Effective Java
I. Creating and Destroying Objects

Rule 1: Consider providing static factory methods instead of constructors because factories are often more appropriate. If you’ve weighed the two options and nothing pushes you strongly in either direction, it’s probably best to provide a constructor simply because it’s the norm.
· Unlike constructors, they have names

· Unlike constructors, they are not required to create a new object each time they’re invoked; e.g., Boolean.valueOf().

· Unlike constructors, they can return an object of any subtype of their return type; e.g., Collections, service provider frameworks that take the desired class of the instance from a Properties file.
· Classes without public or protected constructors cannot be subclassed.
· They are not readily distinguishable from other static methods.

 Solution: named as valueOf or getInstance
Rule 2: Enforce the singleton property with a private constructor. Singletons typically represent some system component that is intrinsically unique. On balance, it makes sense to use the first approach if you’re absolutely sure that the class will forever remain a singleton. Use the second approach if you want to reserve judgment in the matter.
Option 1. Use a final field. Advantage: Declarations of the members comprising the class make it clear that the class is a singleton. Slight performance advantage on a not-good JVM implementation.
public class Elvis{

public static final Elvis INSTANCE = new Elvis();

private Elvis(){

…

}

…

 }

Option 2. Use a static public factory method. Advantage: It gives the flexibility to change mind about whether the class should be a singleton without changing the API.
public class Elvis{

private static final Elvis INSTANCE = new Elvis();

private Elvis(){

…

}

public static Elvis getInstance(){

return INSTANCE;

}

…

}

Note that to make a singleton class serializable, one must provide a readResolve method.

Rule 3: Enforce noninstantiability with a private constructor. Attempting to enforce noninstantiability by making a class abstract does not work. A class can be made noninstantiable by including a single explicit private constructor. This idiom also prevents the class from being subclassed. Useful for utility classes which just groups static methods and static fields; e.g., java.lang.Math and java.util.Arrays.
public class UtilityClass{

private UtilityClass (){

…

}

…
}

Rule 4: Avoid creating duplicate objects. It is often appropriate to reuse a single object instead of creating a new functionally equivalent object each time it is needed. Reuse can be both faster and more stylish. However, the creation and reclamation of small objects whose constructors do little explicit work is cheap. Creating additional objects to enhance the clarity, simplicity, or power of a program is generally a good thing. Conversely, avoiding object creation by maintaining your own object poolis a bad idea unless the objects in the pool are extremely heavyweight, such as database connections.
1. Reuse immutable (Rule 13) objects; e.g., String.
String s = new String(“silly”); //DON’T DO THIS!
String s = “No longer silly”; //DO THIS!
2. Reuse mutable objects that one knows will not be modified. Create such instances once and initialize them with a static initializer. When the instance is not used, static initialization can cause unnecessary initialization. It is possible to eliminate the unnecessary initialization by lazily initializing (Rule 48), which is not recommended as it would complicate the implementation and would be unlikely to result in a noticeable performance improvement (Rule 37).
public class Person{

private final Date birthDate;

private static final Date BOOM_START;

private static final Date BOOM_END;

static {

Calendar gmtCal = …

gmtCal.set(1946, …);

BOOM_START = gmtCal.getTime();

gmtCal.set(1965, …);

BOOM_END = gmtCal.getTime();

}

…

}

3. Reuse adaptors (views), which is an object that delegates to a backing object, providing an alternative interface to the backing object; e.g., keyset method of the Map interface. Because an adaptor has no state beyond that of its backing object, there’s no need to create more than one instance of a given adapter to a given object.
Rule 5. Eliminate obsolete object references by merely null out references once they become obsolete.

1. Generally speaking, whenever a class manages its own memory, the programmer should be alert for memory leaks by nulling out obsolete references; e.g., in a fixed-length array, when we delete some elements at the end of the array and accordingly reduce the variable for the array length, we should null out those references.

2. Another common source of memory leaks is cache. There are two possible solutions to this problem. If you’re lucky enough to be implementing a cache wherein an entry is relevant exactly so long as there are references to its key outside of the cache, represent the cache as a WeakHashMap; entries will be removed automatically after they become obsolete. More commonly, the period during which a cache entry is relevant is not well defined, with entries becoming less valuable over time. Under these circumstances, the cache should occasionally be cleansed of entries that have fallen into disuse. The cleaning can be done by a background thread (java.util.Timer) or as a side effect of adding new entries to the cache. E.g., java.util.LinkedHashMap.
Rule 6. Avoid finalizers. You should never depend on a finalizer to update critical persistent state, especially time-critical resources. Instead, provide an explicit termination method, and require clients of the class to invoke this method on each instance when it is no longer needed. The instance must keep track of whether it has been terminated: the explicit termination method must record in a private field that the object is no longer valid, and other methods must check this field and throw an IllegalStateException if they are called after the object has been terminated. Explicit termination methods are often used in combination with the try-finally construct to ensure prompt termination.

Do not use finalizers except as a safety net in case the owner of an object forgets to call the explicit termination method, or to terminate noncritical native resources. In those rare instances where you do use a finalizer, remember to invoke super.finalize. Last, if you need to associate a finalizer with a public, nonfinal class, consider using a finalizer guardian to ensure that the finalizer is executed, even if a subclass finalizer fails to invoke super.finalize.

//Manual finalizer chaining

Protected void finalize() throws Throwable{

Try{

// Finalize subclass sate

…

}finally{

super.finalize();

}

}

// Finalizer guardian idiom

public class Foo{

// Sole purpose of this object is to finalize outer Foo object

private final Object finalizerGuardian = new Object(){

protected void finalize() throws Throwable{

// Finalize outer Foo object

…

}

};

… //Remainder omitted
}

II. Methods Common to All Objects

Rule 7: Obey the general contract when overriding equals. Override Object.equals when a class has a notion of logical equality that differs from mere object identity, and a superclass has not already override equals to implement the desired behavior. It is fine not doing so if

· Each instance of the class is inherently unique

· You don’t care whether the class provides a “logical equality” test. E.g., java.util.Random.
· The class is private or package-private, and you are certain that its equals method will never be invoked. Instead you should do:
public boolean equals(Object o){

throw new UnsupportedOperation Exception);

}

Here is a recipe for a high-quality equals method:

1. Use the == operator to check if the argument is a reference to this object as an optimization

2. Use the instanceof operator to check if the argument is of the correct type.

3. Cast the argument to the correct type.

4. For each “significant” field in the class, check to see if that field of the argument matches the corresponding field of this object:
a. for primitive fields except float or double, use ==;
b. for float, use Float.floatToIntBits to translate to int values and compare int values using ==;
c. for double, use Double.doubleToLongBits to translate to long values and compare long values using ==’
d. for object reference fields, invoke the equals method recursively;
e. for array fields, compare each element and keep in mind null value. (Method equals should not cause NullPointerException.)
Sometimes it is worthwhile to store a canonical form in each object, but this is most appropriate for immutable classes.

5. When finishing writing, ask three questions: is it symmetric, is it transitive, and is it consistent? (Note that there is simply no way to extend an instantiable class and add an aspect while preserving the transitivity.

Final caveats:

1. Always override hashCode when you override equals.

2. Don’t try to be too clever. If you only test fields for equality, it’s not hard to adhere to the equals contract. If you are overly aggressive in searching for equivalence, it’s easy to get into trouble. It is generally a bad idea to take any form of aliasing into account.

3. Don’t write an equals method that relies on unreliable resources.

4. Don’t substitute another type for Object in the equals declaration.

Rule 8: Always override hashCode when you override equals. Equal objects must have equal has codes. Do not be tempted to exclude significant parts of an object from the hash code computation to improve performance and exclude any fields that are not used in equality comparisons in computing hashCode. See the recipe from PP38-39.
Rule 9: Always override toString. Providing a good toString implementation makes your class much more pleasant to use. When practical, the toString method should return all of the interesting information contained in the object.

One important decision is whether to specify the format of the return values in the documentation. It is recommended that you do this for value classes, such as phone numbers or matrices. The advantage is that it serves as a standard, unambiguous, human-readable representation of the object. The disadvantage is that once you’ve specified it, you’re stuck with it for life, assuming your class is widely used. Whether or not you decide to specify the format, you should clearly document your intentions, and it is always a good idea to provide programmatic access to all of the information contained in the value returned by toString.

Rule 10: Override Clone judiciously. The cloneable interface has many shortcomings, so other interfaces should not extend it and classes designed for inheritance should not implement it. Never override the clone method and never invoke it except, perhaps, to copy arrays cheaply. Instead, provide a copy constructor or its static factory variant.
With that being said, all classes that implement cloneable should override clone with a public method. This public method should first call super.clone and then fix any fields that need fixing. Typically, this means copying any mutable objects that comprise the internal “deep structure” of the object being cloned and replacing the references to these objects with references to the copies. While these internal copies can generally be made by calling clone recursively, this is not always the best approach. If the class contains only primitive fields or references to immutable objects, then it is probably the case that no fields need to be fixed. The clone method of a subclass that doesn’t want to be cloned can always throw an unchecked exception, such as UnsupportedOperationexception, if the clone method it overrides is not declared to throw CloneNotSupportedException.

Rule 11: Consider implementing Comparable. By implementing Comparable, a class indicates that its instances have a natural ordering. Classes that depend on comparison include the sorted collections, TreeSet and TreeMap, and the utility classes Collections and Arrays, which contain searching and sorting algorithms.
Writing a compareTo method is similar to writing an equals method, but there are a few key differences.

· You don’t need to type check the argument prior to casting. If the argument is not of the appropriate type, the compareTo method should throw a ClassCastException. If the argument is null, the compareTo method should throw a NullPointerException.

· Compare object reference fields by invoking the compareTo method recursively.

· If a class has multiple significant fields, the order in which you compare them is critical.

III. Classes and Interfaces

Rule 12: Minimize the accessibility of classes and members. You should always reduce accessibility as much as possible. After carefully designing a minimal public API, you should prevent any stray classes, interfaces, or members from becoming a part of the API. This concept, known as information hiding or encapsulation, is one of the fundamental tenets of software design.
· For top-level (non-nested) classes and interfaces, there are only two possible access levels: package-private (Implementation) and public (API). If a top-level class or interface can be made package-private, it should be. If a package-private top-level class or interface is used only from within a single class, you should consider making it a private nested class (or interface) of the class in which it is used.

· After carefully designing your class’s public API, your reflex should be to make all other members private. Only if another class in the same package really needs to access a member should you remove the private modifier, making the member package-private. For members of the public classes, a huge increase in accessibility occurs when the access level goes from package-private to protected. The need for protected members should be relatively rare.
There is one rule that restricts your ability to reduce the accessibility of methods: if a method overrides a superclass method, it is not permitted to have a lower access level in the subclass than it does in the superclass. If a class implements an interface, all of the class methods that are also present in the interface must be declared public.

· With the exception of public static final fields, public classes should have no public fields.

· Ensure that objects referenced by public static final fields are immutable. It is nearly always wrong to have public static final array field.
private static final Type[] PRIVATE_VALUES = {…};

public static final List VALUES = Collections.unmodifiableList(Arrays.asList(PRIVATE_VALUES));

Rule 13: Favor immutability. Classes should be immutable unless there is a very good reason to make them mutable. Resist the urge to write a set method for every get method.
· Immutable objects are simple as it can be in exactly one state, the state in which it was created.
· Immutable objects are inherently thread-safe; they require no synchronization and so can be shared freely. Immutable classes should encourage clients to reuse existing instances wherever possible, such as providing public static final constants for frequently used values.
· Not only can you share immutable objects, but you can share their internals.

· Immutable objects make great building blocks for other objects, such as map keys and set elements.

· An immutable class requires a separate object for each distinct value and creating these objects can be costly.
Thus, you should always make small value objects, such as Complex, immutable. You should seriously consider making larger value objects, such as String and BigInteger, immutable as well. You should provide a public mutable companion class for your immutable class only (such as StringBuffer for String and BigSet for BigInteger) once you’ve confirmed that it is necessary to achieve satisfactory performance. To make a class immutable, follow these five rules:
1. Don’t provide any methods that modify the object (known as mutators).

2. Ensure that no methods may be overridden by making the class final.

a. An alternative is to make each method of the class final, such that it allows programmers to extend the class by adding new methods built atop the old ones.

b. A second alternative is to make all of its constructors private or package-private, and to add public static factories in place of the public constructors (it is impossible to extend a class that comes from another package and that lacks a public or protected constructor). It allows the use of multiple package-private implementation classes, and makes it possible to tune the performance of the class in subsequent releases by improving the object-caching capabilities of the static factories.
3. Make all fields final. In practice, an immutable class may have one or more nonfinal redundant fields in which they cache the results of expensive computations the first time they are required.
4. Make all fields private.

5. Ensure exclusive access to any mutable components. If your class has any fields that refer to mutable objects, ensure that clients of the class cannot obtain references to these objects. Never initialize such a field to a client-provided object reference nor return the object reference from an accessor. Make defensive copies in constructors, accessors, and readObject methods.

If a class cannot be made immutable, you should still limit its mutability as much as possible. Constructors should create fully initialized objects with all of their invariants established. You should not provide a public initialization method separate from the constructor and you should not provide a “reinitialize” method unless there is an extremely good reason to do so.

Rule 14. Favor composition over inheritance. Inheritance is powerful, but it is problematic because it violates encapsulation. It is appropriate only when a genuine subtype relationship exists between the subclass and the superclass. Even then, inheritance may lead to fragility if the subclass is in a different package from the superclass and the superclass is not designed for extension.

To avoid this fragility, use composition and forwarding instead of inheritance, especially if an appropriate interface to implement a wrapper class exists. In a wrapper, the existing class becomes a component of the new one. Each instance method in the new class invokes the corresponding method on the contained instance of the existing class and returns the results. Not only are wrapper classes more robust than subclasses, they are also more powerful.

Rule 15. Design and document for inheritance or else prohibit it. Designing a class for inheritance places substantial limitations on the class.
· First, the class must document precisely the effects of overriding any method. In other words, the class must document its self-use of overridable methods: for each public or protected method or constructor, its documentation must indicate which overridable (nonfinal and either public or protected) methods it invokes, in what sequence, and how the results of each invocation affect subsequent processing. More generally, a class must document any circumstances under which it might invoke an overridable method. By convention, a method that invokes overridable methods contains a description of these invocations at the end of its doc comment and the description begins with the phrase “This implementation”.

· A class may have to provide hooks into its internal workings in the form of judiciously chosen protected methods or, in rare instances, protected fields. You should provide as few protected methods and fields as possible because each one represents a commitment to an implementation detail. On the other hand, you must not provide too few, as a missing protected method can render a class practically unusable for inheritance.

· Constructors must not invoke overridable methods, directly or indirectly. Otherwise, the superclass constructor runs before the subclass constructor, so the overriding method in the subclass will get invoked before the subclass constructor has run. Similarly, neither clone nor readObject may invoke an overridable method, directly or indirectly.

· The Cloneable and Serializable interfaces present special difficulties when designing for inheritance. It is generally not a good idea for a class designed for inheritance to implement either of these interface, as they place a substantial burden on programmers who extend the class. If you decide to implement Serializable in a class designed for inheritance and the class has a readResolve or writeReplace method, you must make these methods protected rather than private.

· Prohibit subclassing in classes that are not designed and documented to be safely subclassed in two ways: 1) declare the class final, and 2) make all the constructors private or package-private and add public static factories in place of the constructors.
· If a concrete class does not implement a standard interface, then you may inconvenience some programmers by prohibiting inheritance. If you feel that you must allow inheritance from such a class, one reasonable approach is to ensure that the class never invokes any of its overridable methods and to document this fact. You can eliminate a class’s self-use of overridable methods mechanically, without changing its behavior. Move the body of each overridable method to a private “helper method” and have each overridable method invoke its private helper method.
Rule 16. Prefer interfaces to abstract classes. An interface is generally the best way to define a type that permits multiple implementations. An exception to this rule is the case where ease of evolution is deemed more important than flexibility and power. Under these circumstances, you should use an abstract class to define the type, but only if you understand and can accept the limitations.
· Existing classes can be easily retrofitted to implement a new interface.

· Interfaces are ideal for defining mixins (A mixin is a type that a class can implement in addition to its “primary type” to declare that it provides some optional behavior.

· Interfaces allow the construction of nonhierarchical type frameworks.

· Interfaces enable safe, powerful functionality enhancements via the wrapper class idiom.

· It is far easier to evolve an abstract class than it is to evolve an interface. Thus, you should design all of your public interfaces with the utmost care and test them thoroughly by writing multiple implementations.
If you export a nontrivial interface, you should strongly consider providing a skeletal implementation to go with it. By convention, skeletal implementations are called Abstract[Interface]. The beauty of skeletal implementations is that they provide the implementation assistance of abstract classes without imposing the severe constraints that abstract classes impose when they serve as type definitions.

Writing a skeletal implementation is a relatively simple, if somewhat tedious matter. First you must study the interface and decide which methods are the primitives in terms of which the others can be implemented. These primitives will be the abstract methods in your skeletal implementations. Then you must provide concrete implementations of all the other methods in the interface.

Rule 17. Use interfaces only to define types. Interfaces should be used only to define types. They should not be used to export constants.

Rule 18. Favor static member classes over nonstatic. A nested class is a class defined within another class. A nested class should exist only serve its enclosing class. There are four kinds of nested classes: static member classes, nonstatic member classes, anonymous classes, and local classes. All but the first kind are known as inner classes.
· A static member class has the modifier static in their declarations and is best thought of as an ordinary class that happens to be declared inside another class and has access to all of the enclosing class’s members, even those declared private. A static member class is a static member of its enclosing class and obeys the same accessibility rules as other static members. If it is declared private, it is accessible only within the enclosing class, and so forth.
· One common use of a static member class is as a public auxiliary class, useful only in conjunction with its outer class; e.g., Calculator.Operatioin.PLUS.
· One common use of private static member classes is to represent components of the object represented by their enclosing class. For example, Map instances typically have an internal Entry object for each key-value pair in the map. While each entry is associated with a map, the methods on an entry (getKey, getValue, and setValue) do not need access to the map. Therefore a private static member class is best.
· A nonstatic member class does not have the static modifier and is very different from static member class. Each instance of a nonstatic member class is implicitly associated with an enclosing instance of its containing class when the enclosing instance is created and cannot be modified thereafter. Normally, the association is established automatically by invoking a nonstatic member class constructor from within an instance method of the enclosing class. Within instance methods of a nonstatic member class, it is possible to invoke methods on the enclosing instance, or to obtain a reference to the enclosing instance using the qualified this construct. If an instance of a nested class can exist in isolation from an instance of its enclosing class, then the nested class cannot be a nonstatic member class: it is impossible to create an instance of a nonstatic member class without an enclosing instance.

· One common use of a nonstatic member class is to define an Adapter that allows an instance of the outer class to be viewed as an instance of some unrelated class; for example, implementations of the Map interface typically use nonstatic member classes to implement their collection views, which are returned by Map’s keySet, entrySet, and values methods.

· Anonymous classes has no name and is not a member of its enclosing class. Rather than being declared along with other members, it is simultaneously declared and instantiated at the point of use. Anonymous classes are permitted at any point in the code where an expression is legal. Anonymous classes behave like static or nonstatic member classes depending on where they occur: they have enclosing instances if they occur in a nonstatic context. There are several limitations on the applicability of anonymous classes.

· An anonymous class may be used only if it is to be instantiated at a single point in the code.

· Anonymous classes may be used only if there is no need to refer to them after they are instantiated.

· Anonymous classes typically implement only methods in their interface or superclass. They do not declare any new methods, as there is no nameable type to access new methods.

· Because anonymous classes occur in the midst of expressions, they should be very short, perhaps twenty lines or less.

· One common use of an anonymous class is to create a function object, such as a Comparator instance.

· Another common use of an anonymous class is to create a process object, such as a Thread, Runnable, or TimerTask instance.

· A third common use is within a static factory method (pp86).

· A fourth common use is in the public static final field initializers of sophisticated typesafe enums that require a separate subclass for each instance (pp94).
· Local classes are probably the least frequently used of the four kinds of nested classes. A local class may be declared anywhere that a local variable may be declared and obeys the same scoping rules. Like member classes, they have names and may be used repeatedly. Like anonymous classes, they have enclosing instances if and only if they are used in a nonstatic context. They should be short so as not to harm the readability of the enclosing method or initializer.

To recap, if a nested class needs to be visible outside of a single method or is too long to fit comfortably inside a method, use a member class. If each instance of the member class needs a reference to its enclosing instance, make it nonstatic; otherwise make it static. Assuming the class belongs inside a method, if you need to create instances from only one location and there is a preexisting type that characterizes the class, make it an anonymous class; otherwise, make is a local class.
IV. Substitutes for C Constructs
Rule 19: Replace structures with classes. The C struct construct was omitted from the Java programming language because a class does everything a structure does and more.

Rule 20: Replace unions with class hierarchies. Whenever you’re tempted to write a class with an explicit tag field, as in the C union construct, think about whether the tag could be eliminated and the class replaced by a class hierarchy.

Rule 21: Replace enum constructs with classes. The advantage of typesafe enums over int enums are great, and none of the disadvantages seem compelling unless an enumerated type is to be used primarily as a set element or in a severely resource constrained environment. Though, it is worth reiterating that the need for enumerated types of any sort should be relatively rare, as a major use of these types has been made obsolete by subclassing.
· The basic idea is simple: define a class representing a single element of the enumerated type, and don’t provide any public constructors. Instead, provide public static final fields, one for each constant in the enumerated type.

// The typesafe enum pattern

public class Suit implements Comparable, Serializable{

private final String name;

// Ordinal of next suit to be created

private static int nextOrdinal = 0;

// Assign an ordinal to this suit

private final int ordinal = nextOrdinal++;

private Suit(String name) { this.name = name;}

public String toString() { return name;}

public int compareTo(Object o){

return ordinal – ((Suit)o).ordinal;}

}

public static final Suit CLUBS
= new Suit(“clubs”);

public static final Suit DIAMONDS= new Suit(“diamonds”);

public static final Suit HEARTS
= new Suit(“hearts”);

public static final Suit SPADES
= new Suit(“spades”);

private static final Suit[] PRIVATE_VALUES = {CLUBS, DIAMONDS, HEARTS, SPADES};

public static final List VALUES = Collectoins.unmodifiableList(Arrays.asList(PRIVATE_VALUES));

Private Object readResolve() throws ObjectStreamException{

Return PRIVATE_VALUES[ordinal];
//Canonicalize

}

}
· There is no way for clients to create objects of the class or to extend it, there will never be any objects of the type besides those exported via the public static final fields.

· Constants may be added to a typesafe enum class without recompiling its clients because the public static object reference fields containing the enumeration constants provide a layer of insulation between the client and the enum class.

· Typesafe enums are, generally speaking, comparable in performance to int enumeration constants. Two distinct instances of a typesafe enum class can never represent the same value, so reference identity comparisons, which are fast, are used to check for logical equality. Client of a typesafe enum class can use the == operator instead of the equals method; the results are guaranteed to be identical, and the == operator may be even faster.

· It is more awkward to aggregate type safe enum constants into sets. With int-based enums, this is traditionally done by choosing enumeration constant values, each of which is a distinct power of two, and representing a set as the bitwise OR of the relevant constants. This fashion is concise and extremely fast. For sets of typesafe enum constants, you can use a general purpose set implementation from the Collections Framework, but this is neither as concise nor as fast.

· Typesafe enums can’t be sued in switch statements because they aren’t integral constants. Instead, you use an if statement, which may not perform quite as well as the switch statement, but the difference is unlikely to be very significant. Furthermore, the need for multiway is branches on typesafe enum constants should be rare.

· You can augment a typesafe enum class with any method that seems appropriate.

· Because arbitrary methods can be added to typesafe enum classes, they can be made to implement any interface, such as Comparable.

· Because typesafe enum constants are objects, you can put them into collections. Such classes can be made serializable with a little care.
· If a typesafe enum class has methods whose behavior varies significantly from one class constant to another, you should use a separate private class or anonymous inner class for each constant. This allows each constant to have its own implementation of each such method and automatically invokes the correct implementation.

// Typesafe enum with behaviors attached to constants

public abstract class Operation{

private final String name;

Operation(String name) { this.name = name;}

public String toString() { return this.name;}
// Perform arithmetic operation represented by this constant

Abstract double eval(double x, double y);

public static final Operation PLUS = new Operation(“+”) {

double eval(double x, double y) { return x+y; }

};

public static final Operation MINUS = new Operation(“-”) {

double eval(double x, double y) { return x-y; }

};

public static final Operation TIMES = new Operation(“*”) {

double eval(double x, double y) { return x*y; }

};

public static final Operation DIVIDED_BY = new Operation(“/”) {

double eval(double x, double y) { return x/y; }

};

}

· To make a typesafe enum extensible, merely provide a protected constructor. Others can then extend the class and add new constants to their subclasses. You needn’t worry about enumeration constant conflicts as you would if you were using the int enum pattern. Note that it is a good idea for extensible type safe enum classes to override the equals and hashCode methods with final methods that invoke the Object methods. This ensures that no subclass accidentally overrides these methods, maintaining the guarantee that all equal objects of the enumerated type are also identical. (E.g., pp111-112)
Rule 22: Replace function pointers with classes and interfaces. The primary use of C’s function pointers is to implement the Strategy pattern. To implement this pattern in the Java programming language, declare an interface to represent the strategy and a class that implements this interface (an instance of such a class is called function objects) for each concrete strategy. When a concrete strategy is used only once, its class is typically declared and instantiated using an anonymous class. When a concrete strategy is exported for repeated use, its class is generally a private static member class, and it is exported via a public static final field whose type is the strategy interface.

V. Methods

Rule 23: Check parameters for validity. Each time you write a method or constructor, you should think about what restrictions exist on its parameters. You should document these restrictions and enforce them with explicit checks at the beginning of the method body. It is important to get into the habit of doing this; the modest work that it entails will be paid back with interest the first time a validity check fails.

· For public methods, use the Javadoc @throws tag to document the exception that will be thrown if a restriction on parameter values is violated. Typically the exception will be IllegalArgumentException, IndexOutOfBoundsException, or NullPointerException.
· For an unexported method, check the parameters using assert construct.
· It is particularly important to check the validity of parameters that are not used by a method but are stored away for later use, such as in constructors.
· An important exception to the rule that you should check a method’s parameters before performing its computation is the case in which the validity check would be expensive or impractical and the validity check is performed implicitly in the process of doing the computation.
· In general, you should design methods to be as general as it is practical to make them.
Rule 24: Make defensive copies when needed. You must program defensively with the assumption that clients of your class will do their best to destroy its invariants.

· Anytime you write a method or constructor that enters a client-provided object into an internal data structure, think about whether the client-provided object is potentially mutable. If it is, think about whether your class could tolerate a change in the object after it was entered into the data structure. If the answer is no, you must defensively copy the object and enter the copy into the data structure in place of the original. Note that defensive copies are made before checking the validity of the parameters, and the validity check is performed on the copies rather than on the originals.

· Think twice before returning a reference to an internal component that is mutable. Chances are you should be returning a defensive copy. Note that do not use the clone method to make a defensive copy of a parameter whose type is subclassable by untrusted parties. Also, it is critical to remember that nonzero-length arrays are always mutable. Therefore you should always make a defensive copy of an internal array before returning it to a client. Alternatively, you should return an immutable view of the array to the user.

· Arguably, the real lesson in all of this is that you should, where possible, use immutable objects as components of your objects so that you don’t have to worry about defensive copying.

· It is not always appropriate to make a defensive copy of a mutable parameter before integrating it into an object. There are some methods and constructors whose invocation indicates an explicit handoff of the object referenced by a parameter. A method or constructor that expects to take control of a client-provided mutable object must make this clear in its documentation.

Rule 25: Design method signatures carefully.
· Choose method names carefully. Your primary goal should be to choose names that are understandable and consistent with other names in the same package. Your secondary goal should be to choose names consistent with the broader consensus, where it exists.
· Don’t go overboard in providing convenience methods. Consider providing a “shorthand” for an operation only when it will be used frequently. When in doubt, leave it out.

· Avoid long parameter lists. As a rule, three parameters should be viewed as a practical maximum, and fewer is better. Long sequences of identically typed parameters are especially harmful.

· One way to shortening overly long parameter lists is to break the method up into multiple methods, each of which requires only a subset of the parameters. If done carelessly, this can lead to too many methods, but it can also help reduce the method count by increasing orthogonality.

· A second technique for shortening overly long parameter lists is to create helper classes to hold aggregates of parameters. Typically these helper classes are static member classes. This technique is recommended if a frequently occurring sequence of parameters is seen to represent some distinct entity.
· For parameter types, favor interfaces over classes. Whenever an appropriate interface to define a parameter exists, use it in favor of a class that implements the interface.

· Use function objects judiciously.

Rule 26: Use overloading judiciously. While selection among overridden methods is dynamic, selection among overloaded methods is static. Because overriding is the norm and overloading is the exception, overriding sets people’s expectations for the behavior of method invocation; therefore you should avoid confusing uses of overloading.

· A safe, conservative policy is never to export two overloadings with the same number of parameters. This restriction is not terribly onerous because you can always give methods different names instead of overloading.

· In some cases, especially where constructors are involved, it may be impossible to follow this advice. In that case, you should at least avoid situations where the same set of parameters can be passed to different overloadings by the addition of casts. Note that array types and classes other than Object are radically different; also, array types and interfaces other than Serializable and Cloneable are radically different.
· If such a situation cannot be avoided, for example because you are retrofitting an existing class to implement a new interface, you should ensure that all overloadings behave identically when passed the same parameters.

If you fail to do this, programmers will not be able to make effective use of the overloaded method or constructor, and they won’t understand why it doesn’t work.
Rule 27: Return zero-length arrays, not nulls. There is no reason ever to return null from an array-valued method instead of returning a zero-length array.

Rule 28: Write doc comments for all exposed API comments. Documentation comments are the best, most effective way to document your API. You must precede every exported class, interface, constructor, method, and field declaration with a doc comment. To write maintainable code, you should also write doc comments for unexported classes, interfaces, constructors, methods, and fields.

· The doc comment for a method should describe succinctly the contract between the method and its client.

· With the exception of methods in classes designed for inheritance, the contract should say what the method does rather than how it does its job.

· The doc comment should enumerate all of the methods’ preconditions, which are the things that have to be true in order for a client to invoke it, and its postconditions, which are the things that will be true after the invocation has completed successfully. Typically, preconditions are described implicitly by the @throws tags for unchecked exceptions; each unchecked exception corresponds to a precondition violation. Also, preconditions can be specified along with the affected parameters in their @param tags.

· Methods should also document and side effects. A side effect is an observable change in the state of the system that is not obviously required to achieve the postcondition.

· Documentation comments should describe the thread safety of a class.

· To describe its contract fully, the doc comment for a method should have a @param tag for every parameter, a @return tag unless the method has a void return type, and a @throws tag for every exception thrown by the method, whether checked or unchecked. By convention the text following a @param tag or @return tag should be a noun phrase describing the value represented by the parameter or return value. The text following a @throws tag should consist of the world “if,” followed by a noun phrase describing the conditions under which the exception is thrown. Occasionally, arithmetic expressions are used in place of noun phrases.
· The first sentence of each doc comment becomes the summary description of the element to which the comment pertains. The summary description must stand on its own to describe the functionality of the entity it summarizes.
· For methods and constructors, the summary description should be a verb phrase describing the action performed by the method. For classes, interfaces, and fields, the summary description should be a noun phrase describing the thing represented by an instance of the class or interface or by the field itself.

· To avoid confusion, no two members or constructors in a class or interface should have the same summary description. Pay particular attention to overloadings, for which it is often natural to use the same first sentence in a prose description.

· Be careful not to include a period within the first sentence of a doc comment. If you do, it will prematurely terminate the summary description. It is possible to include a period in a summary description by replacing the period with its numeric encoding, “.”. While this works, it doesn’t make for pretty source code.

· Arbitrary HTML is permissible within documentation comments and that HTML metacharacters must be escaped.
· The most commonly used tags are <p> to separate paragraphs; <code> and <tt>, which are used for code fragments; and <pre> which is used for longer code fragments.
· You must use escape sequences to generate HTML meta-characters, such as the less than sign (<--<), the greater than sign (>-->), and the ampersand (&--&).

· By convention, the word “this” in the doc comment always refers to the object on which the method is invoked when it is used in the doc comment for an instance method.
· Since release 1.2.2, Javadoc has had the ability to “automatically reuse” or “inherit” method comments. If a method does not have a doc comment, Javadoc searches for the most specific applicable doc comment, giving preference to interfaces over superclasses. However, the inheriting method cannot modify the inherited doc comment in any way.

· For complex APIs consisting of multiple interrelated classes, it is often necessary to supplement the documentation comments with an external document describing the overall architecture of the API. If such a document exists, the relevant class or package documentation comments should include a link to it.
VI. General Programming

Rule 29: Minimize the scope of local variables.
· The most powerful technique for minimizing the scope of a local variable is to declare it where it is first used. Nearly every local variable declaration should contain an initializer.
· Prefer for loops to while loops assuming the contents of the loop variables(s) aren’t needed after the loop terminates, because the for loop allows loop variables, limiting their scope to the exact region where they’re needed. In a for loop, a secondary loop variable can be used if the loop test involves a method invocation and the method invocation is guaranteed to return the same results on each iteration.
· Keep methods small and focused.

Rule 30: Know and use the libraries. By using a standard library, you take advantage of the knowledge of the experts who wrote it and the experience of those who used it before you.

· Every programmer should be familiar with the contents of java.lang, java.util, and, to a less extend, java.io.
· Notable additions to 1.4 release include java.util.regex, java.util.prefs, java.nio, java.util.LinkedHashSet, LinkedHashMap, and IdentityHashMap.

· A third-party library worthy of note is Doug Lea’s util.concurrent, which provides high-level concurrency utilities to simplify the task of multithreaded programming.

Rule 31: Avoid float and double if exact answers are required. The float and double types are designed primarity for scientific and engineering calculations. Don’t use them for any calculations that require an exact answer, particularly for monetary calculations (because it is impossible to represent 0.1 or any other negative power of ten as a float or double exactly).

· Use BigDecimal if you want the system to keep track of the decimal point and you don ‘t mind the inconvenience of not using a primitive type. Using BigDecimal has the added advantage that it gives you full control over rounding, letting you select from eight rounding modes whenever an operation that entails rounding is performed.

· If performance is of the essence, if you don’t mind keeping track of the decimal point yourself, and if the quantities aren’t too big, use int or long. If the quantities don’t exceed nine decimal digits, you can use int; if they don’t exceed eighteen digits, you can use long; otherwise, you must use BigDecimal.

Rule 32: Avoid strings where other types are more appropriate. Used inappropriately, strings are more cumbersome, less flexible, slower, and more error-prone than other types.

· Strings are poor substitutes for other value types. If there is an appropriate value type, whether primitive or object reference, you should use it; if there isn’t, you should write one.

· Strings are poor substitutes for enumerated types. Both typesafe enums and int values make far better enumerated type constants than strings.

· Strings are poor substitutes for aggregate types. A better approach is simply to write a class to represent the aggregate, often a private static member class.

· Strings are poor substitutes for capabilities, such as the thread-local variable facility.
Rule 33: Beware the performance of string concatenation. Use the string concatenation operator repeatedly to concatenate n strings requires time quadratic in n. So don’t use the string concatenation operator to combine more than a few strings unless performance is irrelevant. Use StringBuffer’s append method instead. Alternatively, use a character array, or process the strings one at a time instead of combining them.

Rule 34: Refer to objects by their interfaces. If you get into the habit of using interfaces as types, your program will be much more flexible.
· If appropriate interface types exist, parameters, return values, variables, and fields should all be declared using interface types. The only time you really need to refer to an object’s class is when you are creating it.
· If an object belongs to a class-based framework whose fundamental types are classes rather than interfaces, it is preferable to refer to it by the relevant base class, which is typically abstract, rather than by its implementation class.

· If there is no appropriate interface type or the class implements an interface but provide extra methods not found in the interface, such a class should be used only to refer to its instances if the program relies on the extra methods.

Rule 35: Prefer interfaces to reflection. Reflection is a powerful facility that is required for certain sophisticated system programming tasks. Examples include class browsers, object inspectors, code analysis tolls, and interpretive embedded systems, RPC systems to eliminate the need for stub compilers. But it has many disadvantages:

· You lose all the benefits of compile-time type checking.

· The code required to perform reflective access is clumsy and verbose.

· Performance suffers.

Thus,

· As a rule, objects should not be accessed reflectively in normal applications at run time.

· If you have to work with classes unknown at compile time, you should, if at all possible, use reflection only to instantiate objects and access the objects using some interface or superclass that is known at compile time.

· A legitimate, if rare, se of reflection is to break a class’s dependencies on other classes, methods, or fields that may be absent at run time. This can be useful if you are writing a package that must run against multiple versions of some other package. This technique is to compile your package against the minimal environment required to support it, typically the oldest version, and to access any newer classes or methods reflectively. To make this work, you have to take appropriate action if a newer class or method that you are attempting to access does not exist at run time. Appropriate action might consist of using some alternate means to accomplish the same goal or operating with reduced functionality.

Rule 36. Use native method judiciously. Native methods are special methods written in native programming languages such as C or C++. Historically, native methods have had three main uses.

· They provided access to platform-specific facilities such as registries and file locks. But as the Java platform matures, it provides more and more access to platform-specific facilities, such as java.util.prefs.

· They provided access to libraries of legacy code, which could in turn provide access to legacy data. But there are better ways to access some legacy code. For example, the JDBC API provides access to legacy databases.

· They were used to write performance-critical parts of applications in native languages for improved performance. But as of release 1.3, it is rarely advisable to use native methods for improved performance.

The use of native methods has serious disadvantages.

· Because native languages are not safe, applications using native methods are no longer immune to memory corruption errors.

· Because native languages are platform dependent, applications using native methods are no longer freely portable.

· There is a high fixed cost associated with going into and out of native code, so native methods can decrease performance if they do only a small amount of work.

· Native methods are tedious to write and difficult to read.

If you must use native methods to access low-level resources or legacy libraries, use as little native code as possible and test it thoroughly.

Rule 37. Optimize judiciously.
We follow two rules in the matter of optimization:

Rule 1. Don’t do it.

Rule 2 (for experts only). Don’t do it yet—that is, not until you have a perfectly clear and unoptimized solution.

--M. A. Jackson, 1975

· Do not strive to write fast programs—strive to write good ones; speed will follow.

· Do think about performance issues while you’re designing systems and especially while you’re designing APIs, wire-level protocols, and persistent data formats. It is a very bad idea to warp an API to achieve good performance.
· Making a public type mutable may require a lot of needless defensive copying.
· Using inheritance in a public class where composition would have been appropriate ties the class forever to its superclass, which can place artificial limits on the performance of the subclass.

· Using an implementation type rather than an interface in an API ties you to a specific implementation, even though faster implementations may be written in the future.

· When you’ve finished building the system, measure its performance. If it’s fast enough, you’re done. If not, locate the source of the problems with the aid of a profiler, and go to work optimizing the relevant parts of the system. The first step is to examine your choice of algorithms: no amount of low-level optimization can make up for a poor choice of algorithm. Repeat this process as necessary, measuring the performance after every change, until you’re satisfied.
Rule 38. Adhere to generally accepted naming conventions. Internalize the standard naming conventions and learn to use them as second nature. Naming conventions fall into two categories: typographical and grammatical.

· The typographical conventions are straightforward and largely unambiguous. Violations have the potential to confuse and irritate other programmers who work with the code and can cause faulty assumptions that lead to errors.

· Package

· Package names should be hierarchical with the parts separated by periods.

· Parts should consist of lowercase alphabetic characters and, rarely, digits.

· The name of any package that will be used outside your organization should begin with your organization’s Internet domain name with the top-level domain first. Users must not create packages whose names begin with java or javax, which are used for standard libraries and optional packages.

· The remainder of a package name should consist of one or more parts describing the package. Parts should be short, generally eight or fewer characters. Meaningful abbreviations are encouraged. Parts should generally consist of a single word or abbreviation.
· Class and interface.
· Class and interface names should consist of one or more words, with the first letter of each word capitalized.

· Abbreviations are to be avoided, except for acronyms and certain common abbreviations like min and max. There is little consensus as to whether acronyms should be uppercase or have only their first letter capitalized. While uppercase is more common, a strong argument can be made in favor of capitalizing only the first letter as if multiple acronyms occur back-to-back, you can still tell where one word starts and the next word ends.

· Method and field.

· Method and field names follow the same typographical conventions as class and interface names, except that the first letter of a method or field name should be lowercase. If an acronym occurs as the first word of a method or field name, it should be lowercase.

· Names of constant fields should consist of one or more uppercase words separated by the underscore character. Note that constant fields constitute the only recommended use of underscores.

· Local variables

· Local variable names have similar typographical naming conventions to member names, except that abbreviations are permitted, as are individual characters and short sequences of characters whose meaning depends on the context in which the local variable occurs.
· The grammatical conventions are more complex and looser.

· There are no grammatical naming conventions to speak of for packages.

· Classes are generally named with a noun or noun phrase.

· Interfaces are named like classes or with an adjective ending in –able or –ible.

· Methods

· Methods that perform some action are generally named with a verb or verb phrase.

· Methods that return a boolean value usually have names that begin with the word “is,” followed by a noun, a noun phrase, or any word or phrase that functions as an adjective.

· Methods that return a nonboolean function or attribute of the object on which they are invoked are usually named with a noun, a noun phrase, or a verb phrase beginning with the verb “get.” The form beginning with “get” is mandatory if the class containing the method is a Bean, and it’s advisable if you are considering turning the class into a bean at a later time. Also, there is strong precedent for this form if the class contains a method to set the same attribute. In this case, the two methods should be named getAttribute and setAttribute.

· Methods that convert the type of an object, returning an independent object of a different type, are often called toType. Methods that return a view whose type differs from that of the receiving object, are often called asType. Methods that return a primitive with the same value as the object on which they’re invoked are often called typeValue.
· Common names for static factories are valueOf and getInstance.

· Fields of type boolean are typically named like boolean accessor methods with the initial “is” omitted. Fields of other types are usually named with nouns or noun phrases.

· Grammatical conventions for local variables are similar to those for fields but are even weaker.
VII. Exceptions

Rule 39: Use exceptions only for exceptional conditions.
· Exceptions are, as their name implies, to be used only for exceptional conditions; they should never be used for ordinary control flow.
· A well-designed API must not force its client to use exceptions for ordinary control flow.
A class with a “state-dependent” method that can be invoked only under certain unpredictable conditions should generally have a separate “state-testing” method indicating whether it is appropriate to invoke the first method. (For example, the Iterator class has the state-dependent next method, which returns the next element in the iteration, and the corresponding state-testing method hasNext.) An alternative to providing a separate state-testing method is to have the state-dependent method return a distinguished value, such as null, if it is invoked with the object in an inappropriate state. (This technique would not be appropriate for Iterator, as null is a legitimate return value for the next method.)
Here are some guidelines to help you choose between a state-testing method and a distinguished return value. If an object is to be accessed concurrently without external synchronization or is subject to externally induced state transitions, it may be essential to use a distinguished return value, as the object’s state could change in the interval between the invocation of a state-testing method and its corresponding state-dependent method. Performance concerns may dictate that a distinguished return value be used if a separate state-testing method would, of necessity, duplicate the work of the state-dependent method. All other things being equal, however, a state-testing method is mildly preferable to a distinguished return value. It offers slightly better readability, and inappropriate use is likely to be easier to detect and correct.
Rule 40: Use checked exceptions for recoverable conditions and run-time exceptions for programming errors. The Java programming language provides three kinds of throwables: checked exceptions, run-time exceptions, and errors.
· Use checked exceptions for conditions from which the caller can reasonably be expected to recover. By throwing a checked exception, you force the caller to handle the exception in a catch clause or to propagate it outward. It’s important for such exceptions to provide methods that furnish information that could help the classer to recover.

· Use run-time exceptions to indicate programming errors. If a program throws an unchecked exception, it is generally the case that recovery is impossible and continued execution would do more harm than good. If a program does not catch such a throwable, it will cause the current thread to halt with an appropriate error message. The great majority of run-time exceptions indicate precondition violations.

· While the JLS does not require it, there is a strong convention that errors are reserved for used by the JVM to indicate resource deficiencies, invariant failures, or other conditions that make it impossible to continue execution. It is best not to implement any new Error subclasses.

Note: It is extremely bad practice to let programmers parse the string representation of an exception to ferret out additional information concerning the condition that caused the exception to be thrown.
Rule 41: Avoid unnecessary use of checked exceptions.

· Checked exceptions force the programmer to deal with exceptional conditions, greatly enhancing reliability.

· Overuse of checked exceptions can make an API far less pleasant to use. If a method throws one or more checked exceptions, the code that invokes the method must handle the exceptions in one or more catch blocks, or it must declare that it throws the exceptions and let them propagate outward.

· The additional burden on the programmer caused by a checked exception is substantially higher if it is the sole checked exception thrown by a method.

The burden is justified if the exceptional condition cannot be prevented by proper use of the API and the programmer using the API can take some useful action once confronted with the exception. Unless both of these conditions hold, an unchecked exception is more appropriate.
One technique for turning a checked exception into an unchecked exception is to break the method that throws the exception into two methods, the first of which returns a Boolean indicating whether the exception would be thrown. For example, HashMap.contains(Object key) and HashMap.get(Object key). If you suspect that the simple calling sequence will be the norm, then this API transformation may be appropriate. If an object is to be accessed concurrently without external synchronization or it is subject to externally induced state transitions, this transformation is inappropriate, as the object’s state may change between the invocations of the test method and the action method. If a separate action-permitted method would, of necessity, duplicate the work of the action method, the transformation may be ruled out by performance concerns.

Rule 42: Favor the use of standard exceptions. Exceptions are no exception to the general rule that code reuse is good. It makes your API easier to learn and use because it matches established conventions with which programmers are already familiar.

· Programs using your API are easier to read because they aren’t cluttered with unfamiliar exceptions.

· Fewer exception classes mean a smaller memory footprint and less time spent loading classes.

The Java platform libraries provide a basic set of unchecked exceptions that cover a large fraction of the exception-throwing needs of most APIs. Choosing which exception to reuse is not always an exact science, as the “occasions for use” in the following table are not mutually exclusive.

	Exception
	Occasion for Use

	IllegalArgumentException
	Parameter value is inappropriate.

	NullPointerException
	Parameter value is null where prohibited.

	IndexOutOfBoundsException
(ArrayIndexOutOfBoundsException,
StringIndexOutOfBoundsException)
	Index parameter value is out of range.

	IllegalStateException
	Object state is inappropriate for method invocation.

	ConcurrentModificationException
	Concurrent modification of object has been detected where prohibited.

	UnsupportedOperationException
	Object does not support method.

	ArithmeticException
	An exceptional arithmetic condition has occurred (e.g., an integer "divide by zero").

	NumberFormatException
	The application has attempted to convert a string to one of the numeric types, but that the string does not have the appropriate format.

	ClassCastException
	The code has attempted to cast an object to a subclass of which it is not an instance.

	ArrayStoreException
	An attempt has been made to store the wrong type of object into an array of objects.

	NegativeArraySizeException
	An application tries to create an array with negative size.

	EnumConstantNotPresentException
	An application tries to access an enum constant by name and the enum type contains no constant with the specified name.

	TypeNotPresentException
	An application tries to access a type using a string representing the type's name, but no definition for the type with the specified name can be found.

	IllegalThreadStateException
	A thread is not in an appropriate state for the requested operation.

Rule 43: Throw exceptions appropriate to the abstraction. Higher layers should catch lower-level exceptions and, in their place, throw exceptions that are explainable in terms of the higher-level abstraction.
// Exception Translation

try {

// Use lower-level abstraction to do our bidding

…

} catch (LowerLevelException e){

Throw new HigherLevelException(…);

}

A special form of exception translation called exception chaining is appropriate in cases where the lower-level exception might be helpful to someone debugging the situation that caused the exception. In this approach, the lower-level exception is stored by the higher-level exception, which provides a public accessor method to retrieve the lower-level exception.

// Exception Translation

try {

// Use lower-level abstraction to do our bidding

…

} catch (LowerLevelException e){

Throw new HigherLevelException(e);

}

While exception translation is superior to mindless propagation of exceptions from lower layers, it should not be overused.

· Where possible, the best way to deal with exceptions from lower layers is to avoid them entirely by ensuring that lower-level methods will succeed before invoking them. Sometimes you can do this by explicitly checking the validity of the higher-level method’s arguments before passing them on to lower layers.
· The next best thing is to have the higher layer silently work around these exceptions, insulating the caller of the higher-level method from the lower-level problem. Under these circumstances, it may be appropriate to log the exception using some appropriate logging facility.

Rule 44: Document all exceptions thrown by each method.

· Always declare checked exceptions individually, and document precisely the conditions under which each one is thrown using the Javadoc @throws tag. Don’t take the shortcut of declaring that a method throws some superclass of multiple exception classes that it may throw.

· Use the Javadoc @throws tag to document each unchecked exception that a method can throw, but do not use the throws keyword to include unchecked exceptions in the method declaration. The documentation generated by the Javadoc @throws tag in the absence of the method header generated by the throws declaration provides a strong visual cue to help the programmer distinguish checked exceptions from unchecked.

· It is particularly important that methods in interfaces document the unchecked exceptions they may throw. This documentation forms a part of the interface’s general contract and enables common behavior among multiple implementations of the interface.

· If an exception is thrown by many methods in a class for the same reason, it is acceptable to document the exception in the class’s documentation comment rather than documenting it individually for each method.

Rule 45: Include failure-capture information in detail messages.

· To capture the failure, the string representation of an exception should contain the values of all parameters and fields that “contributed to the exception.” Unlike a user-level error message, which must be intelligible to end users, the string representation of an exception is primarily for the benefit of programmers or field service personnel for use when analyzing a failure; thus, information content is far more important than intelligibility.
· It is generally unimportant to include a lot of prose.

· One way to ensure that exceptions contain adequate failure-capture information in their string representations is to require this information in their constructors in lieu of a string detail message. The detail message can then be generated automatically to include the information. It may be appropriate for an exception to provide accessor methods for its failure-capture information. It is more important to provide such accessor methods on checked exceptions than on unchecked exceptions because the failure-capture information could be useful in recovering from the failure. Even for unchecked exceptions, however, it seems advisable to provide these accessors on general principle.
Rule 46: Strive for failure atomicity. Generally speaking, a failed method invocation should leave the object in the state that it was in prior to the invocation. A method with this property is said to be failure atomic. There are several ways to do this.

· The simplest is to design immutable objects.

· For methods that operate on mutable objects, the most common way to achieve failure atomicity is to check parameters for validity before performing the operation.

· A closely related approach is to order the computation so that any part that may fail takes place before any part that modifies the object.

· A fourth and far less common approach is to write recovery code that intercepts a failure occurring in the midst of an operation and causes the object to roll back its state to the point before the operation began. This approach is used mainly for persistent data structures.

· A final approach is to perform the operation on a temporary copy of the object and replace the contents of the object with the temporary copy once the operation is complete. This approach occurs naturally when the computation can be performed more quickly once the data have been stored in a temporary data structure.

While failure atomicity is generally desirable, it is not always achievable; and even where it is possible, it is not always desirable if it would significantly increase cost or complexity. In such cases, the API documentation should clearly indicate what state the object will be left in.

Rule 47: Don’t ignore exceptions. An empty catch block defeats the purpose of exceptions. At the very least, the catch block should contain a comment explaining why it is appropriate to ignore the exception.
Appendix I. Class Hierarchy for Collections
· java.lang.Object

· java.util.AbstractCollection<E> (implements java.util.Collection<E>)

· java.util.AbstractList<E> (implements java.util.List<E>)

· java.util.AbstractSequentialList<E>

· java.util.LinkedList<E> (implements java.lang.Cloneable, java.util.List<E>, java.util.Queue<E>, java.io.Serializable)

· java.util.ArrayList<E> (implements java.lang.Cloneable, java.util.List<E>, java.util.RandomAccess, java.io.Serializable)

· java.util.Vector<E> (implements java.lang.Cloneable, java.util.List<E>, java.util.RandomAccess, java.io.Serializable)

· java.util.Stack<E>

· java.util.AbstractQueue<E> (implements java.util.Queue<E>)

· java.util.PriorityQueue<E> (implements java.io.Serializable)

· java.util.AbstractSet<E> (implements java.util.Set<E>)

· java.util.EnumSet<E> (implements java.lang.Cloneable, java.io.Serializable)

· java.util.HashSet<E> (implements java.lang.Cloneable, java.io.Serializable, java.util.Set<E>)

· java.util.LinkedHashSet<E> (implements java.lang.Cloneable, java.io.Serializable, java.util.Set<E>)

· java.util.TreeSet<E> (implements java.lang.Cloneable, java.io.Serializable, java.util.SortedSet<E>)

· java.util.AbstractMap<K,V> (implements java.util.Map<K,V>)

· java.util.EnumMap<K,V> (implements java.lang.Cloneable, java.io.Serializable)

· java.util.HashMap<K,V> (implements java.lang.Cloneable, java.util.Map<K,V>, java.io.Serializable)

· java.util.LinkedHashMap<K,V> (implements java.util.Map<K,V>)

· java.util.IdentityHashMap<K,V> (implements java.lang.Cloneable, java.util.Map<K,V>, java.io.Serializable)

· java.util.TreeMap<K,V> (implements java.lang.Cloneable, java.io.Serializable, java.util.SortedMap<K,V>)

· java.util.WeakHashMap<K,V> (implements java.util.Map<K,V>)

· java.util.Arrays

· java.util.BitSet (implements java.lang.Cloneable, java.io.Serializable)

· java.util.Collections

· java.util.Dictionary<K,V>

· java.util.Hashtable<K,V> (implements java.lang.Cloneable, java.util.Map<K,V>, java.io.Serializable)

· java.util.Properties
Interface Hierarchy

· java.lang.Iterable<T>

· java.util.Collection<E>

· java.util.List<E>

· java.util.Queue<E>

· java.util.Set<E>

· java.util.SortedSet<E>

· java.util.Iterator<E>

· java.util.ListIterator<E>

· java.util.Map<K,V>

· java.util.SortedMap<K,V>

· java.util.Map.Entry<K,V>

· java.util.Observer

· java.util.RandomAccess
	
	Implementations

	
	Hash Table
	Resizable Array
	Balanced Tree
	Linked List
	Hash Table + Linked List

	Interfaces
	Set
	HashSet
	
	TreeSet
	
	LinkedHashSet

	
	List
	
	ArrayList
	
	LinkedList
	

	
	Map
	HashMap
	
	TreeMap
	
	LinkedHashMap

