, the precision is also much lower.
For 9% of the data items with dominance factor of .4, the consis-
tency already drops to 84% w.r.t. Majority200 gold standard (lower
for other gold standards). For 7% of the data items where the domi-
nance factor is .1, the precision w.r.t. Majority200 for the dominant
value, the second dominant value, and the third dominant value is
.43, .33, and .12 respectively (meaning that for 12% of the data
items none of the top-3 values is true). In general, the precision
w.r.t. Majority200 is higher than that w.r.t. Majority100, meaning
a higher precision on the 100 symbols outside the NASDAQ in-
dex. Also, the precision w.r.t. Majority100 is higher than that w.r.t.
NASDAQ; indeed, we found that NASDAQ contains 174 values that
are not provided by any other source on the same items.

For the Flight domain, more data items have a higher dominance
factor–42% data items have a dominance factor of over .9, and 82%
items have a dominance factor of over .5. However, for these data
items the dominant values have a lower precision: only 88% dom-
inant values are consistent with the gold standard. Actually for the
11% data items whose dominance factor falls in [.5, .6), the pre-
cision is only 50% for the dominant value. As we show later, this
is because some wrong values are copied between sources and be-
come dominant.

Summary and comparison: Overall we observe a fairly high in-
consistency of values on the same data item: for Stock and Flight
the average entropy is .58 and .24, and the average deviation is 13.4
and 13.1 respectively. The inconsistency can vary from attributes
to attributes. There are different reasons for the inconsistency, in-
cluding ambiguity, out-of-date data, and pure errors. For the Stock
domain, half of the inconsistency is because of ambiguity, one third
is because of out-of-date data, and the rest is because of erroneous
data. For the Flight domain, 56% of the inconsistency is because
of erroneous data.

If we choose dominant values as the true value (this is essentially
the VOTE strategy, as we explain in Section 4), we can obtain a pre-
cision of 0.908 for Stock (w.r.t. Majority200) and 0.864 for Flight
for the two domains respectively. We observe that dominant values
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Figure 7: Dominant values.

Table 5: Accuracy and coverage of authoritative sources.
Source Accuracy Coverage

Stock

Google Finance .94 .82
Yahoo! Finance .93 .81

NASDAQ .92 .84
MSN Money .91 .89
Bloomberg .83 .81

Flight
Orbitz .98 .87

Travelocity .95 .71
Airport average .94 .03

with a high dominance factor are typically correct, but the preci-
sion can quickly drop when this factor decreases. Interestingly, the
Flight domain has a lower inconsistency but meanwhile a lower
precision for dominant values, possibly because wrong values are
copied between sources, as we show soon.

Finally, we observe different precision w.r.t. NASDAQ, w.r.t.
Majority100 and w.r.t Majority200 on Stock domain. This is in-
evitable because we had to trust certain sources for the gold stan-
dard but every source can make mistakes. In the rest of the paper
we use Majority200 as the gold standard for Stock.

3.3 Source accuracy
Next, we examine the accuracy of the sources over time. Given

a source S, we consider the following two measures.

• Source accuracy: We compute accuracy of S as the percent-
age of its provided values that are consistent with the given
gold standard.

• Accuracy deviation: We compute the standard deviation of
the accuracy of a source over a period of time. In other
words, we denote by T̄ the time points in a period, by A(t)

the accuracy of the source at time t ∈ T̄ , and by Â the mean
accuracy over T̄ . The variety is computed byq

1
|T̄ |

P
t∈T̄ (A(t)− Â)2.

Source accuracy: Figure 8(a) shows the distribution of the source
accuracy among all sources in different domains. Table 5 lists the
accuracy and item-level coverage of some authoritative sources.

In the Stock domain, the accuracy varies from .54 to .97 (except
StockSmart, which has accuracy .06), with an average of .86. There
are only 35% sources with an accuracy above .9, and 3 sources
(5%) have an accuracy below .7, which is quite low. Among the
five popular financial sources, four have an accuracy above .9, but
Bloomberg has an accuracy of only .83 because it may apply dif-
ferent semantics on some statistical attributes such as EPS, P/E
and Yield. Also note that all authoritative sources have a coverage
between .8 and .9.

In the Flight domain, we consider sources excluding the three
official airline websites (their data are used as gold standard). The
accuracy varies from .43 to .99, with an average of .80. There are

Table 6: Potential copying between sources.
Remarks Size Schema Object Value Avg

sim sim sim accu

Stock Depen claimed 11 1 .99 .99 .92
Depen claimed 2 1 1 .99 .75

Flight

Depen claimed 5 0.80 1 1 .71
Query redirection 4 0.83 1 1 .53

Dependence claimed 3 1 1 1 .92
Embedded interface 2 1 1 1 .93
Embedded interface 2 1 1 1 .61

Table 7: Precision of dominant values with and without poten-
tial copiers.

Stock Flight
W. copiers .908 .864

W/o. copiers .923 .927

40% of the sources with an accuracy above .9, but 10 sources (29%)
have an accuracy below .7. The average accuracy of airport sources
is .94, but their average coverage is only .03. Authoritative sources
like Orbitz and Travelocity all have quite high accuracy (above .9),
but Travelocity has low coverage (.71).

Accuracy deviation: Figure 8(b) shows the accuracy deviation of
the sources across domains in a one-month period, and Figure 8(c)
shows the precision of the dominant values over time.

In the Stock domain, we observe that for 4 sources the accuracy
varies tremendously (standard deviation over .1) and the highest
standard deviation is as high as .33. For 59% of the sources the
accuracy is quite steady (standard deviation below .05). We did not
observe any common peaks or dips on particular days. The preci-
sion of the dominant values ranges from .9 to .97, and on average
is .92. The day-by-day precision is also fairly smooth, with some
exception on a few days.

In the Flight domain, we observe that for 1 source the accuracy
varies tremendously (deviation .11), and for 60% sources the ac-
curacy is quite steady (deviation below .05). The precision of the
dominant values ranges from .86 to .89, and on average is .87.

Summary and comparison: We observe that the accuracy of the
sources can vary a lot. On average the accuracy is not too high:
.86 for Stock and .80 for Flight. Even authoritative sources may
not have very high accuracy. We also observe that the accuracy is
fairly steady in general. On average the standard deviation is 0.06
for Stock and 0.05 for Flight, and for about half of the sources the
deviation is below .05 over time.

3.4 Potential copying
Whereas copying is a common observation between webpage

texts, blogs, etc., we also observe copying between deep-web sources;
that is, one source obtains some or all of its data from another
source, while possibly adding some new data independently. We
next report the potential copying we found in our data collections
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Figure 8: Source accuracy and deviation over time.

(Table 6) and study how that would affect precision of the domi-
nant values (Table 7). For each group S̄ of sources with copying,
we compute the following measures.

• Schema commonality: We measure the commonality of schema
as the average Jaccard similarity between the sets of provided
attributes on each pair of sources. If we denote by Ā(S) the
set of global attributes that S provides, we compute schema
commonality of S̄ as AvgS,S′∈S̄,S 6=S′

|Ā(S)∩Ā(S′)|
|Ā(S)∪Ā(S′)| .

• Object commonality: Object commonality is also measured
by average Jaccard similarity but between the sets of pro-
vided objects.

• Value commonality: The average percentage of common val-
ues over all shared data items between each source pair.

• Average accuracy: The average source accuracy.

On the Stock domain, we found two groups of sources with po-
tential copying. The first group contains 11 sources, with exactly
the same webpage layout, schema, and highly similar data. These
sources all derive their data from Financial Content, a market data
service company, and their data are quite accurate (.92 accuracy).
The second group contains 2 sources, also with exactly the same
schema and data; the two websites are indeed claimed to be merged
in 2009. However, their data have an accuracy of only .75. For each
group, we keep only one randomly selected source and remove the
rest of the sources; this would increase the precision of dominant
values from .908 to .923.

On the Flight domain, we found five groups of sources with po-
tential copying. Among them, two directly claim partnership by
including the logo of other sources; one re-directs its queries; and
two embed the query interface of other sources. Sources in the first
two groups provide a little bit different sets of attributes, but ex-
actly the same flight, and the same data for all overlapping data
items. Sources in other groups provide almost the same schema
and data. Accuracy of sources in these groups vary from 53% to
93%. After we removed the copiers and kept only one randomly
selected source in each group, the precision of dominant values is
increased significantly, from .864 to .927.

Summary and comparison: We do observe copying between
deep-web sources in each domain. In some cases the copying is
claimed explicitly, and in other cases it is detected by observing em-
bedded interface or query redirection. For the copying that we have
observed, while the sources may provide slightly different schemas,
they provide exactly the same objects and the same values on over-
lapping data items. The accuracy of the original sources may not be
high, ranging from .75 to .92 in the Stock domain, and from .53 to
.93 in the Flight domain. Because the Flight domain contains more
low-accuracy sources with copying, removing the copied sources
improves the precision of the dominant values more significantly
than in the Stock domain.

4. DATA FUSION
As we have shown in Section 3, deep-web data from different

sources can vary significantly and there can be a lot of conflicts.
Data fusion aims at resolving conflicts and finding the true val-
ues. A basic fusion strategy that considers the dominant value (i.e.,
the value with the largest number of providers) as the truth works
well when the dominant value is provided by a large percentage of
sources (i.e., a high dominance factor), but fails quite often other-
wise. Recall that in the Stock domain, the precision of dominant
values is 90.8%, meaning that on around 1500 data items we would
conclude with wrong values. Recently many advanced fusion tech-
niques have been proposed to improve the precision of truth dis-
covery [1, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17].

In this section we answer the following three questions.

1. Are the advanced fusion techniques effective? In other words,
do they perform (significantly) better than simply taking the
dominant values or taking all data provided by the best source
(assuming we know which source it is).

2. Which fusion method is the best? In other words, is there a
method that works better than others on all or most data sets?

3. Which intuitions for fusion are effective? In other words, is
each intuition that has been adopted for fusion effective?

This section first presents an overview of the proposed fusion
methods (Section 4.1) and then compares their performance on our
data collections (Section 4.2).

4.1 Review of data-fusion methods
In our data collections each source provides at most one value

on a data item and each data item is associated with a single true
value. We next review existing fusion methods suitable for this
context. Before we jump into descriptions of each method, we first
enumerate the many insights that have been considered in fusion.

• Number of providers: A value that is provided by a large
number of sources is considered more likely to be true.

• Trustworthiness of providers: A value that is provided by
trustworthy sources is considered more likely to be true.

• Difficulty of data items: The error rate on each particular data
item is also considered in the decision.

• Similarity of values: The provider of a value v is also con-
sidered as a partial provider of values similar to v.

• Formatting of values: The provider of a value v is also con-
sidered as a partial provider of a value that subsumes v. For
example, if source s typically formats a name by its first ini-
tial and last name and provides “J. Smith”, it is also consid-
ered as a partial provider of the full name “John Smith”.

• Copying relationships: A copied value is ignored in the de-
cision.



Figure 9: Various fusion methods and their relationships.

Table 9: Notations in data fusion.
Notation Meaning

S Set of sources.
D Set of data items.
Vd Set of values provided for item d.
Vs Set of values provided by source s.
Ds Set of data items provided by source s.
Sd Set of providers of data item d.
Sv Set of providers of value v (on data item d).

T k(s) Trustworthiness of source s in round k.
Ck(v) Vote count of value v in round k

All fusion methods more or less take a voting approach; that
is, accumulating votes from providers for each value on the same
data item and choosing the value with the highest vote as the true
one. The vote count of a source is often a function of the trust-
worthiness of the source. Since source trustworthiness is typically
unknown a-priori, they proceed in an iterative fashion: computing
value vote and source trustworthiness in each round until the re-
sults converge. We now briefly describe given a data item d, how
each fusion method computes the vote count of each value v on d
and the trustworthiness of each source s. Table 9 summarizes the
notations we use and Figure 9 summarizes the equations for each
method.

VOTE: Voting is the simplest strategy that takes the dominant value
as the true value; thus, its performance is the same as the precision
of the dominant values. Specifically, C(v) = |Sv| and there is no
need for iteration. There is no need for iteration.

HUB [8]: Inspired by measuring web page authority based on anal-
ysis of Web links, in HUB the vote of a value is computed as the
sum of the trustworthiness of its providers, while the trustworthi-
ness of a source is computed as the sum of the votes of its provided
values. Note that in this method the trustworthiness of a source
is also affected by the number of its provided values. Normaliza-
tion is performed to prevent source trustworthiness and value vote
counts from growing in an unbounded manner.

C0(v) = .5; (4)

T k(s) =
X

v∈Vs

Ck−1(v); (5)

Ck(v) =
X

s∈Sv

T k(s). (6)

AVGLOG [10]: This method is similar to HUB but decreases the
effect of the number of provided values by taking average and log-
arithm. Again, normalization is required.



Table 8: Summary of data-fusion methods. X indicates that the method considers the particular evidence.
Category Method #Providers Source Item Value Value Copyingtrustworthiness trustworthiness similarity formatting
Baseline Vote X

HUB X X
Web-link AVGLOG X X

based INVEST X X
POOLEDINVEST X X

IR based
2-ESTIMATES X X
3-ESTIMATES X X X

COSINE X X

Bayesian based

TRUTHFINDER X X X
ACCUPR X X
ACCUSIM X X X

ACCUFORMAT X X X X
Copying affected ACCUCOPY X X X X X

C0(v) = .5; (7)

T k(s) =
X

v∈Vs

Ck−1(v) ·
log |Vs|
|Vs|

; (8)

Ck(v) =
X

s∈Sv

T k(s). (9)

INVEST [10]: A source “invests” its trustworthiness uniformly among
its provided values. The vote of a value grows non-linearly with re-
spect to the sum of the invested trustworthiness from its providers.
The trustworthiness of source s is computed by accumulating the
vote of each provided value v weighted by s’s contribution among
all contributions to v. Again, normalization is required.

C0(v) =
|Sv |
|Sd|

; (10)

T k(s) =
X

v∈Vs

0@Ck−1(v) ·
T i−1(s)/|Vs|P
s′∈Sv

T i−1(s′)
|Vs′ |

1A ; (11)

Ck(v) =

0@ X
s∈Sv

T k(s)

|Vs|

1A1.2

. (12)

POOLEDINVEST [10]: This method is similar to INVEST but the
vote count of each value on item d is then linearly scaled such that
the total vote count on d equals the accumulated investment on d.
With this linear scaling, normalization is not required any more.

C0(v) =
1

|Vd|
; (13)

T k(s) =
X

v∈Vs

0@Ck−1(v) ·
T i−1(s)

|Vs| ·
P

s′∈Sv

T i−1(s′)
|Vs′ |

1A ; (14)

Ck
0 (v) =

X
s∈Sv

T k(s)

|Vs|
; (15)

Ck(v) = Ck
0 (v) ·

Ck
0 (v)1.4P

v′∈Vd
Ck

0 (v′)
1.4

. (16)

COSINE [7]: This method considers the values as a vector: for
value v of data item d, if source s provides a value v, the corre-
sponding position has value 1; if s provides another value on d,
the position has value -1; if s does not provide d, the position has
value 0. Similarly the vectors are defined for selected true values.
COSINE computes the trustworthiness of a source as the cosine sim-
ilarity between the vector of its provided values and the vector of
the (probabilistically) selected values. To improve stability, it sets

the new trustworthiness as a linear combination of the old trustwor-
thiness and the newly computed one.

C0(v) = 1; (17)

T k(s) = .8 · T k−1(s) (18)

+ .2 ·
P

v∈Vs
Ck−1(v)−

P
d∈Ds,v∈Vd\Vs

Ck−1(v)qP
d∈Ds

|Vd| ·
P

d∈Ds,v∈Vd
Ck−1(v)2

;(19)

Ck(v) =

P
s∈Sv

T k(s)3 −
P

s∈Sd\Sv
T k(s)3P

s∈Sd
T k(s)3

. (20)

2-ESTIMATES [7]: 2-ESTIMATES also computes source trustwor-
thiness by aggregating value votes. It differs from HUB in two
ways. First, if source s provides value v on d, it considers that s
votes against other values on d and applies a complement vote on
those values. Second, it averages the vote counts instead of sum-
ming them up. This method requires a complex normalization for
the vote counts and trustworthiness to the whole range of [0, 1].

T 0(s) = 1; (21)

Ck(v) =

P
s∈Sv

T k−1(s) +
P

s∈Sd\Sv
(1− T k−1(s))

|Sd|
; (22)

T k(s) =

P
v∈Vs

Ck(v) +
P

d∈Ds,v∈Vd\Vs
(1− Ck(v))P

d∈Ds
|Vd|

. (23)

3-ESTIMATES [7]: 3-ESTIMATES improves over 2-ESTIMATES by
considering also trustworthiness on each value, denoted by T (v),
representing the likelihood that a vote on this value being correct.
This measure is computed iteratively together with source trustwor-
thiness and value vote count and similar normalization is applied.

T 0(s) = 1; (24)

T 0(v) = .9; (25)

Ck(v) =

P
s∈Sv

T k−1(s)T k−1(v) +
P

s∈Sd\Sv
(1− T k−1(s)T k−1(v))

|Sd|
;(26)

T k(v) =

P
s∈Sv

Ck(v)

1−T k−1(s)
+

P
s∈Sd\Sv

1−Ck(v)

1−T k−1(s)

|Sd|
; (27)

T k(s) =

P
v∈Vs

Ck(v)

1−T k(v)
+

P
d∈Ds,v∈Vd\Vs

1−Ck(v)

1−T k(v)P
d∈Ds

|Vd|
. (28)

TRUTHFINDER [15]: This method applies Bayesian analysis and
computes the probability of a value being true conditioned on the
observed providers. Essentially, instead of accumulating trustwor-
thiness, the vote count takes the product of the trustworthiness (so
the equations contain logarithm).



T 0(s) = .8; (29)

Ck(v) =
X

s∈Sv

− ln(1− T k−1(s)); (30)

T k(s) = Avgv∈Vs
(1− e−.3Ck(v)). (31)

In addition, TRUTHFINDER considers similarity between values
and enhances the vote count of a value by those from its similar
values weighted by the similarity.

Ĉk(v) =
X

v′∈Vd

Ck(v′)sim(v, v′). (32)

ACCUPR [4]: ACCUPR also applies Bayesian analysis. It differs
from TRUTHFINDER in that it takes into consideration that differ-
ent values provided on the same data item are disjoint and their
probabilities should sum up to 1; in other words, like 2-ESTIMATES,
3-ESTIMATES and COSINE, if a source s provides v′ 6= v on item
d, s is considered to indeed vote against v. To make the Bayesian
analysis possible, it assumes that there are N false values in the do-
main of d and they are uniformly distributed. After simplification,
the computation goes as follows.

T 0(s) = .8; (33)

Ck(v) =
X

s∈Sv

ln
N ∗ T k−1(S)

1− T k−1(S)
; (34)

T k(s) = Avgv∈Vs

eCk(v)P
v∈Vd

eCk(v) + (N + 1− |Vd|)
. (35)

ACCUSIM [4]: ACCUSIM augments ACCUPR by considering also
value similarity in the same way as TRUTHFINDER does.

ACCUFORMAT: ACCUFORMAT augments ACCUSIM by consider-
ing also formatting of values as we have described.

ACCUCOPY [4]: ACCUCOPY augments ACCUFORMAT by consid-
ering the copying relationships between the sources and weighting
the vote count from a source s by the probability that s provides the
particular value independently, denoted by I(s). In our implemen-
tation we applied the copy detection techniques in [4], which treats
sharing false values as strong evidence of copying.

Ck(v) =
X

s∈Sv

I(s) · ln
N ∗ T k−1(S)

1− T k−1(S)
. (36)

Table 8 summarizes the features of different fusion methods. We
can categorize them into five categories.

• Baseline: The basic voting strategy.
• Web-link based: The methods are inspired by measuring web-

page authority based on Web links, including HUB, AV-
GLOG, INVEST and POOLEDINVEST.

• IR based: The methods are inspired by similarity measures
in Information Retrieval, including COSINE, 2-ESTIMATES
and 3-ESTIMATES.

• Bayesian based: The methods are based on Bayesian anal-
ysis, including TRUTHFINDER, ACCUPR, ACCUSIM, and
ACCUFORMAT.

• Copying affected: The vote count computation discounts votes
from copied values, including ACCUCOPY.

Finally, note that in each method we can distinguish trustworthi-
ness for each attribute. For example, ACCUFORMATATTR distin-
guishes the trustworthiness for each attribute whereas ACCUFOR-
MAT uses an overall trustworthiness for all attributes.

4.2 Fusion performance evaluation
We now evaluate the performance of various fusion methods on

our data sets. We focus on five measures.

• Precision: The precision is computed as the percentage of
the output values that are consistent with a gold standard.

• Recall: The recall is computed as the percentage of the val-
ues in the gold standard being output as correct. Note that
when we have fused all sources (so output all data items),
the recall is equivalent to the precision.

• Trustworthiness deviation: Recall that except VOTE, each
method computes some trustworthiness measure of a source.
We sampled the trustworthiness of each source with respect
to a gold standard as it is defined in the method, and com-
pared it with the trustworthiness computed by the method at
convergence. In particular, given a source s ∈ S, we denote
by Tsample(s) its sampled trustworthiness and by Tcompute(s)
its computed trustworthiness, and compute the deviation as

dev(S) =

s
1

|S|
X
s∈S

(Tsample(s)− Tcompute(s))2. (37)

• Trustworthiness difference: The difference is computed as
the average computed trustworthiness for all sources minus
the average sampled trustworthiness.

• Efficiency: Efficiency is measured by the execution time on
a Windows machine with Intel Core i5 processor (3.2GHz,
4MB cache, 4.8 GT/s QPI).

Precision on one snapshot: We first consider data collected on
a particular day and use the same snapshots as in Section 3. For
each data set, we computed the coverage and accuracy of each
source with respect to the gold standard (as reported in Section 3),
and then ordered the sources by the product of coverage and accu-
racy (i.e., recall). We started with one source and gradually added
sources according to the ordering, and measured the recall. We re-
port the following results. First, Table 10 shows the final precision
(i.e., recall) with and without giving the sampled source trustwor-
thiness as input, and the trustworthiness deviation and difference
for each method in each domain. Second, Figure 10 shows the
recall as we added sources on each domain; for each category of
fusion methods, we only plotted for the method with the highest
final recall. Third, Table 11 compares pairs of methods where the
second was intended to improve over the first. The table shows for
each pair how many errors by the first method are corrected by the
second and how many new errors are introduced. Fourth, to un-
derstand how the advanced fusion methods improve over the base-
line VOTE, Figure 11 compares the precision of VOTE and the best
fusion method in each domain with respect to dominance factor.
Fifth, Figure 13 categorizes the reasons of mistakes for a randomly
sampled 20 errors by the best fusion method for each domain.

Stock data: As shown in Table 10, for the Stock data ACCUFOR-
MATATTR obtains the best results without input trustworthiness and
it improves over VOTE by 2.4% (corresponding to about 350 data
items). As shown in Figure 11, the main improvement occurs on
the data items with dominance factor lower than .5. Note that on
this data set the highest recall from a single source is .93, exactly
the same as that of the best fusion results.

For this data set, only Bayesian based methods can perform bet-
ter than VOTE; among other methods, Web-link based methods per-
form worst, then ACCUCOPY, then IR based methods (Table 10).
ACCUCOPY does not perform well because it considers copying
as likely between many pairs of sources in this data set; the ma-
jor reason is that the copy-detection technique in [3] does not take



Table 10: Precision of data-fusion methods on one snapshot of data. Highest precisions are in bold font.

Category Method
Stock Flight

prec w. prec w/o. Trust Trust prec w. prec w/o. Trust Trust
trust trust dev diff trust trust dev diff

Baseline Vote - .908 - - - .864 - -
HUB .913 .907 .11 .08 .939 .857 .2 .14

Web-link AVGLOG .910 .899 .17 -.13 .919 .839 .24 .001
based INVEST .924 .764 .39 -.31 .945 .754 .29 -.12

POOLEDINVEST .924 .856 1.29 0.29 .945 .921 17.26 7.45
2-ESTIMATES .910 .903 .15 -.14 .87 .754 .46 -.35

IR based 3-ESTIMATES .910 .905 .16 -.15 .87 .708 .95 -.94
COSINE .910 .900 .21 -.17 .87 .791 .48 -.41

TRUTHFINDER .923 .911 .15 .12 .957 .793 .25 .16
ACCUPR .910 .899 .14 -.11 .91 .868 .16 -.06

Bayesian ACCUSIM .918 .913 .17 -.16 .903 .844 .2 -.09
based ACCUFORMAT .918 .911 .17 -.16 .903 .844 .2 -.09

ACCUSIMATTR .950 .929 .17 -.16 .952 .833 .19 -.08
ACCUFORMATATTR .948 .930 .17 -.16 .952 .833 .19 -.08

Copying ACCUCOPY .958 .892 .28 -.11 .960 .943 .16 -.14
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Figure 10: Fusion recall as sources are added.
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Figure 11: Fusion precision vs. dominance fac-
tor.

into account value similarity, so it treats values highly similar to
the truth still as wrong and considers sharing such values as strong
evidence for copying. From Table 11, we observe that consider-
ing formatting and distinguishing accuracy for different attributes
improve the precision on this data set, while considering trustwor-
thiness at the data-item level (3-ESTIMATE) does not help much.
From Figure 10 we observe that as sources are added, for most
methods the recall peaks at the 5th source and then gradually de-
creases; also, we observe some big change for 3-ESTIMATE at the
11th-16th sources.

If we give the sampled source trustworthiness as input (so no
need for iteration) and also ignore copiers in Table 6 when applying
ACCUCOPY (note that there may be other copying that we do not
know), ACCUCOPY performs the best (Table 10). Note that for all
methods, giving the sampled trustworthiness improves the results.
However, for most methods except INVEST, POOLEDINVEST and
ACCUCOPY, the improvement is very small; indeed, for these three
methods we observe a big trustworthiness deviation. Finally, for
most methods except HUB, POOLEDINVEST and TRUTHFINDER,
the computed trustworthiness is lower than the sampled one on
average. This makes sense because when we make mistakes, we
compute lower accuracy for most sources. TRUTHFINDER tends to
compute very high accuracy, on average .97, 14% higher than the
sampled ones.

We randomly selected 20 data items on which ACCUFORMATATTR
makes mistakes for examination (Figure 13). We found that among
them, for 4 items ACCUFORMATATTR actually selects a value with
finer granularity so the results cannot be considered as wrong. Among
the rest, we would be able to fix 7 of them if we know sampled
source accuracy, and fix 2 more if we are given in addition the
copying relationships. For the remaining 7 items, for 1 item a lot

of similar false values are provided, for 1 item the selected value is
provided by high-accuracy sources, for 3 items the selected value is
provided by more than half of the sources, and for 2 items there is
no value that is dominant while the ground truth is neither provided
by more sources nor by more accurate sources than any other value.

Flight data: As shown in Table 10, on the Flight data ACCUCOPY
obtains the best results without input trustworthiness and it im-
proves over VOTE by 9% (corresponding to about 550 data items).
ACCUCOPY does not have that many false positives as on Stock
data because none of the attributes here is numerical, so similar val-
ues is not a potential problem (recall that [4] reports good results
also on a domain with non-numerical values–Book). As shown in
Figure 11, ACCUCOPY significantly improves the precision on data
items with dominance factor in [.4, .7), because it ignores copied
values in fusion. Note that on this data set the highest recall from a
single source is .91, 3.4% lower than the best fusion results.

Among other methods, only POOLEDINVEST and ACCUPR per-
form better than VOTE (Table 10). Actually, we observe that all
methods perform better than VOTE if sampled trustworthiness are
given as input, showing that the problem lies in accuracy compu-
tation; this is because in this data set some groups of sources with
copying dominate the values and are considered as accurate, while
other sources that provide the true values are then considered as less
accurate. This shows that if we are biased by low-quality copiers,
considering source trustworthiness can bring even worse results.
Interestingly, POOLEDINVEST obtains the second best results on
Flight data (but the second worst results on Stock data). Also, we
observe that considering similarity and formatting, or distinguish-
ing accuracy for each attribute does not improve the results for this
data set (Table 11). From Figure 10 we observe that as sources
are added, for most methods the recall peaks at the 9th source and



Table 11: Comparison of fusion methods.
Basic method Advanced method Stock Flight

#Fixed errs #New errs ∆Prec #Fixed errs #New errs ∆Prec
HUB AVGLOG 3 25 -.008 2 12 -.018

INVEST POOLEDINVEST 376 121 +.09 101 10 +.167
2-ESTIMATES 3-ESTIMATES 6 2 +.002 70 95 -.046
TRUTHFINDER ACCUSIM 37 32 +.002 29 1 +.051

ACCUPR ACCUSIM 70 31 +.014 1 14 -.024
ACCUSIM ACCUSIMATTR 47 3 +.016 5 11 -.011

ACCUSIMATTR ACCUFORMATATTR 7 5 +.001 0 0 0
ACCUFORMATATTR ACCUCOPY 33 136 -.038 70 10 +.11
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Figure 13: Error analysis of the best fusion method.

then drops a lot after low-quality copiers are added, but for AC-
CUCOPY and POOLEDINVEST the recall almost flattens out after
the 9th source; also, we observe a big drop for COSINE at the 14th
source.

If we take input trustworthiness, ACCUCOPY performs the best
(Table 10). All methods perform better with input trustworthiness
and the improvement is big. As we have said, these are mainly
because of bias from copied values. Again, except HUB, POOLED-
INVEST and TRUTHFINDER, all other methods compute much lower
accuracy than the sampled ones.

Finally, we randomly selected 20 data items on which ACCU-
COPY for examination (Figure 13). We found that we would be
able to fix 10 of them if we know precise source accuracy, and fix
2 more if we know correct copying relationships. For the remain-
ing 8 items, for 1 item a lot of similar false values are provided,
for 7 items the selected value is provided by more than half of the
sources (the value provided by the airline website is minority and
provided by at most 3 other sources).

Precision vs. efficiency: Next, we examined the efficiency of the
fusion methods. Figure 12 plots the efficiency and precision of each
method for each domain.

On the Stock data, VOTE finished in less than 1 second; 7 meth-
ods finished in 1-10 seconds; 4 methods, including INVEST, POOLED-
INVEST, 3-ESTIMATE, COSINE, finished in 10-100 seconds but
did not obtain higher precision; ACCUSIMATTR and ACCUFOR-
MATATTR finished in 115 and 235 seconds respectively while ob-
tained the highest precision; finally, ACCUCOPY finished in 855
seconds as it in addition computes copying probability between
each pair of sources in each round, but its precision is low.

On the Flight data, which contains fewer sources and fewer data
items than Stock, 4 methods including VOTE finished in less than
1 second; 9 methods finished in 1-10 seconds; INVEST and AC-
CUFORMATATTR finished in 11.7 and 17.3 seconds respectively
but did not obtain better results; ACCUCOPY finished in 17 sec-
onds and obtained the highest precision. Note that on this data
set ACCUCOPY did not spend much longer time than ACCUFOR-
MATATTR although it in addition computes copying probabilities,
because (1) there are less sources and (2) it converges in less rounds.

Precision over time: Finally, we ran the different fusion methods
on data sets collected on different days. Table 12 shows for each

method a summary, including average precision, minimum preci-
sion, and standard deviation on fusion precision over time.

Our observation in general is consistent with the results on one
snapshot of the data. ACCUFORMATATTR is the best for the Stock
domain, whereas ACCUCOPY is the best for the Flight domain.
Indeed, the best fusion method for Stock obtains a precision of as
high as .941 on average, whereas the number is .987 for Flight. The
major difference from observations on the snapshots is that ACCU-
FORMATATTR and ACCUSIMATTR outperform VOTE on average
on FLIGHT domain. Finally, we observe higher deviation for Flight
than for Stock, caused by the variety of quality of copied data; we
also observe a quite high deviation for COSINE model on Flight
data.
Summary and comparison: We found that in most data sets, the
naive voting results have an even lower recall than the highest recall
from a single source, while the best fusion method improves over
the highest source recall on average. We obtain very high precision
for Flight (.987), reasonable precision for Stock (.941). Note how-
ever that for Stock the improvement of recall over a single source
with the highest recall is only marginal. Also, on all data snap-
shots we observe that fusing a few high-recall sources (5 for Stock,
9 for Flight) obtains the highest recall, while adding more sources
afterwards can only hurt (reducing by 4% for Stock and by .4% for
Flight on the snapshot). Among the mistakes, we found that about
50% can be fixed by correct knowledge of source trustworthiness
and copying; for 10% the selected values have a higher granular-
ity than the ground truth (so not erroneous); and for the remaining
40% we do not observe strong evidence from the data supporting
the ground truth.

Among the different fusion methods, we did not observe that one
definitely dominates others on all data sets. Similarly, for fusion-
method pairs listed in Table 11, it is not clear that the advanced
method would definitely improve over the basic method on all data
sets except for INVEST vs. POOLEDINVEST, and TRUTHFINDER
vs. ACCUSIM. For example, considering value similarity and for-
matting helps on Stock data but not on Flight data. In general, when
copying exists between low-accuracy sources (e.g., Flight), consid-
ering source accuracy without copying can obtain results with even
lower precision, while considering copying in addition can signif-
icantly improve the results. But if copying exists mainly among
high-accuracy sources (e.g., Stock), ignoring the copying issue does
not seem to hurt the fusion results much. Note however that the low
performance of ACCUCOPY on Stock is because the copy-detection
method does not handle similar values well; indeed, if we take sam-
pled source accuracy and discovered copying as input, ACCUCOPY
obtains the highest precision (.958) among all methods.

The fusion results without input trustworthiness depend both on
how well the model performs if source trustworthiness is given and
on how well the model can estimate source trustworthiness. In gen-
eral the lower trustworthiness deviation, the higher fusion preci-
sion, but there are also many exceptions.
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Figure 12: Fusion precision vs. efficiency.

Table 12: Precision of data-fusion methods on data over one month.
Category Method Stock Flight

Avg Min Deviation Avg Min Deviation
Baseline VOTE .922 .898 .014 .887 .861 .028

HUB .925 .895 .015 .885 .850 .027
Web-link AVGLOG .921 .895 .015 .868 .838 .029

based INVEST .797 .764 .027 .786 .748 .032
POOLEDINVEST .871 .831 .015 .979 .921 .013

IR based
2-ESTIMATES .910 .811 .026 .639 .588 .052
3-ESTIMATES .923 .897 .014 .718 .638 .034

COSINE .923 .894 .015 .880 .786 .086

Bayesian based

TRUTHFINDER .930 .909 .013 .818 .777 .031
ACCUPR .922 .893 .015 .893 .861 .030
ACCUSIM .932 .913 .012 .866 .833 .032

ACCUFORMAT .932 .911 .012 .866 .833 .032
ACCUSIMATTR .941 .921 .011 .956 .833 .050

ACCUFORMATATTR .941 .924 .010 .956 .833 .050
Copying affected ACCUCOPY .884 .801 .036 .987 .943 .010

Typically more complex fusion methods achieve a higher fusion
precision at the expense of (much) longer execution time. This is
affordable for off-line fusion. Certainly, longer execution time does
not guarantee better results.

5. IMPROVING FUSION
We now discuss several possible improvements for fusion ac-

cording to our observations described in Section 4.
First, considering source trustworthiness appears to be promis-

ing and can often improve over naive voting when there is no bias
from copiers. However, we often do not know source trustworthi-
ness a priori. Currently most proposed methods start from a default
accuracy for each source and then iteratively refine the accuracy.
However, trustworthiness computed in this way may not be precise
and it appears that knowing precise trustworthiness can fix nearly
half of the mistakes in the best fusion results. Can we start with
some seed trustworthiness better than the currently employed de-
fault values to improve fusion results? For example, the seed can
come from sampling or based on results on the data items where
data are fairly consistent.

Second, considering source copying also appears to be promis-
ing. While ACCUCOPY obtains the highest precision on both do-
mains when source trustworthiness and copy relationships are pro-
vided, it does not get consistent results on the two domains other-
wise. The reason for the low precision in the Stock domain is due to
false positives in the discovered copying relationships, as the copy-
detection method proposed in [4] does not consider value similarity
and granularity. Can we develop more robust copy-detection meth-
ods in such context? In addition, copy detection appears to be quite

time-consuming. Can we improve the scalability of copy detection
for Web-scale data?

Third, we observed that different fractions of data from the same
source can have different quality. The fusion results have shown
the promise of distinguishing quality of different attributes. On the
other hand, one can imagine that data from one source may have
different quality for data items of different categories; for example,
a source may provide precise data for UA flights but low-quality
data for AA-flights. Can we automatically detect such differences
and distinguish source quality for different categories of data for
improving fusion results?

Fourth, on both data sets we observed that fusion on a few high
recall sources obtains the highest recall, but on all sources obtains
a lower recall. This calls for source selection–can we automatically
select a subset of sources that lead to the best fusion results?

Fifth, we neither observed one fusion method that always dom-
inates the others, nor observed between a basic method and a pro-
posed improvement that the latter always beats the former. Can we
combine the results of different fusion models to get better results?

Sixth, even though we have tried our best to resolve heterogene-
ity at the schema level and instance level manually, we still ob-
served that 50% of value conflicts are caused by ambiguity. In fact,
observing a lot of conflicts on an attribute from one source is a red
flag for the correctness of schema mapping, and observing a lot
of conflicts on an object from one source is a red flag for the cor-
rectness of instance mapping. Can we combine schema mapping,
record linkage, and data fusion to improve results of all of them?

6. CONCLUSIONS



This paper is the first one that tries to understand correctness of
data on the Deep Web. We collected data on two domains where
we believed that the data are fairly clean; to our surprise, we ob-
served data of quite high inconsistency and found a lot of sources
of low quality. We also applied state-of-the-art data fusion methods
to understand whether current techniques can successfully resolve
value conflicts and find the truth. While these methods show good
potential, there is obvious space for improvement and we suggested
several directions for future work.
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