From Sight to Insight: Visual Memory for Smarter Assistants

Xin Luna Dong, Meta Reality Labs GenAlRecP@KDD, 8/2025

This talk does not represent the company's point of view

What Is An Ideal Personal Assistant?

Recommendation & Personalization

OBSERVE

what you do in your life

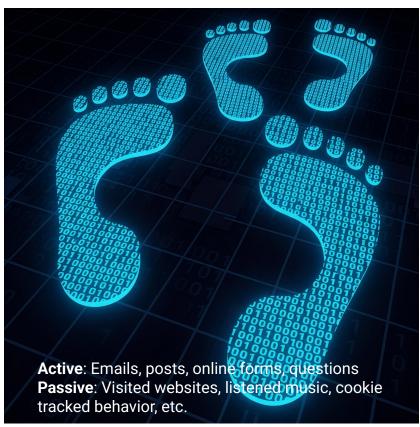
UNDERSTAND

what you enjoy or find intriguing

PROVIDE

what you need tailored to your interest

Digital Footprints



Example: Social Network P13N

OBSERVE

what you read and post in social network

UNDERSTAND

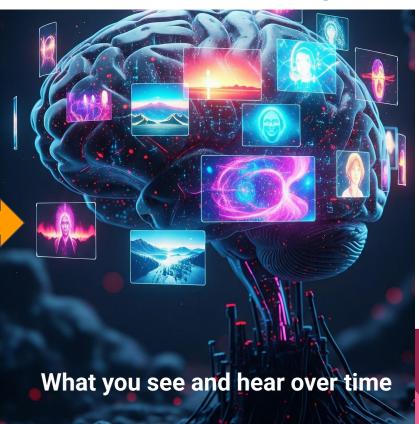
what you enjoy or find intriguing

PROVIDE what you may enjoy reading

Digital Footprints

Active: Emails, posts, online forms, questions Passive: Visited websites, listened music, cookie tracked behavior, etc.

Visual Memory



What Can Visual Memory Provide In Addition?

Visual Memory Is NOT IMPOSSIBLE

MEMEX (MEMory & EXpansion)
by Vannevar Bush (1945)

Wearables as great vehicles for life recording

Visual Memory QA & Personalization To The Property of the Prop

OBSERVE

what you see and hear

UNDERSTAND

what you enjoy or find intriguing

Challenges in Recording & Leveraging Vis. Mem.

OBSERVE UNDERSTAND

can be offline

PROVIDE

mostly on cloud

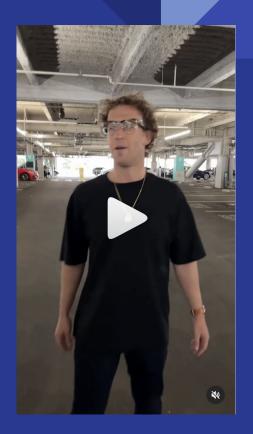
mostly on-device

- Hardware limitations
 - battery life
 - thermal constraints
 - storage capacity
 - transfer bandwidth

- Diverse and noisy history
 - o not relevant to a task
 - not accurately reflecting preferences
 - o not preferenceindicative or memory-worthy
- Special role of time and location

- Limited visual context windows for LLMs
- Runtime latency requirement
- Across-domain topics

Application I. Memory QA



Memory QA Examples

Memory Question	Memory Retrieval Results	Answer
What's the restaurant I saw last Thursday?	MIRATE	The restaurant is named Mirate
Which floor did I park?	18	You parked on Floor 8.

Memory QA—Remember This

OBSERVE

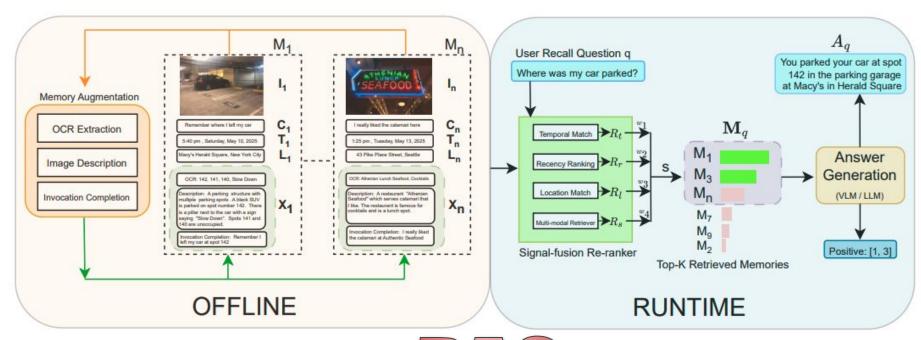
what you ask to remember

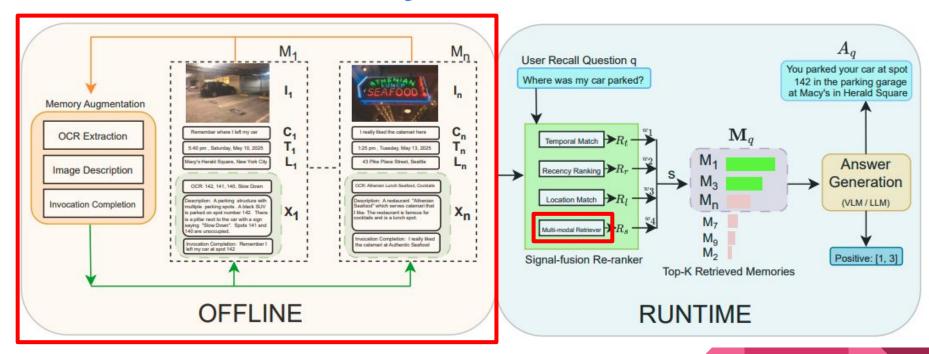
UNDERSTAND

what is important to you

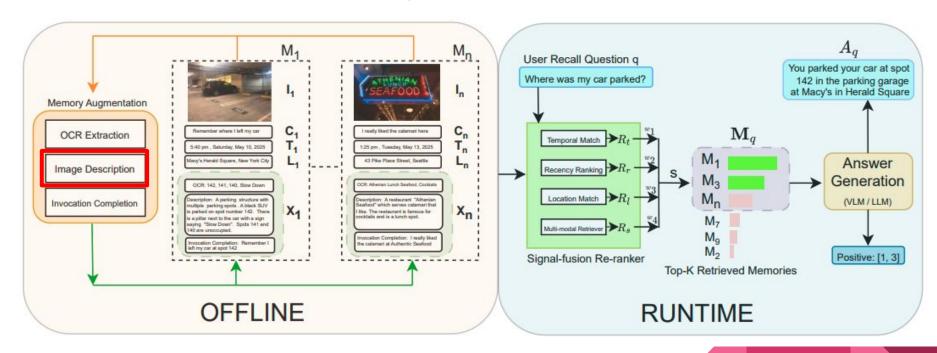
PROVIDE

answers to your memory questions

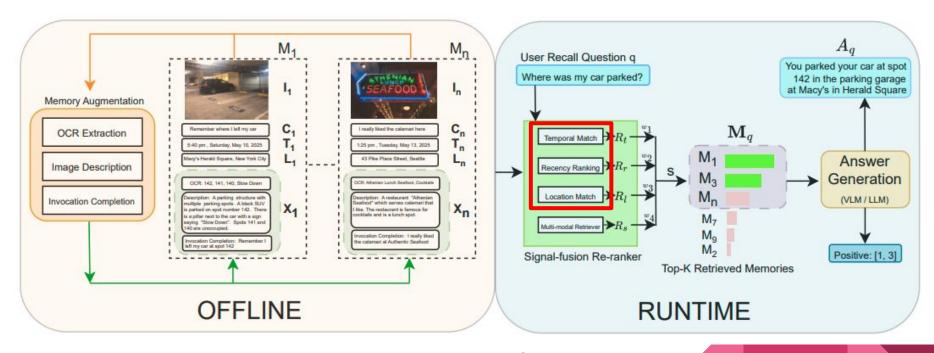




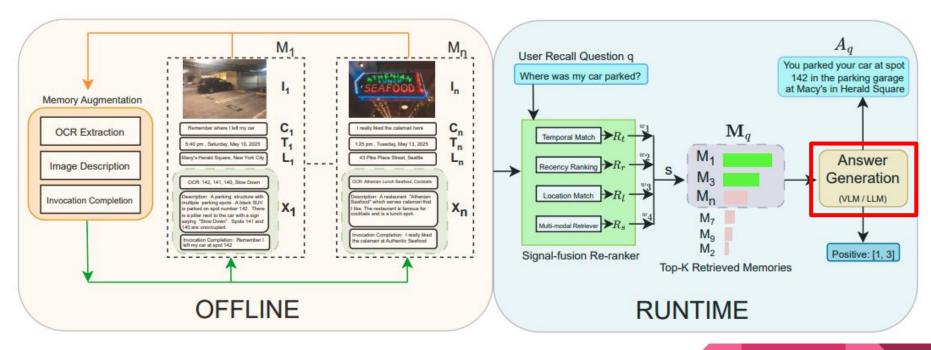
Better memory selection through offline augmentation & dual-modality retrieval



More targeted to memory questions through recall object prediction

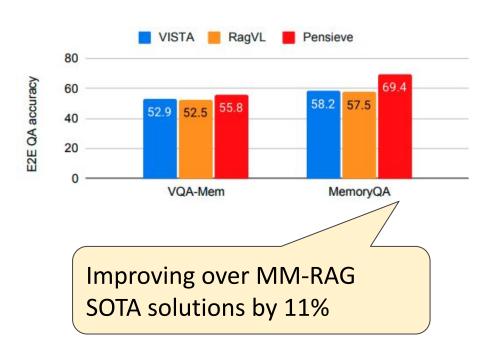


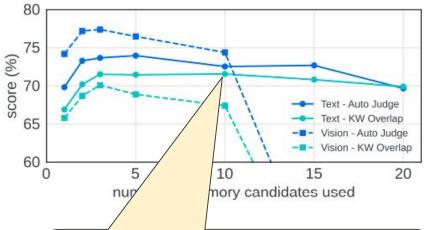
Better understanding of temporal & location requirements through temporal- & location-aware query rewriter and retrieval



Better answer generation and faster multi-memory aggregation through generation fine-tuning and text-based QA

The Pensieve Memory QA Quality





Text-based answer gen scales up to more candidate memories

Memory QA—Pensieve Recap

OBSERVE

User-triggered

UNDERSTAND

Augmentation by identifying memorization points and capturing details

PROVIDE

User-triggered RAG w. multi-memory aggregation

Application II. P13N Through Visual History

P13N Through Visual History Examples

Recommendation Question	Retrieval Candidates	Answer
Which {museums, restaurants, parks, etc.} nearby should I visit? User visual history	<i1> Vulcan Park and Museum, Statue symbolizing city's industries sits atop Red Mountain, surrounded by a park & a museum. <i2> Sloss Furnaces Visitor Center, Blast furnace plant where iron was made from 1882–1971, now an arts & education center with tours. <i3> Historic Cahaba Pumping Station, a working pump station located on the banks of the Cahaba River <i4> Alabama Jazz Hall of Fame, with a mission to foster, encourage, educate, and cultivate a general appreciation of the medium of jazz music</i4></i3></i2></i1>	You may enjoy the Cahaba Pumping Station, an active facility on the riverbank showcasing local waterworks. Also consider Vulcan Park and Museum for industrial history, and Sloss Furnaces Visitor Center for a look at a preserved blast furnace.

VisualLens—Personalized Recomm.

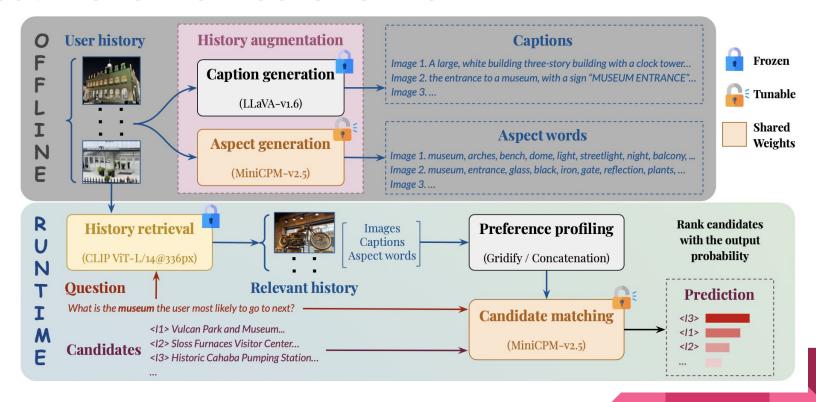
OBSERVE

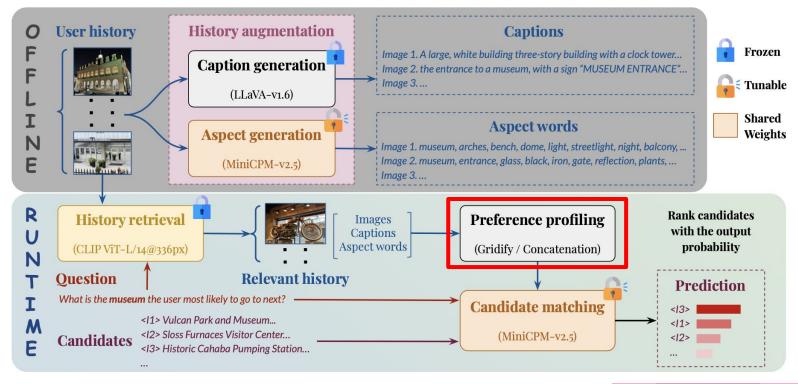
which photos you take

UNDERSTAND

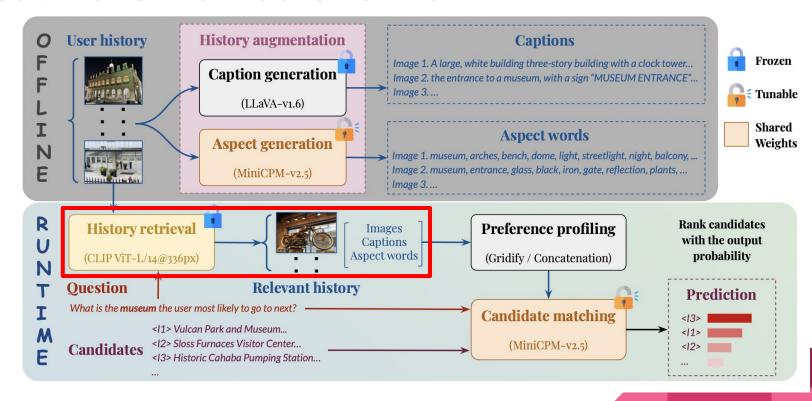
what you enjoy and find intriguing

PROVIDE recommendations tailored to your interest

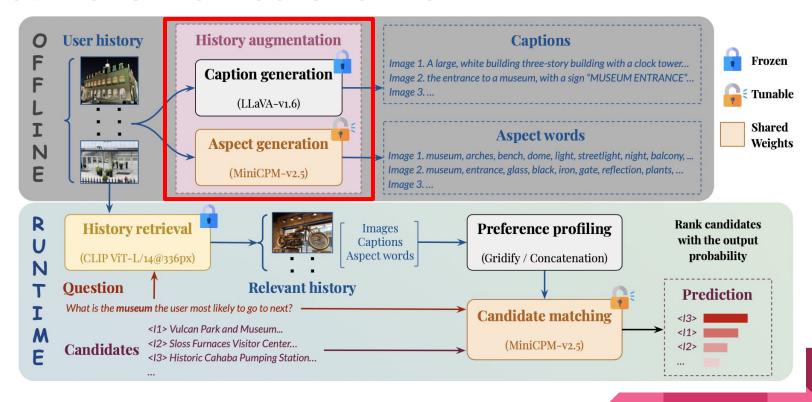




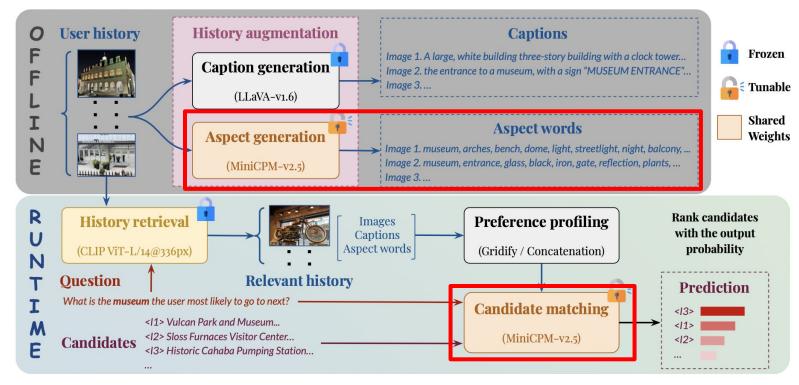
Efficient generation through grid-based multi-image inference



Relevant memories through history retrieval



Better signal capturing through offline augmentation



Better interest reflection through joint fine-tuning of aspect word extraction and recommendation

Filtered aspect

industrial, rust, pipes, towers, metal, structure, machinery, abandoned, overgrown, bluesky

Didesky

Extracted aspect

Aspect Q, Cand One image

VL validator aspects to predict the **museums** the user will go after?

Aspect Q1: What are useful

GT: Sloss Furnaces Visitor Center

Pred: industrial, rust, pipes, towers, metal, structure, machinery, abandoned

Aspect Q2: What are useful aspects to predict the **restaurants** the user will go after?

GT: Mugshots GMI and Bar -Birmingham, Al

Pred: industrial, metal, structure



industrial, rust, pipes, towers, metal, structure, machinery, abandoned

industrial, rust, pipes, towers, metal, structure, machinery, abandoned

VL aspect extractor

Extracted aspect

Fine-tune the model

Aspect Q, Cand One image

User

history

Filtered aspect

VL validator Aspect Q1: What are useful aspects to predict the **museums** the user will go after?

GT: Sloss Furnaces Visitor Center

Pred: industrial, rust, pipes, towers, metal, structure, machinery

Aspect Q2: What are useful aspects to predict the **restaurants** the user will go after?

GT: Mugshots Grill and Bar Birmingham, AL

Pred: industrial, metal, structure

industrial, rust, pipes, towers, metal, structure, machinery

Wang Bill Zhu, Deqing Fu, Kai Sun, et al. VisualLens: Personalization through Visual History. arXiv, 11/2024.

industrial, rust, pipes, towers, metal, structure, machinery

VL aspect extractor

Extracted aspect

Fine-tune the model

Aspect Q, Cand One image



VL validator

Aspect Q2: What are useful aspects to predict the restaurants the user will go after?

GT: Mugshots Grill and Bar -Birmingham, AL

Aspect Q1: What are useful

aspects to predict the

after?

Center

museums the user will go

GT: Sloss Furnaces Visitor

Pred: industrial, metal, structure, machinery

Pred: industrial, metal, structure

User

history

Filtered aspect

industrial, metal, structure, machinery

industrial, metal, structure, machinery

machiner

Extracted aspect

Aspect Q, Cand One image **GT**

VL validator Aspect Q1: What are useful aspects to predict the **museums** the user will go after?

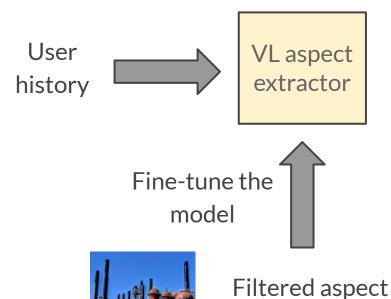
GT: Sloss Furnaces Visitor Center

Pred: industrial, metal, structure, machinery

Aspect Q2: What are useful aspects to predict the **restaurants** the user will go after?

GT: Mugshots Grill and Bar Birmingham. AL

Pred: industrial, metal



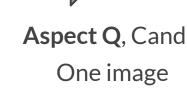
industrial, metal, structure, machinery

Aspect Self-Converge (Neg)

User VL aspect extractor history

man, sitting, table, wall, pictures, shadows, light, blue shirt, black pants, wooden chair

Extracted aspect



Fine-tune the model

GT

Filtered aspect

validator

Aspect Q1: What are useful aspects to predict the **museums** the user will go after?

GT: Sloss Furnaces Visitor Center

Pred: man, sitting, table

Aspect Q2: What are useful aspects to predict the **restaurants** the user will go after?

GT. Mugchote Grill and Rar

Pred: table. chair

man, sitting, table

Aspect Self-Converge (Neg)

man, sitting, table

User history

VL aspect extractor

Extracted aspect

Fine-tune the model

Aspect Q, Cand One image

GT

Filtered aspect

VL validator Aspect Q1: What are useful aspects to predict the **museums** the user will go after?

GT: Sloss Furnaces Visitor Center

Pred: man,

Aspect Q2: What are useful aspects to predict the **restaurants** the user will go after?

GT: Mugshots Grill and Bar - Birmingham, AL

Pred: bar, sitting

man, sitting

Aspect Self-Converge (Neg)

man, sitting

User history

VL aspect extractor

Extracted aspect

Fine-tune the model

Aspect Q, Cand One image

GT

Filtered aspect

VL validator Aspect Q1: What are useful aspects to predict the **museums** the user will go after?

GT: Sloss Furnaces Visitor Center

Pred: industrial, iron, statue, landmark, historic

Aspect Q2: What are useful aspects to predict the **restaurants** the user will go after?

GT: Mugshots Grill and Bai - Birmingham, AL

Pred: bar, burgers, beer

man, sitting

VisualLens Effectiveness

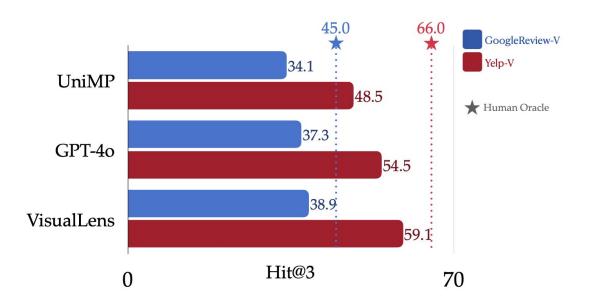
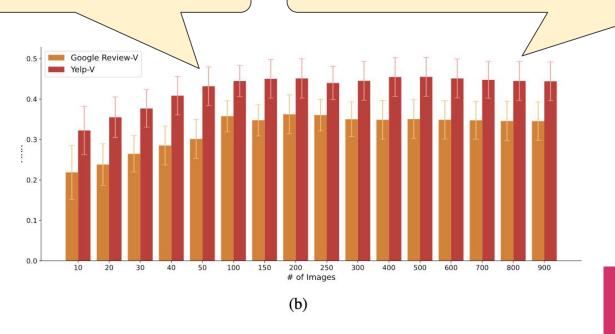


Figure 1. VISUALLENS leverages a user's task-agnostic visual history to provide personalized recommendations. Our method outperforms GPT-40 by 1.6% ~ 4.6% on Hit@3.

VisualLens Effectiveness vs. History Length

Quality improves with *richer* history

Robust against *longer* & *noisier* history



(b) MRR distribution over number of images. Both are on the User ID test set.

Personalization—VisualLens Recap

OBSERVE

user-triggered, but not task-specific

UNDERSTAND

augmentation by pinpointing user interest signals

PROVIDE

Retrieve relevant memories as recommendation contexts

Proactive Memory Capture & Compression

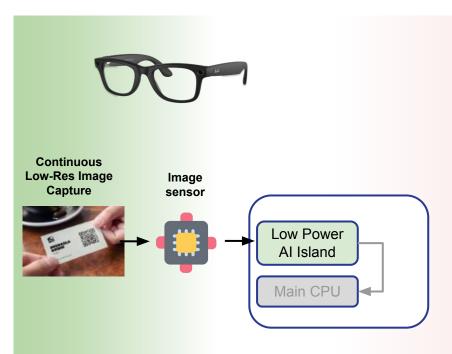
Always-on Proactive Capturing

Continuous video recording

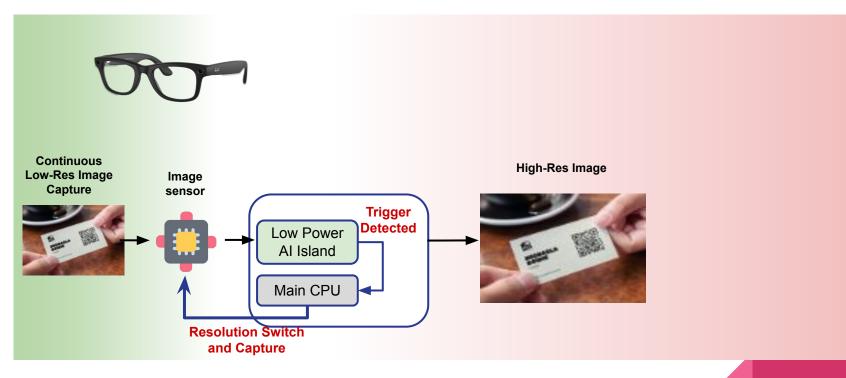
- **Challenge**: Hardware limitations
 - battery life
 - thermal constraints
 - storage capacity
 - transfer bandwidth
- Challenge: Repeated info and needle in a haystack
- Benefit: Lossless information

Periodic low-resolution photo capture

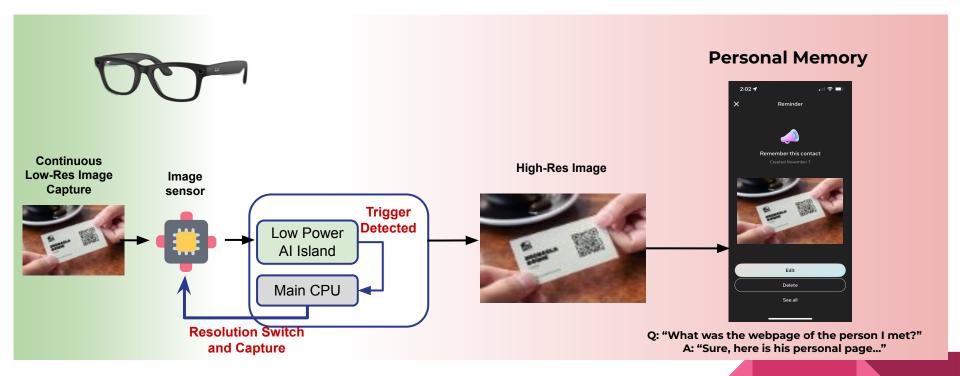
- Challenge: Lost information
 - o frames
 - details
- **Challenge:** Still repeated info
- Benefit: Saved hardware resources



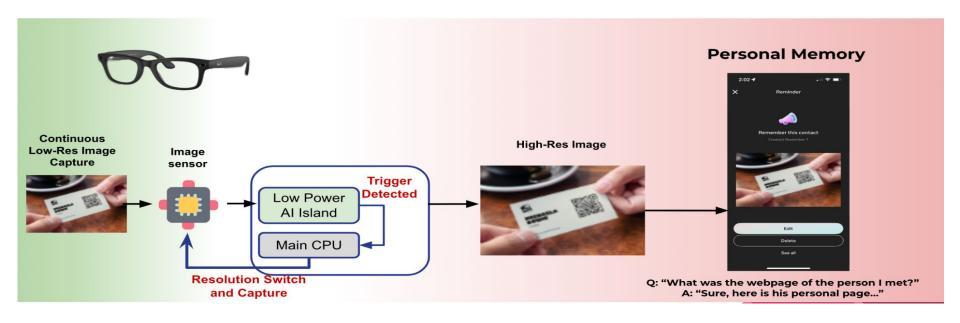
- Continuous low-resolution image capturing
- Event detection on low-power-Al-island



- Detected event wakes up main CPU
- CPU triggers high-resolution image capturing



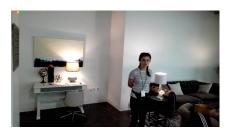
- High-resolution images transferred to personal memory
- Memory-QA on user's request



	Model Params	Model Size	Precision (HOI, AP50)	Precision* (OCR, AP50)	Precision (QR, AP50)
Low power island	1.78MB	1.88MB	~80%	~74%	~96%
Main CPU	14MB	-	~88%	~88%	-

Memory Usage	2.9MB
Running Latency	74ms
Running Power	180mW

Solution 2. Proactive Memory Compression



Frame1

Frame4

Frame2

Frame5

Frame3

Frame6

Solution 2. Proactive Memory Compression

Frame1 - high

Frame4 - high

Frame2 - drop

Frame5 - low

Frame3 - low

Frame6 - high

Proactive Captured Memory

OBSERVE

always-on event-triggered proactive capturing

UNDERSTAND

memory compression to reduce memory usage

PROVIDE

memory answers and recommendations

Towards Ultimate Visual Memory Enhanced Smart Assistant

Vision 1. Second Brain

Build a second brain to offload thoughts and knowledge for memory search, personalization, and memoir

Memex (1945)

Automatic data recording
Digital footprint + Visual Memory

Vision 2. Smart Lens

Build smart lens to offer information relevant to what the user is seeing, saying, or asking, reactively and proactively

Free delivery on \$99+

Future Research Directions

OBSERVE UNDERSTAND PROVIDE

- Always-on event detection for proactive capturing
- Duplicate detection for capture and transmission suppression
- Memory compression to save space
- Memory organization and episode extraction for easier retrieval
- Seamless integration of multi-source memory
- Usage prediction for better augmentation
- Personality embedding for better recomm.

- Dense-memory search
- Seamless blending of personal and public knowledge
- Personalized LLM generation
- Proactive information offering

Take-Aways

- Wearables devices provide a great vehicle for life recording and for personalized assistance
- Visual memory allows interesting memory QA (Pensieve) and personalized recommendation (VisualLens)
- We envision building Second Brain and Smart Lens based on dense visual memory

KDDCup Workshop—Comprehensive RAG Multi-modal Multi-turn Challenge. 8:00-12:00.

Towards a Knowledgeable Assistant: A Federated RAG Approach. MLoG, 9:55-10:30.

Managing Data, or Letting Data Manage Themselves. SKnowLLM, 3:00-3:30. Room: 717

Thank You!